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33 ' Introduction ~ Chap. 1

1.23 Figure P1.23 is a classic from a book by Giovanni Alphonso Borelli (1608-1679) entitled
“De Motu Animalium” (On the Movement of Animals), published in 1680 (first part)
and 1681 (second part), recently translated by P. Maquet, Springer-Verlag, New York,
1989. The figure shows a person carrying a heavy load. Several parts are cut open to
show how bones and muscles work in this effort. Further clarification can be obtained,
of course, by use of more detailed free-body diagrams. Use them to estimate how large
is the load acting on the hip joint when a 70 kg person walks carrying a 30 kg globe
on the shoulder. .

Figure P1.23 A figure from Table
VI, Fig. 1 of Borelli’s book.

ol
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VECTORS AND TENSORS

A beautiful story needs a beautiful language to tell. Tensor is the language
of mechanics.

2.1 YECTORS

A vector in a three-dimensional Euclidean space is defined as a directed line
segment with a given magnitude and a given direction. We shall denote vectors by
AB, ITQ, ..., or by boldface letters, w, v, F, T, .. ..

Two vectors are equal if they have the same direction and same magnitude.
A unit vector is a vector of magnitude 1. The zero vector, denoted by 0, is a vector
of zero magnitude. We use the symbols | AB |, [u, and v to represent the magnitudes
of Xﬁ, u, and v, respectively.

The sum of two vectors is anothe;) vector obtained by the “parallelogram
law,” and we write, for example, AB + BC = AC. Vector addition is commutative
and associative.

A vector multiplied by a number yields another vector. If & is a positive real
number, ka represents a vector having the same direction as a and a magnitude &k
times as large. If k is negative, ka is a vector whose magnitude is | k| times as large
and whose direction is opposite to a. If k = 0, we have 0-a = 0.

The subtraction of vectors can be defined by

a—-h=a+ (~b).
If we let e,, e,, e; be the unit vectors in the directions of the positive x;, x,,
x; axes, respectively, we can show that every vector in a three-dimensional Euclid-
ean space with coordinate axes xi, X, ¥; may be represented by a linear combination

of ey, e,, and e;. Furthermore, if the vector u is represented by the linear combi-
pation - :

U= W + ey + e, 2.1-1)
then u;, u,, u; are the components of w, and u can be represented by a matrix

(w1, 1y, u3).

35




40 Vectors and Tensors  Chap. 2
The magnitude |u] is then given by
]lll =Vid + 12 + 15, 2.1-2)

and thereforew = Oifandonly if u; = w, = u; = 0.
The scalar (or dof) product of w and v, denoted by n-v, is defined by the
formula

uv = fullvicosd (0=6=<m), (2.1-3)

where 6 is the angle between the given vectors. This represents the product of the
magnitude of one vector and the component of the second vector in the direction
of the first; that is, -

w+v = (magnitude of ) (component of v along u). (2.1-9)

= e + e + e V= Ve + e + vaes

the scalar product of these two vectors can also be expressed in terms of the
components: '

U-v = + oy, + s, (21—5)

Whereas the scalar product of two vectors is a scalar quantity, the vecior {or
cross) product of two vectors u and v produces another vector w; and we write
w = u X v. The magnitude of w is defined as

lw| = [ullvising (0=6=<m), (2.1-6)

where 6 is the angle between w and v, and the direction of w is defined as per-
pendicular to the plane determined by w and v, in such a way that v, v, w form a
right-handed system. Vector products satisfy the following relations:

BXvy=—(vxu
uX{v+w=uxXv+uXxw
uXu=0 @.1-7)
e Xeg = Xe=eXey=10

e Xe=e

Chu X v=uwX kv =ku X v).

€ X e = ¢ e Xe =8

if

Using these relations, the vector product can be expressed in terms of the com-
ponents as follows:

u X V(s — u)er + (v — e + (uys — e (2.1-8)

Sec. 2.2 Vector Equations 41

PROBLEMS

2.1 Given vectoru = —3e, + 4e, + 5e;, find a unit vector in the direction of u.

Answer: (V2/10)u.

=
22 Ifﬁi = =g, + 3e,, and the midpoint of the segment AB has coordinates (4, 2),
find the coordinates of A and B.

Answer: (=3,%), (=5, 9).

2.3 Prove that, for any two vectors u, v, Ju = v[* + [u + v} = 2(u}* + [v]?).

2.4 Find the magnitude and direction of the resultant force of three coplanar forces of
10 Ib each acting outward on a body at the origin and making angles of 60°, 120°, and
270°, tespectively, with the x-axis.

Answer: 10(V3 ~ 1), L x.
2.5 Find the angles between n = 6g, + 2e, — e andv = —e; + 8e, + de,.

Answer: cos™ (—5).

2.6 Givenu = Je, + de, — e, v = 2e, + Se,, find the value of a so that & + av is
orthogonal to v.

Answer: —3.

27 Givennu = 2¢, + 3e, vV = & — & + 28, w = e, — 2e,, evaluate u-{v X w) and
(o x v)w.

Answer: 16.

28 (u % v)-w is called the scalar triple product of u, v, w. Show that (w X v)-w
= u{v X w).
2.9 Find the equation of the plane through A(1, 0, 2), B(0, 1, —1), and 2,2,3).

Answer: Tx ~ 2y~ 3z-1=10.
2.10 Find the area of AABC in Prob. 2.9.
Answer: V6212
2.11 Find a vector perpendicular to both u = 2¢, + 3¢, — e;and v = & ~ 2e, + 3k.

Answer: Te, ~ Te, — Te;.

2.2 VECTOR EQUATIONS

The spirit of vector analysis is to use symbols to represent physical or geometric
quantities and to express a physical relationship or a geometric fact by an equation.

For example, if we have a particie on which the forces FOF® . F® act,
then we say that the condition of equilibrium for this particle is
FO + F@ 4 .- + F = g, (2.2-1)
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As another example, we say that the following equation for the vector r represents -

a plane if m is a unit vector and p is a constant:
rn = p. (2.2-2)

By this statement, we mean that the locus of the end point of a radius vector r
satisying the preceding equation is a plane. The geometric meaning is-again clear.
The vector n, called the unit normal vector of the plane, is specified. The scalar
product r-n represents the scalar projection of r on n. Equation (2.2-2) then states
that if we consider all radius vectors r whose component on n is a constant p, we
shall obtain a plane. (See Fig. 2.1.)

n
=
o Jr
l Figure 2.1 Equation of a plane,
rn = p.

On the other hand, elegant as they are, vector equations are not always
convenient. Indeed, when Descartes introduced analytic geometry in which vectors
are expressed by their components with respect to a fixed frame of reference, it
was a great contribution. Thus, with reference to a set of rectangular Cartesian
coordinate axes O-xyz, Egs. (2.2-1) and (2.2-2) may be written, respectively, as

SF0=0, YFP=0, FP=0, 2.2-3)
i=1 i=1 i=1
ax + by + ¢z = p, (2249

where F9, F9, FO represent the components of the vector F® with respect to the
frame of reference 0-xyz; x, y, z represent the components of r; and a, b, ¢ represent
those of the unit normal vector n.

Why is the analytic form preferred? Why are we willing to sacrifice the
elegance of the vector notation? The answer is compelling: We like to express
physical quantities in numbers. To specify a radius vector, it is convenient to specify
a triple of numbers (x, y, z). To specify a force F, it is convenient to define the
three componeunts F;, F,, F,. In fact, in practical calculations, we use Egs. (2.2-3)
and (2.2-4) much more frequently than Egs. (2.2-1) and (2.2-2).

PROBLEMS

2.12 Express the basic laws of elementary physics—e.g., Newton’s law of motion, Coulomb’s
law for the attraction or repulsion between electric charges, and Maxwell’s equation
for the electromagnetic field—in the form of vector equations.

For example, to express Newton’s law of gravitation in vector form, let m, and
m, be the masses of two particles. Let the position vector from particle 1 to particle 2

Sec. 2.2  Vector Equations 43

be r,. Then the force produced on particle 1 due to the gravitational attraction between
1and?2is k
‘ ‘ mim, In
Jref?

Fu=G

Tal

where G is the gravitational constant.

2.13 Consider a particle constrained to move in a circular orbit at a constant speed. ;et v
be the velocity at any instant. What is the acceleration of the particle; i.e., what is the
vector dv/dt?

Answer. The velocity vector v may be represented in polar coordinates as folIO}vs.
Let#, 6, 2, be, respectively, the unit vectors with origin at P in the directions of Fhe radius,
the tangent, and the polar axis perpendicular to the plane of the orbit. (See Fig. P2.13.)
Then v = v0, where v is the absolute value of v. Hence, by differentiation,

v dd  dv,
Et-——v-[i?'*' dt()'

\

%
/P Figure P2.13 Velocity vector of a
8 particle moving in a circular orbit.

The last term vanishes because v is a constant. To evaluate db/dt, we note that § is a unit

vector; hence, it can only change direction. aldt is, therefore, perpendicular to the vector

0, i.e., parallel to f. Let w be the angular velocity of the particle about the center of the

orbit. Obviously, @ is turning at a rate of @ = v/a. Hence, db/dt = —(v/a)£, and dvldt =

—{(v¥a)t.

2.14 A particle is constrained to move along a circular helix of radius 4 {md Pitch hata
constant speed v. What is the acceleration of the particle? If the particle is located at
P, as shown in Fig. P2.14, express the velocity and acceleration vectors in ferms of

Figure P2.14 A helical orbit.
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unit vectors t, m, and b that are, respectively, tangent, normal, and binormal to the
helix at P.

Answer. The velocity vector is parallel to t and has a magnitude v. Hence, v = vt
By differentiation, and noting that v is a constant, we have dv/dt = v dt/dr. But since t has
aconstant length of unity, dt/dt must be perpendicular to t and, hence, must be a combination
of mand b. That is,

dt
dat

where « and 7 are constants. If the particle moves with unit velocity, the constants « and 7
are called the curvature and the torsion of the space curve, respectively.

It is convenient to use polar coordinates for this problem. Let the unit vectors in the
direction of the radial, circumferential, and axial directions be , 9, and 2, respectively.
Then

= kit + 7h

v =l + wi

where u and w are the circumferential and axial velocities, respectively. Hence, dvidt =
(duldt)® + u dbldt + (dwldt)z + w(¥/df) = u dbldt = —(1¥a)i. The velocities u and w
are related to v as follows: In the time interval At = 2malu, the axial position z is changed
by h. Hence, w = /At = hul2wa, and v = ufl + W{4va)]"™

2.3 THE SUMMATION CONVENTION

For further development, an important matter of notation must be mastered.

A set of n variables xy, xp, . . . , %, 1S usually denoted as x;, i = 1,. .., .
When written singly, the symbol x; stands for any one of the variables x, x, . . .,
x,. The range of i must be indicated in every case; the simplest way is to write, as
illustrated here, i = 1, 2, ..., n. The symbol i is an index. An index may be
either a subscript or a superscript. A system of notations using indices is said to
be an indicial notation.

Consider an equation describing a plane in a three-dimensional space referred
to a rectangular Cartesian frame of reference with axes x, x,, x5, i.e.,

mx; + @Gxy + 43X = p, 2.3-1)

where 4; and p are constants. This equation can be written as

ax; = p. (2.3-2)

e

fe=1

i

However, we shall introduce the summation convention and write the pre-
ceding equation in the simple form

ax = p. (23-3)

The convention is as follows: The repetition of an index in a term will denote a
summation with respect to that index over its range. The range of an index i is the

|
i
i
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set of n integers 1 to n. An index that is summed over is called a dummy index,
one that is not summed is called a free index.

Since a dummy index indicates summation, it is immaterial which symbol is
used. Thus, 4;x; is the same as 4;x;, etc. This is analogous to the dummy variable
in an integral, €.g.,

[ e = [ sy

Examples

The use of the index and summation convention may be illustrated by other exam-
ples. Consider a unit vector v in a three-dimensional Euclidean space with rectan-
gular Cartesian coordinates x, y, and z. Let the direction cosines «; be defined as

o =005 (v, %), w=cos{®,y), o =cos,z),

where (v, x) denotes the angle between v and the x-axis, and so forth. The set of
numbers o;({ = 1, 2, 3) represents the components of the unit vector on the
coordinate axes. The fact that the length of the vector is unity is expressed by the
equation

() + (o) + () = 1,
or, simply,
oo = L. (2.3-4)
As another illustration, consider a line element with components dx, dy, dz

in a three-dimensional Euclidean space with rectangular Cartesian coordinates x,
¥, and z. The square of the length of the line element is

ds* = dx* + dy* + d2 (2.3-5)
If we define ‘
dy, = dx, dy,=dy, dx;=dz, (2.3-6)
and
By =0p =05 =1, @37

dp = 8y = B = By = 8 = 0y = 0,
then Eq. (2.3-5) may be written as

dS2 = Siidx;dxi, A (23—8)

with the understanding that the range of the indices i and j is 1 to 3. Note that
there are two summations in this expression, one over i and one over j. The symbol
8j, as defined in Eq. (2.3-7), is called the Kronecker delta.
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Matrices and Determinants

The rules of matrix algebra and the evaluation of determinants can be expressed
more simply with the summation convention. An m X n matrix A is an ordered
rectangular array of mn elements. We denote

Gy G " Gy
A= ((l,'i) = (1’_;1 Ay ' 4y (2.3—9)
Aot Qo *"° G|

so that a;; is the element in the ith row and jth column of the matrix A. The index
i takes the values 1, 2, . . ., m, and the index j takes the values 1,2, ..., n A
transpose of A is another matrix, denoted by A7, whose elements are the same as
those of A, except that the row numbers and column numbers are interchanged.
Thus,

Ay Gy " Om
T _ T _
Al = (a;;) = |Qp Gn ' Oy (2.3-10)
Qe O * Mgn

The product of two 3 X 3 matrices A = (), B = (b;) isa 3 x 3 square
matrix defined as

ay ap as| (bu bn by

AB

Gy 8n G| |by bn bn

ay Gy an/ \by bn bs/ (2'3_11)
ayby + apby + apby -+

= | auby + anby + anby

auby + anby + apby

whose element in the ith row and jth column can be written, with the summation
convention, as

(A-B); = (aixby)) (2:3-12)
A vector u may be represented by a row matrix (), and Eq. (2.1~2) can be written
[u)* = () ()" = & + 1 + 18 = wu. (2.3-13)

By this rule, the scalar product of two vectors u-v, Eq. (2.1-3), can be written
as

v = (@)()" = wy + vy + s = wvs (2.3-14)

iy

H
H
i
i
i
§
4
i
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The determinant of a square matrix is a number that is the sum of all the
products of the elements of the matrix, taken one from each row and one from
each column, and no two or more from any row or column, and with sign specified
by a rule given shortly. For example, the determinant of a 3 X 3 matrix A is
written as det A and is defined as

Qy Gz 43

det A = det ((l,',‘) = |0y Op 0pn
(2.3-15)

Gy an Opn
= Oylply + Aplsls + G300

— Gudpdy — Gpdndy — Guluds

The special rule of signs is as follows: Arrange the first index in the order 1, 2, 3.
Then check the order of the second index. If they permute as 1,2, 3,1,2,3, . . .,
then the sign is positive; otherwise the sign is negative.

Let us introduce a special symbol, €, called the permulation symbol and
defined by the equations

En T € T 63 T € T €y = €y S €y = 6y = 0 = 0,
€3 = €31 = €13 & 1, (23—16)
€ = €y = € = — 1L

In other words, €;, vanishes whenever the values of any two indices coincide;

& = 1 when the subscripts permute as 1, 2, 3; and ;. = —1 otherwise. Then
the determinant of the matrix (a;;) can be written as
det (a;) = €r5/010205 (2.3-17)

Using the symbol ¢,,,, we can write Eq. (2.1-8) defining the vector product u X
v as

0 X V= €,UVe (2.3-18)

The ¢-3 Identity

The Kronecker delta and the permutation symbol are very important quantities
that will appear again and again in this book. They are connected by the identity

€l‘il(ei.\'l = Sisakl - ajxsk:- A (2.3—19)

This -8 identity is used frequently enough to warrant special attention here. It can
be verified by actual trial.
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Differentiation

Finally, we shall extend the summation convention to differentiation formulas. Let
f(x1, X, . . ., %,) be a function of n variables x,, x,, . . . , x,. Then its differential
shall be written as

df = ”q‘tdxl + idx; 4o 4 g-dx,, = —q]:dx,-. (2.3-'20)
ax; 0%, 09X, 0x;

PROBLEMS

2.15 Write Eq. (2.2-1) or (2.2-3) in the index form. Let the components of F® be written
asF® k=1,2,3;ie., F, = F,etc.

Answer. 3 F? =0,

=1
2.16 Show that
(@) 8;=3
(b) 8,8, =3
(€) &g = 6
(d) e 44, =0
(€) BBy = 8y
{£) e =0
2.17 Write Egs. (2.1-1) and (2.1-5) in the index form, e.g., u-v = uy,
Note. ForEg. (2.1-1), we may do the following: Define three unit vectors v = e,,
1? =g, ¥ = ¢; then u = 1, v?.
2.18 Use the index form of vector equations to solve Probs. 2.5 through 2.9.

2.19 The vector product of two vectors u = (i, i, us) and v = (v,, v, v,) is the vector
w = u X v whose components are

Wy = Vs = gk, Wh = IV WV, W = Uy, — Wby
Show that this can be shortened by writing
W = €y,

2.20 Express Egs. (2.1-7) in the index form.

2.21 Derive the vector identity connecting three arbitrary vectors A, B, C by the method
of vector analysis:

Ax (B xC)=(A-C)B - (A-B)C.
Solution. Since A x (B x C) is perpendicular to B x C, it must lie in the plane

of B and C. Hence, we may write A X (B X C) = aB + bC, where g, b are scalar quantities.
But A x (B x C) is a linear function of A, B, and C; hence, a must be a linear scalar

8 Sec. 24  Translation and Rotation of Coordinates 48

A combination of A and C, and b must be a linear scalar combination of A and B. Accordingly,

a, b are proportional to A+C and A-B, respectively, and we may write
AXx(BxC)=rACB + pn(AB)C

where \, p are pure numbers, independent of A, B, and C. We can, therefore, evaluate A,

p by special cases, e.g., if i, j, k are the unit vectors in the directions of the x-, y-, and

z-axes (a right-handed rectangular Cartesian coordinate system), respectively, we may put

B=iC=jA=itoshowthaty = ~1;andB =1, C=j, A = jtoshow that A =

1.

2,22 Write the equation in Prob. 2.21 in the index form, and prove its validity by means
of the -8 identity (2.3-19).

Note. Since the equation in Prob. 2.21 is valid for arbitrary vectors A, B, C, this
proof may be regarded as a proof of the -3 identity.

Solution. [A x (B X Q) = €malln(B X C)y = €nllntapbic, = €t Enjiln DjCee

By the -5 identity, Eq. (2.3-19), this becomes (3,8« — 8143 my) @.b;ci. Hence, it is 8,2 C.nb;
= 8lubnly = GaCubs — 80,6 = (A-C)(B), — (A°B)(C).

2.4 TRANSLATION AND ROTATION OF COORDINATES

Two-Dimensional Space

Consider two sets of rectangular Cartesian frames of reference O-xy and O'-x'y’
on a plane. If the frame of reference O'-x'y’ is obtained from O-xy by a shift of
! origin without a change in orientation, then the transformation is a translation. If
a point P has coordinates (x, y) and (x', y') with respect to the old and new frames
. of reference, respectively, and if the coordinates of the new origin O' are (, k)
Z relative to O-xy, then

x=x+h X =x-h
or (2.4-1)

B y=y +k y=y-k

If the origin remains fixed, and the new axes are obtained by rotating Ox

| and Oy through an angle 4 in the counterclockwise direction, then the transfor-

mation of axes is a rotation. Let P have coordinates (x, y), (x', y') relative to the
l old and new frames of reference, respectively. Then (see Fig. 2.2),
x=2x"cosf—~ ysiné (2.4-2)
y = x'sin 6 + y' cos 0.

x' =xcos 8+ ysinf (2.4-3)
\ y' = —xsinf + ycos 6.
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Using the index notion, we let x;, x; replace x, y and x1, x; replace x', y'.
Then obviously, a rotation specified by Eq. (2.4-3) can be represented by the
equation

-xl! = Biixh (l = 1: 2) (24"4)
where f;; are elements of the square matrix
Bu Bu cosd sinf
(By) = = . . (2.4-5)
Bx Bz —sin f cos 0

The inverse transform of Eq. (2.4-4) is
X = Bi,'x;, (l = 1-, 2) (24’-6)

where, according to Eq. (2.4-2), B;; is the element in the jth row and ith column
of the matrix (B;). It is clear that the matrix (B;;) is the transpose of the matrix

(Bas ie.,

(B = ()" (24-T)
On the other hand, from the point of view of the solution of the set of simultaneous
linear equations (2.4-4), the matrix (B;;) in Eq. (2.4-6) must be identified as the
inverse of the matrix (B;), i.e.,

() = B " (2.4-8)

Thus, we obtain a fundamental property of the transformation matrix (B;;) that
defines a rotation of rectangular Cartesian coordinates:

(Ba)" = (o)™ (2.4-9)

A matrix (), 4, = 1,2,. . ., n, that satisfies Eq. (2.4-9) is called an orthogonal

matrix. A transformation is said to be orthogonal if the associated matrix is orthog-

onal. The matrix of Eq. (2.4~5) defining a rotation of coordinates is orthogonal.
For an orthogonal matrix, we have

BB = BB = (s
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- where §;; is the Kronecker delta. Hence,

Buelye = . (2.4-10)

To clarify the geometric meaning of this important equation, we rederive it directly
for the rotation transformation as follows. A unit vector issued from the origin
along the x/-axis has direction cosines Bu, i With respect to the x;-, x,-axes,
respectively, The fact that its length is unity is expressed by the equation

BB =1 (=12 (2.4-11)

The fact that a unit vector along the x/-axis is perpendicular to a unit vector along
the xj-axis if j # i is expressed by the equation

Bubj + BaBa =0,  (i#)). (2.4-12)

Combining Eqs. (2.4-11) and (2.4-12), we obtain Eq. (2.4-10).
Note: Alternatively, since we know what the B;7's are from Eq. (2.4-5), we
can verify Eq. (2.4-10) by direct computation.

Three-Dimensional Space

Obviously, the preceding discussion can be extended to three dimensions without
much ado. The range of indices , j can be extended to 1, 2, 3. Thus, consider t-\.vo
right-handed rectangular Cartesian coordinate systems Xy, Xz, ¥; and x{, x5, %3, with
the same origin O. Let x denote the position vector of a point P with components
Xy, X2, X3 OF X4, X3, x5. Let €y, e, €; be unit vectors in the directions of the positive
*y, Xz, ¥s-axes. They are called base vectors of the x;, Xz, %; coordinate system. Let
¢!, e}, e be the base vectors of the xi, x;, x3 coordinate system. Note that since
the coordinates are orthogonal, we have

ee =20, e€-¢=3; (2.4-13)
In terms of the base vectors, the vector x may be expressed as follows:
| X = X¢ = Xxje. (24-14)
A scalar product of both sides of Eq. (2.4-14) with e; gives
x{e;e) = xj (e -e). (2.4-15)
But
i e) = %3 = X3
therefore,
x = (ef-e)x. (2.4-16)
Now, define ’ ‘

{ef+e) = By (2.4-17)




52 Vectors and Tensors ~ Chap. 2

then,
6=px, (=123 ' (2.4-18)
Next, dot both sides of Eq. (2.4-14) with e/. This gives
xi(eef) = xj(ef-€).
But (¢/-¢}) = 5;; and (e;-¢/) = P;; therefore, we obtain
X =B (i=1,23) (2.4-19)
Equations (2.4-18) and (2.4-19) are generalizations of Egs. (2.4-4) and
(2.4-6) to the three-dimensional case.
Equation (2.4~17) shows the geometric meaning of the coefficient B;;. That
Egs. (2.4-7) and (2.4~8) hold for i, j = 1, 2, 3 is clear because Eqgs. (2.4-18) and
(2.4-19) are inverse transformations of each other. Then, Eqs. (2.4-9) and
(2.4-10) follow.

Now, the numbers x;, X,, x; that represent the coordinates of the point P in
Fig. 2.3 are also the components of the radius vector A. A recognition of this fact

| %2

o
2]

&

Ay N
LA
X Figure 2.5 Radius vector and
% coordinates.

gives us immediately the law of transformation of the components of a vector in
rectangular Cartesian coordinates:

A,I = ﬁ(in, .A,: = B,‘,'A;, (2.4—20)

in which Bj; represents the cosine of the angle between the axes Ox; and Ox;.

" Finally, let us point out that the three unit vectors along xi, x3, x5 form the
edges of a cube with volume 1. The volume of a parallelepiped having any three
vectors u, v, w as edges is given either by the triple product u+(v X w) or by its
negative; the sign is determined by whether the three vectors w, v, w, in this order,

* form a right-handed screw system or not. If they are right handed, then the volume

is equal to the determinant of their components:
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Uy U; Us

Volume = (u X ¥)*w = |V, V2 Va|. (2.4-21)
Wy, W W;

Let us assume that %,, %, ¥s and xi, x3, x3 are right handed. Then it is clear
that the determinant of B; represents the volume of a unit cube and hence has the

value 1:
Bll Bll BIB

Bl = {Bn B2 Bn| = 1. @.4-22)
BBI B32 B33

PROBLEMS
2.23 Write out Eq. (2.4-10) in extenso, and interpret the geometric meaning of the six
resulting equations; i = 1, 2, 3.
Solution. Let the index i stand for 1, 2, 3.
» Ti=1,j=1:then BuBy + BrBr + Bubu = 1 )]
i=1,j=2 then Pufa + BuBz + Bubs = 0. @

FEquation (1) means that the length of the vector {By, Bu, Bis) is 1. Equation (2) means that

the vectors (By, Bas Bu)s (Bas By Bu} are orthogonal to each other.
Other combinations of i, j are similar.

2.24 Derive Eq. (2.4-10) by the following alternative procedure. Differentiate both sides
of Eq. (2.4-4) with respect to x;. Then use Eq. (2.4-6) and the fact that éx,/ax; = §;

to simplify the results.

Solution. Differentiating Eq. (2.4-4) with respect to x], we obtain 8; = Bi.ox/
ax;. But x, = B,x/. On changing the index i to k and differentiating, we have ax/ox; =
B;:. Combining these results yields 8; = BuB

2.5 COORDINATE TRANSFORMATION IN GENERAL

A set of independent variables x;, %,, x5 specifies the coordinates of a point in a
frame of reference. A set of equations

E& = fl’(xl; X2, X3), (l = 1) 2; 3) (2.5'—1)

describes a transformation from x;, Xz, X; to a set of new variables %, %, . The
inverse transformation

X; = g;(fl, 3’.:2, f3), (l = 1, 2, 3) (2.5—2)
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proceeds in the reverse direction. In order to ensure that such a reversible trans-
formation exists and is in one-to-one correspondence in a certain region R of the
variables (x;, x,, x3)—i.e., in order that each set of numbers (%;, %,, ¥;) defines a
unique set of numbers (x;, Xy, X3), for (2, X2, ¥s) in the region R, and vice versa—
it is sufficient that '

(1) The functions f; are single valued, are continuous, and possess continuous
first partial derivatives in the region R.

(2) The Jacobian determinant J = det(0x;/0x;) does not vanish at any point
of the region R. That is, :

m o
Xy (?xz 9x;

) |5 & o

-
© aX1 axz 6x3

o #0, (2.5-3)

m m
le 09X, 8x3

Coordinate transformations with the properties 1 and 2 are called admissible
transformations. If the Jacobian is positive everywhere, then a right-hand set of
coordinates is transformed into another right-hand set, and the transformation is
said to be proper. If the Jacobian is negative everywhere, a right-hand set of
coordinates is transformed into a left-hand one, and the transformation is said to
be improper. In this book, we shall tacitly assume that our transformations are
admissible and proper.

Significance of the Jacobian Determinant

To appreciate the significance of the Jacobian determinant, let us assume that we
have found that (x%, 2}, x3) corresponds to (¥}, ¥3, X9), ie., they satisfy Eq.
(2.5-1), and ask whether we can find an inverse transformation in a small neighbor-
hood of this point. We differentiate Eq. (2.5-1) to obtain

ay; = %dx,- (i=1,23) (2.5-4)

]
and evaluate the partial derivatives dfi/dx; at the point (x1, x3, x3). The Eg.
(2.5-4) defines a linear transformation of the vector dx; to a vector dX;. If we solve
the set of linear equations (2.5-4) for dx;, we know that the solution exists only if
the determinant of the coefficients does not vanish:

det (j—)’;) # 0. (2.5-5)
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“Thus, an inverse exists in-the neighborhood-of-(xi, x3, x8) only if Eq. (2.5-3) is
valid. Further, when J # 0, Eq. (2.5-4) can be solved to obtain

dx; = Ciidjfi (25—6) ’

where c;;are constants. Hence, a small neighborhood of the known point, an inverse
transformation [an approximation of Eq. (2.5-2)] can be found in a small neigh-
borhood of the known point. Thus, conditions 1 and 2 stated earlier are sufficient
conditions for the existence of an inverse in a small region around the known point.
By repeated application of this argument to new known points away from the initial
known point, one can extend and find the region R in which a one-to-one inverse
transformation given by Eq. (2.5-2) exists.

PROBLEM

2.25 (a) Review the methods of solving linear simultaneous equations. One of the methods
uses determinants. Use that method to solve Eq. (2.5-4) for dx,, dx,, dx,. Use the
permutation symbol €,,,, defined in Eq. (2.3-16), to express the final result. ‘

(b) R is a region in and on a circle of unit radius on a plane. The equation of the circle
is r = 1 in polar coordinates and x* + y* = 1 in rectangular Cartesian coordinates.
Show that the Jacobian J is equal to r and that the area of the circle is

JJ Jdrd6=jJ’ dx dy,

R R

. ) or

! { (2 | VIS

fJﬂ rdrd0=J’j dx dy.
oo oo

Here, an integration of the Jacobian multiplied by the product of the differentials
dr df gives the area.

2.6 ANALVTICAL DEFINITIONS OF SCALARS, VECTORS,
AND CARTESIAN TENSORS

Let (x;, %, ) and (%;, ¥z, %) be two fixed sets of rectangular Cartesian frames of
reference related by the transformation law

= B.‘,'Xf (2.6—1)

where B; is the direction cosine of the angle between unit vectors along the coor-
dinate axes %; and x;. Thus,

Bz[ = C0S (fz, X1), (2.6—2)
: and so forth. The inverse transform is
% %= B - 2.6-3)

H [ [N [




56 Vectors and Tensors  Chap. 2

A system of quantities is called a scalar, a vector, or a tensor, depending upon
how the components of the system are defined in the variables x,, x,, x; and how
they are transformed when the variables x;, x,, x; are changed to X, %,, %s.

A system is called a scalar if it has only a single component @ in the variables
x; and a single component @ in the variables ¥; and if ® and @ are numerically
equal at the corresponding points,

@(xl, Xz, x3) = 6(:{1, 3-:2, f;;) (2.6“4)

A system is called a vector field or a tensor field of rank I if it has three

components £; in the variables x; and three components ; in the variables ¥; and
if the components are related by the characteristic law

Ei(fn T, ¥) = €k(x1, X2, xs) Bix, (2‘6—5)
&;(xl, X2, xz) = Ek()—cly Yo, J73) B

Generalizing these definitions to a system that has nine components when i
and j range over 1, 2, 3, we define a tensor field of rank 2 if it is a system that has
nine components #; in the variables x1, x,, x3 and nine components #; in the variables
%1, %2, ¥, and if the components are related by the characteristic law

iii(il’ 227 23) = La (xI: X2, X3) BimBim (26__6)
t"i(xh X2, xS) = imn(fh EZ’ i3) BmiBni-

Further generalization to tensor fields of higher ranks is immediate. These
definitions can obviously be modified to two dimensions if the indices range over
1, 2, or to n dimensions if the range of the indices is 1, 2, . . ., ». Since our
definitions are based on transformations from one rectangular Cartesian frame of
reference to another, the systems so defined are called Cartesian tensors. For
simplicity, only Cartesian tensor equations will be used in this book.

Elaboration on Why Vectors and Tensors Are Defined
in This Manner

The analytical definition of vectors is designed to follow the idea of a radius vector.
We all know that the radius vector, a vector joining the origin (0, 0, 0) to a point
(%1, %2, x;), embodies our idea of a vector and expresses it numerically in terms of
the components (x;—0, x,—0, x;—0), i.e., (1, X2, x5). When this vector is viewed
from another frame of reference, the components referred to the new frame can
be computed from the old according to Eq. (2.6-1), which is the law of transfor-
mation of the components of a radius vector. Our generalization of Eg.
(2.6-1) into Eq. (2.6-5), which defines all vectors, is equivalent to saying that we
can call an entity a vector if it behaves like a radius vector, namely, if it has a fixed
direction and a fixed magnitude.

These remarks are intended to differentiate a matrix from a vector. We can
list the components of a vector in the form of a column matrix; but not all column
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matrices are vectors. For example, to identif}f myself, I can li§t my age, social
security number, street address, and zip cod.e ina f:olumq matrix. What can you
say about this matrix? Nothing very interesting! I't is certamly_ n'o't a ve:ctor..

The mathematical steps we took in generalizing the definition given in _Eq.
(2.6-5) for a vector to Eq. (2.6-6) for a tensor are natural enough. These equations
are so similar that if we call a vector a tensor of rank 1,. we c'anr.l(')t help but call
the others tensors of rank 2 or 3, etc. What is the physxf:al mgrgﬁcgnce of tt}ese
higher order tensors? The most effective way to answer this question is to consider
some concrete examples, such as the stress tensor. However, before we turn our
attention to specific examples to discuss the significance of tensor equations, con-

sider the following problems:

PROBLEMS

2.26 Show that, if all components of a Cartesian tensor vanish in one coordinate sy§tem, then
they vanish in all other Cartesian coordinate systems. This is perhaps the most important

property of tensor fields.

Proof. The property follows immediately from Eq. (246~6)“ ;f every cgmponent of
t,,, vanishes, then the right-hand side vanishes and f;; = 0 for all §, j.

2.27 Prove the following theorem: The sum or difference of two Cartesx:an fensors of the
same rank is again a tensor of the same rank. Thus, any linear combination of tensors

of the same rank is again a tensor of the same rank.

Proof. Let Ay, By be two tensors. Under the coordinate transformation given by
Eqg. (2.6-1), we have the new components .
Zii = Aman’mBim Eii = anBiulBiu'
Adding or subtracting, we obtain
A

i+

Eii = simlel(Amn * an)

i

and the theorem is proved. .
2.28 Prove the following theorem: Let Au,.. s By, oy be tensors. Then the equation

Anl...a,(xh x27 CER | xn) = Bn)‘”u,-(xh xh IR ] xn)

is a tensor equation; i.e., if this equation is true in one Cartesian coordinate system, then it
is true in all Cartesian coordinate systems.

Proof. Multiplying both sides of the equation by

Binx Bi«z' o Bkﬂr
and summing over the repeated indices yields the equation
Zi[..‘k(flg Yo oo o f,.) = _B_il..‘k(fly oy ooy En)'

Alternatively, write the equationas A — B = 0. .Then every component of A — B vanishes.
Then apply the results of Probs. 2.27 and 2.26, in turm.
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2.7 THE SIGNIFICANCE OF TENSOR EQUATIONS

The theorems stated in the problems at the end of the previous section contain the
most important property of tensor fields: If all the components of a tensor field
vanish in one coordinate system, they vanish likewise in all coordinate systems that
can be obtained by admissible transformations. Since the sum and difference of
tensor fields of a given type are tensors of the same type, we deduce that if a tensor
equation can be established .in one coordinate system, then it must hold for all
coordinate systems obtained by admissible transformations.

Thus, the importance of tensor analysis may be summarized by the following
statement: The form of an equation can have general validity with respect to any
frame of reference only if every term in the equation has the same tensor char-
acteristics. If this condition is not satisfied, a simple change of the system of
reference will destroy the form of the relationship, and the form would, therefore,
be merely fortuitous. '

We see that tensor analysis is as important as dimensional analysis in any
formulation of physical relations. In dimensional analysis, we study the changes a
physical quantity undergoes with particular choices of fundamental units. Two
physical quantities cannot be equal unless they have the same dimensions. An
equation describing a physical relation cannot be correct unless it is invariant with
respect to a change of fundamental units.

Because of the design of the tensor transformation laws, the tensorial equa-
tions are in harmony with physics.

2.8 NOTATIONS FOR VECTORS AND TENSORS: BOLDFACE
OR INDICES?

In continuum mechanics we are concerned with vectors describing displacements,
velocities, forces, etc., and with tensors describing stress, strain, constitutive equa-
tions, etc. For vectors, the usual notation of boldface letters or an arrow, such as
u or U, is agreeable to all; but for tensors, there are differences of opinion. A
tensor of rapk 2 may be printed as a boldface letter or with a double arrog) or with

a pair of braces. Thus, if T is a tensor of rank 2, it may be printed as T, T or {T}.
The first notation is the simplest, but then you have to remember what the symbol
represents; it may be a vector or it may be a tensor. The other notations are
cumbersome. More important objections to the simple notation arise when several
vectors and tensors are associated together. In vector analysis, we have to distin-
guish scalar products from vector products. How about tensors? Shall we define
many kinds of tensor products? We have to, because there is a variety of ways
tensors can be associated. The matter becomes complicated. For this reason, in
most theoretical works that require extensive use of tensors, an index notation is

i
H

\
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used. In this notation, vectors and tensors are resolved into their components with
respect to a frame of reference and denoted by sympols such as i, Uy, etc. These
components are real numbers. Mathematical operations on then_x follow the usual
rules of arithmetic. No special rules of combination need to b'e mtrosiqced. Thus,
we gain a measure of simplicity. Furthermore, the index notation exhibits the rank
and the range of a tensor clearly. It displays the role of the frame of reference
explicitly. . . .

The last-mentioned advantage of the index notation, however, is also a weak-
ness: It draws the attention of the reader away from the physical entity. Hence,
one has to be adaptive and familiarize oneself with both systems.

2.9 QUOTIENT RULE

Consider a set of ° functions A(1, 1, 1), A(1, 1, 2), A(L, 2, 3), etc., o A, j, k)
for short, with each of the indices i, j, k ranging over 1,2, . .. , 1. Although the
set of functions A(i, j, k) has the right number of components, we do not know
whether it is a tensor. Now suppose we know something about the nature of the
product of A, j, k) with an arbitrary tensor. Then there is a method that enables
us to establish whether A(i, j, k) is a tensor without going to the trouble of deter-

‘mining the law of transformation directly. N
For example, let £{x) be a vector. Let us suppose that the product A(, j, ©)&
(summation convention used over i) is known to yield a tensor of the type A,

ie.,

Al j, k)& = Ape (2.9-1)

Then we can prove that A(i, j, k) is a tensor of the type A,~,-,,(x).. '
The proof is very simple. Since A(, J, k)&, is of the type Ay, it is transformed
into ¥-coordinates as
Z(l, j1 k)-él = Zik = Bjer.rAr.v = Bier:[A(my r, s)gm]-
But £, = Bint Inserting this in the right-hand side of Eq. (2.9-2) and transposing
all terms to one side of the equation, we obtain
[Z(i: Js k) - BiersBimA(m; 7, S)]E; = 0.
Now E; is an arbitrary vector. Hence, the quantity within the brackets must vanish,
and we have ~

2.9-2)
(2.9-3)

A, j 0) = BinBirBrsAm, 1, ), 2.9-4)

which is precisely the law of transformation of the tensor of ?he type Aijk.
The pattern of the preceding example can be generalized to higher order

tensors.
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2.10 PARTIAL DERIVATIVES

When only Cartesian coordinates are considered, the partial derivatives of any tensor
field behave like the components of a Cartesian tensor. To show this, let us consider
two sets of Cartesian coordinates (x;, X,, x3) and (¥;, %, %;) related by

fi = B,'in + o (210-1)

where B;; and «; are constants.
Now, if £;(x1, X2, x5) is a tensor, so that

£, 3o, %) = &, %, 13) Bk, (2.10-2)
then, on differentiating both sides of this equation, one obtains

& _ o b _ o oo O

53‘7} - Brk o 3531 - BlkB)m ax,,, (2'10"3)

which verifies the statement.
Itis a common practice to use a comma to denote partial differentiation. Thus,

at; ad doy;
= _f;’ s ©;=—) Oij e = Oy 1
9%; ax%; oxy

£y

When we restrict ourselves to Cartesian coordinates, @ ;, £ +.j» and o . are tensors
of rank 1, 2, and 3, respectively, provided that ®, &, and a;; are tensors.

PROBLEMS

2.29 In any tensor A .., equating two indices and summing over that index is called a
contraction. Thus, for a tensor A, a contraction over / and j{¢, j = 1, 2, 3) results
in a vector A, = Aps + Ay, + Ay Prove that the contraction of any two indices
in a Cartesian tensor of rank » results in a tensor of rank n — 2.

Solution. The only significant part of the statement is that the result of contraction
is a tensor. Let A .., be a tensor of rank n. Then A, has only (n — 2) indices. To show
that it is a tensor, consider the definition

Aitn = Aiegssen BioyBicsBror By
A contraction over I and j yields
Ain = AvyessscgBioyBiegBrey”* Bueye
But we know from Eq. (2.4-10) that
BrosBiay = Bager

. Hence,

Appon = Aumq...a,,aamBkug,‘ N Bnqn
=4 u]t:)n;mn,,Bkng T B.m,,-

Sec. 210 Partial Derivatives

Thus, A uyeqes..e, ObEYS the transformation Jaw for a tensor of rank (n — 2), and we have
proved the statement. )
2.30 If A, is a Cartesian tensor of rank 2, show that A is a scalar.
Solution. From Prob. 2,29, A;;isa tensor of rank 0 and hence is scalar. More directly,
we have
Zu = ApuBinBi

X“ = A,,,,,Bimﬂin = anAmn = Amm)

which obeys the definition of a scalar, Eq. (2.6-4).
2.31 Use the index notation and summation convention to prove the following relations
(see the table of notations below):
(@uxv=s-vXu
() (6 x )@ x v) = (su)(t+v) - (s*v)(t-u)
(c) curl curl v = grad divv - Av
Example of solution.

f a_g_)
(c) curl curl v = €y o, €m0

&V
= €€ imk ax,ox,
&,
= o T .8. —.
(Bllsjm 8"“ ll) axlax‘
v P8 ()2 )
Toaxdx, amay,  ovi\ax) 0 \dx

= V(V+v) - V-Vv = grad divy - Av.

2.32 Let r be the radius vector of 2 typical point i :
Prove that, with the notations defined in the following table,

1 a field and r be the magnitude of r.

Vector Notation Index Notation Rank of Tensor
; 1
v (vector) Vi .
\ = wv (dot, scalar, or inner product) X =y
w=uxv (cross or vector product) W; = €Yy 1
grad ¢ = V$  (gradient of scalar field) 3 1
axy
gradv = Vv (vector gradient) v 2
ax;
divy = Vov (divergence) a, 0
ax;
colv=V Xv (curl) . Wy 1
ifk
ox;
Viy = V-Vy = Av (Laplacian) 9 (% _ 1
ax \ax/  oxox;
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(a) div (r'r) = (n + 3)r"

(b) curl "1) = 0

(©) AGY) = n(n +

Example of solution.

(a) Let the components of r be x;, (i = 1, 2, 3).

divr=V-r=§£=3

X;
Gepn L L _x
%y ax; i “ax,' r
d ax; ar"
v =V =—(0"%)=r—+x—
iv (') = V+(r'r) ax,( ) w

=3"+n (nr"“ g.’_) = 3"+ rxx = (0 + 3
2.33 A matrix-valued quantity a;(i, j = 1, 2, 3) is given as follows:
ay Oy G 110
Gy Op Oz|=|1 2 2

Iy Gy 03y 023

What are the values of (a) a;;, (b) a,a;, (¢) aya;, wheni = 1;k = 1andi = 1; and
k=2

Answer. 6,24, 2,3,

2.34 Itis well known that rigid-body rotation is noncommutative. For example, take a book,
and fix a frame of reference with x-, y-, z-axes directed along the edges of the book.
First rotate the book 90° about y; then rotate it 90° about z. We obtain a certain
configuration. But a reversal of the order of rotation yields a different result.

The rotation of coordinates is also noncommutative; i.e., the transformation
matrices (B;) are noncommutative. Demonstrate this in a special case that is analogous
to the rigid-body rotation of the book just considered. First transform x, y, z to x,
y', z' by a rotation of 90° about the y-axis. Then transform x', y', z' to 2", y", 2" by a
90° rotation about z'. Thus,

x 0 0 I\/x X' 0 1 0\/x
yI=10 10]|y| yi=1-10 0|y
z' -1 0 0/\z 2z 0 0 1/\

Derive the transformation matrix from x, y, z to x", y", 2". Now, reverse the order of
fotation. Show that a different result is obtained.

2.35 Infinitesimal rotations, however, are commutative. Demonstrate this by considering
an infinitesimal rotation by an angle 6 about y, followed by another infinitesimal
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rotation ¥ about z. Compare the results with the case in which the order of rotations

is reversed. . o .
2.36 Express the following set of equations in a single equation using index notation:
1 1+
€yx = 'E‘[ wx v(o-yy + U'::)]y e.\‘y - E U:y
1 14w
€y = E [oyy — v(oe t+ o)) €y = E Gy:
1+

[ ‘%[Ux: - V(O'xx + 0'”)], €2 E 0z

2.37 Write out in‘longhand, in unabridged form, the following equation:

1 _
Gl + 1 _Zvuk.ki +X=0p ot

Let
xl=x)x2=)’1x3=z; ul=u7u‘.’.=v1u3=w-

2.38 Show that €0 = 0, where €, is the permutation symbol and o7 is a symmetric

tensor, i.e., 0 = Tk . . . ' o
2.39 Write down a’ kfull seé of basic laws of physics in tensor notation, using the indicial
' system. Take a good physics book and go through it from beginning to end.






