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SUMMARY 

A multiharmonic method for analysis of non-linear dynamic systems submitted to periodic loading 
conditions is presented. The approach is based on a systematic use of the fast Fourier transform. The exact 
linearization of the resulting equations in the frequency domain allows to obtain full quadratic convergence 
rate. 

1. INTRODUCTION 

The analysis of the dynamic behaviour of non-linear mechanical systems-including the modelling 
of friction, impacts, large displacements and rotations-and submitted to periodic excitations is 
of great importance in engineering analysis. Examples of application can be found in machine 
dynamics, rotor dynamics, vehicle dynamics, helicopter rotor blade analysis, satellite dynamics, 
etc. 

The dynamic analysis of flexible mechanisms is usually performed using direct time integration 
techniques.'** The approach is very efficient to analyse their transient response. However, it can 
lead to a lengthy calculation process in cases where the interest in focused only on the stationary 
behaviour under periodic loading, after all transients have been damped out from the response. 

One way of computing the periodic response of a non-linear system is that of discretizing the 
time domain using either finite elements or finite differences, and solving the resulting non-linear 
algebraic with periodic boundary  condition^.^*^ 

We can mention basically two different approaches for the computation of the periodic 
response of a highly non-linear system, without having to solve a non-linear algebraic problem 
for the whole set of values along the time period. The first one is based on determining the 
monodromy matrix using a shooting method (see References 3-5). The second approach, which 
we have followed in this paper, consists in a Fourier series expansion analysis (see References 
6 - 1  5).  

The method of harmonic balance is well-known from the literature. Lau and Cheung; Lau 
et aL7 and Lau and Zang* developed an incremental form of the method to improve convergence 
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of the non-linear algebraic problem. This proposal was followed by Pierre er al.,9 Pierre and 
Dowell" to solve non-linear mechanical vibrations involving dry friction phenomenon. 

Ling and Wu" proposed to use the Fast Fourier Transform (FFT) algorithm combined to the 
harmonic balance method to reduce the number of algebraic operations and minimize CPU time. 
The same approach was followed by other authors (References 12, 13). However, References 11 
and 13 differ from each other in the way they computed the coefficients matrix for the algebraic 
non-linear problem. Ling and Wu" mentioned that it is possible to compute the Jacobian using 
the FFT. but did not give any explicit expression. They said also that in order to decrease CPU 
time, they avoided the computation of the Jacobian and used a Broiden method. Cameron and 
Griffin12 proposed two approaches to solve the non-linear problem: a first one using a Picard 
iteration with a constant Jacobian and a non-linear forces vector, and a second one in which the 
Jacobian was evaluated by finite differences. Kim and Noah13 analysed the vibrations of 
oscillators with piecewise linear elastic force, and gave explicit expressions of the Jacobian in 
terms of sine and cosine functions for this case. 

In order to make the method computationally efficient, we also make use of the FFT algorithm 
in a systematic way. After projecting the system of non-linear equilibrium equations into the 
frequency domain, we get a non-linear system of algebraic equations in which the unknowns 
are the Fourier coefficients of the FFT of the displacements. This system is solved using 
a Newton-Raphson method. Differently from what other authors have made, we compute 
explicitly the terms of the coefficients matrix of this new non-linear system as the linear 
combination of some terms of the Fourier transform of the tangent matrices computed in the time 
domain. In this way, since we get an exact linearization, we obtain a full quadratic convergence 
rate. 

Two examples of application are shown. The first one is a spring/mass/double-stop system 
illustrating the capabilities of the method to handle impact situations. The second example is 
a clamped beam with a dry-friction damper for which numerical results are compared with those 
obtained in an experimental set-up.16 

2. FORMULATION OF PERIODIC NON-LINEAR DYNAMICS PROBLEMS 

We are interested in computing the solution x(t) to a non-linear dynamic problem with periodic 
loading 

(1) 

where m is the mass matrix, g is the non-linear internal forces vector which depends on 
displacements and velocities and f is the periodic forcing vector with period Tp 

mx + g(x,x) = f(t), f ( r  + T,) = f(t) 

We sample the solution x at N time instants: 

We also make the hypothesis that the solution x is periodic. Then, we can express x as a real 
Fourier expansion in terms of N components X,,,,: 

N/2 - 1 1 /  

X,,,, corresponds to the nth term of the Fourier expansion with phase m (m can be equal to 0 or 1) 
and coefficients Ckn.,, are, by definition, 

") ('Y I) 2nn T - k -  - m- = COS - tk  - m- 
T N  2 
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Here T is the period of analysis, which in a general case can be different from the period of 
excitation. When looking for subharmonic response, we make T = kT, where k is an integer 
defining the subharmonics order. 

Equation (3) is, in fact, the inverse Fourier transform of X,,,,. We will note it syntactically in the 
form 

x k  = ift~*"(X,,,) (4) 

The number of harmonics necessary for convergence is usually much smaller than the total 
number of harmonics present in the model. We can further assume that only some lower 
harmonics contribute to the response and reduce the Fourier expansion 

N H  1 

x k  = - b O . 0  + 2c Ckn.mXn.rn J2N n = l m = O  

with N H  4 N / 2  - 1 being the number of harmonics retained in the expansion. 
Velocities and accelerations are computed by time differentiation of equation (3): 

1 zn N / 2 - 1  

x k  = 2-- n( - C k n . l X n , O  $- C k n . O X n . I )  J2N T n = l  

3. FOURIER GALERKIN NON-LINEAR SOLUTION 

Let us first pose the problem of finding a solution for a non-linear statics problem using a Fourier 
expansion. The system to be analysed reads 

r ( k ) = r k = O ,  k = 0 , 1 ,  . . . ,  N - 1  (7) 
Parameter k has the meaning of the dimension along which we want the Fourier expansion to be 
performed (i.e. time, angle, length, etc.). 

Instead of verifying the strong form of equilibrium (7), we will ask to verify the following weak 
form: 

Note that there are only N values of Ri,,, since it is trivial to verify that 

RO. 1 = RN,2,  1 = 

This equation is almost coincident with the direct Fourier transform of rk. Terms Ro.o and 
RN,2,0 have been affected by a coefficient one-half to obtain a symmetric tangent matrix (see later). 
In what follows we will talk of Rl. , ,  as of the Fourier transform of rk, but keep in mind the 
differences. 

We will represent equation (8) in the compact form 

R 1 . m  = ftf.m(rk) = 0 (9) 
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This is a system of non-linear equations with unknowns XI,,,. This problem can be illustrated by 
the following diagram: 

ift fr 
x k  XI .  m 

which shows how to switch from frequency to temporal domain in order to compute the solution. 
The residual vector can be written in the form 

R l , m  = f f f . m ( r ( x k ) )  

In order to solve this system of non-linear equations, we will use the method of Newton- 
Raphson. We will then be interested in computing the matrix of coefficients 

Let us note k, the tangent stiffness (derivative of the non-linear force r) evaluated at x k :  

Let us also note Kl, , ,  the Fourier transform of kk: 

K 1 , m  = ftf, m ( k k )  ( 1 3 )  

To differentiate the residual vector, we use the following trigonometric identitites: 

2 c k I . O c k n . O  = C k ( l + n ) , O  + C k ( I - n ) . O  

2 c k l s O c k n ,  1 = C k ( l + n ) .  1 + C k ( l - n ) .  1 

2 C k l .  1 C k n . 0  = C k ( l - n ) ,  1 + C k ( l + n ) .  1 

2 C k l , 1  C k n , 1  = C k ( l - n ) . O  + c k ( l + n ) . O  

(14) 

Then 

A similar procedure is applied to the other components to get 
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Finally, the tangent matrix for our non-linear problem is 

... 
I K N / 2 . 0  "' K N / 2  - n .  0 K N / 2  - n .  1 

This coefficient matrix is symmetric. 
In the case k is constant, the tangent matrix can be simplified to 

f K N I Z . 0  

K N I 2  - 1.0 

K N / 2  - 1.1 

i K o . 0  

10 ... 0 0 ... 
Similar simplified expressions can be found if k is a polynomial function of the displacements, 
which is usually the case in geometric non-linear problems. 

4. FOURIER GALERKIN DYNAMIC SOLUTION 

Let us now compute the weak solution to the original non-linear dynamics problem (1) using 
a Fourier Galerkin method. In this case, the residual vector reads 

We will search for a periodic solution to this problem using a Newton-Raphson method. The 
coefficient matrix can now be seen as made up by three components: 
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- 
t K N / Z . O  

K N / 2  -1.0 

K N / 2  - 1 .  I 

where S, is the contribution arising from stiffness, Si is the contribution from damping and S; is 
the mass contribution to the dynamic stiffness S. It can be easily shown that these terms are 

1 
s x  = 

t 

... 
4 K N I Z . O  ” ’  K N I 2  - n. 0 K N I 2  -n. 1 

s; = g)’ 3 1 

where 

- n C N / 2  - n. 1 n C N / 2  - n. 0 ... . 0 1  

... 01 

and ck, mk are the tangent damping and mass matrices (derivatives of the non-linear force r with 
respect to velocities and accelerations) evaluated at  x k :  

Again, in the case k, c or rn are constants, the latter matrices can be simplified leading to an 
uncoupling between different harmonics: 

S. = k 

0 ... 0 0 ... 41 
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- 
0 

0 
0 

0- 

2K s.  = - c  
" T  

0 ... 0 0 .  

0 0 dr,nl 
0 - dr,nl 0 

0 ... 0 0 

0 0 
10 .'. 

10 ... 0 0 .. 

1599 

(27) 

Once, we have determined the coefficients matrix S, we can very efficiently implement a 
Newton-Raphson procedure to compute the solution of the non-linear problem (19). 

5. NUMERICAL APPLICATIONS 

A computer program was made following the theory outlined in the previous sections, using the 
well-known Matlab software. The objective was to test the method and see the feasibility of 
application to analyse dynamic vibration problems coming from the mechanical industry. In 
particular, two examples are presented here: the first one is a problem involving contact, while the 
second example concerns a test set-up to analyse dry-friction phenomena for which we disposed 
of experimental results for comparison. 

5.1.  Spring/mass/double-stop system 

The response of a spring/mass/double-stop system submitted to an harmonic excitation at its 
base is first analysed (see Figure 1). 

The system consists of a spring, whose stiffness depends on elongation as indicated in Figure 1, 
with stiffness constants k ,  = 1.20 x lo4 N/m, k z  = 1.26 x lo7 N/m and lo = 1.5 x lo-' m. The 
spring supports a unit mass at  its extreme. The system is submitted to a sinusoidal acceleration of 
9.81 m/s2 at its base, with frequency varying from 300 to 160 Hz. 

The response was computed using a total of 128 points to represent the time series, and 
included 13 harmonics in the multiharmonic model. First, we got the solution for an excitation 
frequency of 300 Hz. Afterwards, we spanned the frequency band from 300 to 160 Hz with an 
increment of - 5 Hz at each step. 

Figure 2 displays the root mean square function of vertical absolute acceleration X I  at the mass. 
We see that the acceleration increases smoothly when decreasing the excitation frequency up to 
the point of 180 Hz where the curve presents a sharp discontinuity. 

Figure 3 shows the evolution in time of the displacement and velocity of the mass when the 
system is submitted to an excitation of 190 Hz. We see that the mass touches the lower limit at 
t = 1.25 x and rebounces. A discontinuity in the evolution of velocity is clearly evidenced at 
this point. 
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Figure 1 .  Spring/mass/double-stop 

Figure 2. Root mean square of absolute accelerations X I  

In Figure 4 we compare the vertical displacement of the mass with the displacement of the base 
and of the upper limit of the system. We see that, in fact, the mass remains almost fixed with 
respect to the oscillating frame. 

When the frequency of excitation decreases below 180 Hz, the amplitude of motion of the 
excitation frame is such that the mass comes also into contact with the upper limit. At this point 
the nature of motion changes completely. Figure 5 displays the displacement and velocity 
evolution of the mass in this case. We can appreciate that it bounces continuously between the 
lower and upper limits given by the excitation frame. We see also that the dominant frequency of 
response is twice the excitation frequency. 
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Figure 3. Vertical displacement and velocity of the mass. Excitation frequency: 190 Hz 
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Figure 4. Mass displacement (continuous line) compared to the base and upper-limit displacement (dashed line). 
Excitation frequency: 190 Hz 

5.2.  Clumped beam with dryfriction damper 

The problem of determining the periodic response of a friction-damped dynamic system has 
been treated by many  author^.^*^^^^^ Here we have analysed the response of a clamped beam 
with a dry-friction damper located at nearly one-fourth of its length, submitted to a periodic 
excitation on its extreme (see Figure 6). Numerical results are compared to experimental ones for 
several force levels and for a broad frequency range. 

The beam has a total length of L = 1.28 m. The friction damper is placed at a distance 
L1 = 0-318 m from the base. The material properties of the beam are: Young's modulus 
E = 2.0 x 10" Pa, Poisson's ratio v == 0.3 and mass density p = 8125 kg/m3, its cross-sectional 
area is A = 4.64 x m2 and the inertia 1 = 1.312 x 10- m4. There are two rigid bodies placed 
over the beam. The first one is located at the joint with the friction damper: its mass equals 
m, = 2 kg and its inertia J1 = 0.85 x kg m2. The second body is located at the beam 
extreme, with mass mz = 0.326 kg. The dry-friction damper has a spring constant 
k = 2.4 x N/m, the Coulomb friction coefficient equals p = 0.66 and the compression force 
at the damper is constant and equal to N = 372.8 N. 

The beam was modelled by using three finite elements. Structural damping was determined by 
considering the damper blocked (no sliding was allowed). Rayleigh damping was assumed in the 
form aM + 6K, where a = 1.03 x and 6 = 3.741. These values correspond to a structural 
damping E ,  = 2.37 per cent for the first mode, at frequency 35-2 Hz. The dry-friction law was 
introduced using a regularized friction force in the form 

(29) F f r  = - PR(4) IN1 
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Figure 5. Vertical displacement and velocity of the mass. Excitation frequency: 160Hz. The base and upper-limit 
displacements are plotted in dashed lines 
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where pR is a regularized friction coefficient: 

and N is the normal contact force. 
The accuracy of results improves for E,+ 0 (results computed with large values of E ,  are 

numerically damped). However, the number of iterations necessary for convergence of the 
non-linear problem increases for small values of E,. In order to improve the convergence while 
keeping accuracy, we have implemented a continuation method in which solutions are iterated by 
progressively decreasing the value of E ,  up to the point in which two successive solutions do not 
differ anymore. Once we have got the solution for a given frequency, we predict a solution for the 
next frequency value in the range of interest using a simple secant scheme and begin a new 
iterative cycle in which E, is varied."j 

Figure 6. Clamped/free beam with dry-friction damper 

Figure 7.  Displacement maximum amplitude at the beam extreme. Numerical results 
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Excitation : F(t)=Fexc c&ot) 
8 kxc=0.938N 
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Figure 8. Displacement maximum amplitude at the beam extreme. Experimental results 
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Figure 9. Effect of varying the number of harmonics: (continuous line) 5 harmonics: (dashed line) 3 harmonics; (points) 
1 harmonic 
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Figure 10. Vertical displacement at nodes 1 and 2. Excitation frequency f= 28 Hz 
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The analysis was made for three different amplitudes (F,, ,  = 0-938, 29.063 and 38-438 N). 
Figure 7 displays the maximum amplitude of displacements measured at the extreme of the beam 
(divided by the force amplitude) in terms of the frequency of excitation. These results were 
computed using the five first (odd) harmonics in the Fourier series. 

We can see that for small values of excitation, the response is almost linear since the friction 
damper is blocked. For increasing values of force, the damper unlocks and begins to damp-out 
some amount of energy from the system. Meanwhile, the frequency of peak is shifted down from 
35.2 to 26 Hz. 

Figure 8 gives the displacement amplitudes measured from the experimental set-up. We can 
appreciate that there exists an excellent agreement between peak amplitude frequencies with the 
numerical computations. Also, the amplitude values and global behaviour for varying frequencies 
and forces are predicted correctly. 

The influence of varying the number of harmonics in the Fourier development is illustrated in 
Figure 9, in which results computed using one, three and five harmonics are compared. We see 
that amplitudes corresponding to force levels F,,, = 38.438 N and F,,, = 29.063 N are strongly 
affected when passing from one to three harmonics, while those corresponding to the smallest 
level of force does not vary. This can be explained by the fact that at the smallest level of force the 
damper is locked and the system response is linear. Passing from three to five harmonics does not 
introduce any visible change in the solution, indicating convergence of the process. 

The sensitivity of results with respect to the value of the regularizing parameter was also 
analysed. The computed response was greatly affected by its value. In particular, for 
F,,, = 0.938 N, the maximum amplitude was divided by a factor of almost four when passing 
from E,, = O W 0 5  to E ,  = 0.001 (see Reference 16). 

Figure 10 shows the evolution in time of displacements at nodes 1 and 2 when the system is 
excited at a frequency equal to 28 Hz. We see the stick-slip phenomenon characteristic of 
Coulomb friction in the evolution of displacements at node 1. 

6. CONCLUDING REMARKS 

A multiharmonic method to solve non-linear dynamic problems submitted to periodic forcing 
has been developed. The method is based on a systematic use of the FFT algorithm to project the 
equations of motion from the time domain to the frequency domain. The resulting non-linear 
system of equations is exactly linearized, leading to full quadratic convergence rate. Two 
examples of application have been shown, illustrating the power of the proposed approach. 

The method presents enough interest to be implemented in connection with a general software 
for modelling mechanisms. However, in order to reach this goal, the aspect of handling con- 
straints within the frequency domain approach requires further study. An efficient implementa- 
tion should also exploit fully the possiblity of simplifying the problem based on the presence of 
localized non-linearitie~.’~ The model we have used in our second test example to describe the 
dry-friction force, computed it in terms of the velocity of sliding and of a regularized coefficient of 
friction. We think it could be better to simulate Coulomb friction phenomena using a displace- 
ment model’ instead. This model requires some modifications in our multiharmonic formulation 
to get full account of ‘history’ terms. These subjects will be the objective of further research work. 
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