
High Performance Computing. MPI and PETSc . M.Storti. (Contents-prev-up-next)

Assignment Nbr. 1

Given two processors P0 and P1 the time needed to send a message from
P0 to P1 is a function of the message length Tcomm = Tcomm(n), where n
is the number of bits in the message. If we approximate this relation by a
linear relation, then

Tcomm(n) = l + n/b (1)

where l is the latency and b is bandwidth. Both parameters depend on the
hardware and software of the network (TCP/IP layer in Linux), and the
message passing library (MPI).

The task consists in launching a parallel run in the cluster with 3 compute
nodes and find the latency and bandwidth between each pair of the processes
in the parallel run.

Notes:

• Each node of the cluster has 8 cores, so you have to launch the parallel
run with NSLOTS=24.
• Beware that some processes may be in the same computing node. For

instance if each node has 8 cores, then MPI processes 0-7 will reside in

Centro de Investigación de Métodos Computacionales 40
(docver "texstuff-1.2.1-137-gb5b81fb") (docdate "Mon Feb 24 11:00:24 2014 +0100") (procdate "Wed Feb 26 19:23:37 2014 +0100")



High Performance Computing. MPI and PETSc . M.Storti. (Contents-prev-up-next)

the first computing node, 8-15 in the second, and 16-23 in the third. The
latency and bandwidth will be higher between processes in that reside in
the same node that between processes that reside in differente nodes.
• You can start from the code bw.cpp, in
/clonetroop/master1/mstorti/bw. The program only sends a message
roundtrip and computes the bandwidth (not the latency). You have to
modify this program so as to compute the latency by using different
include the more relevant formulas here. If you have a set of
measurements nj and Tj = T (nj) (j = 1, . . . , N , where N is the nuber
of measurements) then you can compute the bandwidth and latency as the
parameters of (1) with the following expressions

1/b =
〈Tn〉 − 〈T 〉 〈n〉
〈n2〉 − 〈n〉2

,

l = 〈T 〉 − 〈n〉 /b,

〈n〉 = 1/N
∑
j

nj , 〈T 〉 = 1/N
∑
j

Tj , 〈Tn〉 = 1/N
∑
j

Tjnj ,

〈
n2
〉

= 1/N
∑
j

n2j .

Centro de Investigación de Métodos Computacionales 41
(docver "texstuff-1.2.1-137-gb5b81fb") (docdate "Mon Feb 24 11:00:24 2014 +0100") (procdate "Wed Feb 26 19:23:37 2014 +0100")



High Performance Computing. MPI and PETSc . M.Storti. (Contents-prev-up-next)

• Don’t take too large n, I suggest something like n = 1000 to 10000 in
steps of 1000.
• It’s better to do some statistics, i.e. if you want to to measure T (n) for
n = 1000 you send and receive the buffer 100 times, and then you take an
average of this time.

1 // j,l is a pair of processes (j!=l)
2 int ntimes=100;
3 start = MPI-Wtime(); // Start chrono
4 for (int k=0; k<ntimes; k++) {
5 if (myrank==j) {
6 MPI-Send(buff1,...,l);
7 MPI-Recv(buff2,...,l);
8 } else if (myrank==l) {
9 MPI-Recv(buff2,...,j);

10 MPI-Send(buff1,...,j);
11 }
12 }
13 // Stop chrono, compute average
14 elapsed = (MPI-Wtime()-start)/double(ntimes);

• In order to compute the bandwidth and latencies between all the 24
processes you need to do two nested loops like this

1 // Loop over DISTINCT pairs (j,l) in [0,size)
2 for (int j=0; j<size-1; j++) {
3 for (int l=j+1; l<size; l++) {
4 start = MPI-Wtime(); // Start chrono
5 if (myrank==j) {

Centro de Investigación de Métodos Computacionales 42
(docver "texstuff-1.2.1-137-gb5b81fb") (docdate "Mon Feb 24 11:00:24 2014 +0100") (procdate "Wed Feb 26 19:23:37 2014 +0100")



High Performance Computing. MPI and PETSc . M.Storti. (Contents-prev-up-next)

6 MPI-Send(buff1,...,l);
7 MPI-Recv(buff2,...,l);
8 } else if (myrank==l) {
9 MPI-Recv(buff2,...,j);

10 MPI-Send(buff1,...,j);
11 }
12 elapsed = MPI-Wtime()-start; // Stop chrono
13 }
14 }

Centro de Investigación de Métodos Computacionales 43
(docver "texstuff-1.2.1-137-gb5b81fb") (docdate "Mon Feb 24 11:00:24 2014 +0100") (procdate "Wed Feb 26 19:23:37 2014 +0100")


