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Introduction

The Funeral is about to begin, Sir!
Marduk

The increase in the capability of computing in conjunction with the development of
new mathematical models and numerical methods, allow to deal with the resolution of
complex problems of importance for both science and engineering. Among these, the CFD
(Computational Fluid Dynamics) problems in moving domains, such as Fluid-Structure
Interaction (FSI) problems, are a topic of particular interest for researchers because of
the difficulty that they present and the large number of applications in which these kind
of problems are present. One of such problems is the computation of in-cylinder flows in
internal combustion (IC) engines.

The modeling of IC engines is a multidisciplinary subject that involves chemical ther-
modynamics, fluid mechanics, turbulence, heat transfer, combustion, and numerical meth-
ods. In this thesis, the focus is placed on some aspects of the computational resolution of
the fluid dynamics problem. In particular, the topics addressed are the mesh dynamics
problem, the resolution of flows at low Mach numbers, and the coupling of 1D/multi-D
domains for compressible flows.

When an Arbitrary Lagrangian Eulerian (ALE) strategy is applied to solve problems
with deformable domains, it is necessary to have a Computational Mesh Dynamics (CMD)
technique to resolve the dynamics of the mesh. While the movement of the mesh is an
artificial field in a FSI problem, its significance is relevant because it affects considerably
the efficiency and accuracy of the computation. For in-cylinder flows in IC engines the
movement of the boundary domain is known a priori. In these cases the domain has a
very high relative deformation and even changes on its topology. This demands great
robustness from the CMD strategy to avoid an excessive deterioration of the grid quality
and to reduce the number of remeshing needed in the whole simulation.

The flow inside of an IC engine is characterized by a low Mach number, except in the
early moments in which the exhaust valve (or port) is opened. The numerical methods
for compressible flow based on the density fail when they are applied to flows with low
Mach numbers, which is due to the bad conditioning of the system of equations. For
this reason, it is necessary to apply a technique that allows the resolution of compressible
flows in all the range of Mach numbers, especially in the low Mach limit.

Then, to perform a simulation in an IC engine is necessary to have a CFD code able to
compute compressible turbulent flows with low (and also relatively high) Mach numbers
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in deformable 3D domains [65]. Given the highly complex geometry of the engines and
the physical processes that occur within them, it is at present only possible to solve
one part of such machines with a 3D model. In this way, and because of its dynamic
behavior, another difficulty that appears is related to the boundary conditions to impose
to the model. Usually, these problems are addressed by the simulation of the rest of
the engine through 0D/1D models, which is achieved in one hand, modeling the entire
machine simultaneously (but the level of detail varies depending on the model) and, on
the other hand, providing appropriate conditions to the 3D code. Applying the above
approximation, the need to couple appropriately the solutions obtained in the computing
domains arises, which can be calculated by different codes.

The large spread in length and time scales of in-cylinder flows in IC engines requires
a high degree of refinement in the finite element mesh and, then requires very large
computational resources. Thus, a parallel code is needed in order to achieve accurate
results in that problems. In addition, due to explicit and semi-implicit schemes have
demonstrated to be inefficient when they are applied to IC engines [32], a full implicit
scheme might be used.

In chapter 1, the equations governing the fluid flow in IC engines, namely the Navier-
Stokes equations for compressible flows, are presented. This system of equations is simpli-
fied by neglecting radiation and considering a single component, because of the transport
of species and combustion are not the goal of this thesis. The fluid is considered to be an
ideal gas. Since it is impossible with present processors to resolve all the time and length
scales of the flows in IC engines, turbulence models are required. In IC engines, turbulence
relaxation times are of the same order as cycle times [66], and long-time-averaging meth-
ods are not strictly applicable. The Large Eddy Simulation model is used in this thesis,
which is briefly described in chapter 1. Also in this chapter, the variational formulation
for the Finite Element Method (FEM) utilized and the numerical strategies to solve the
boundary conditions are included.

Chapter 2 deals with the CMD problem. Some definitions regarding element and mesh
quality metrics are presented. The proposal of a CMD strategy based on the minimization
of the mesh distortion is formulated and enhanced with a linear predictor of the solution.
The mesh topology is assumed to remain constant along the mesh deformation. Several
test cases are solved including 2D and 3D CMD problems, which show the robustness
of the technique. Being discontinuous the proposed functional, its regularization leads
to a simultaneous mesh untangling and smoothing method. This method is useful as
a CMD technique which does not impose any condition on the time step used in the
simulation since, for a given time, the mesh depends on its topology and on the boundary
position only. Some benchmark problems are solved using the simultaneous untangling
and smoothing technique and, also, 2D and 3D geometries of IC engines chambers are
assessed.

The numerical method employed to solve compressible flows at low Mach numbers is
discussed in chapter 3. Due to the Mach numbers of the flow in IC engines could range
from very low values (for instance, at the Top Dead Center (TDC) in a reciprocating
engine) to transonic values (when the exhaust port is opened), the method of precon-
ditioning of the equations together with the dual time stepping technique is used. The
preconditioning matrix utilized was originally designed by Choi and Merkle [16] to solve
steady compressible flows using the Finite Volume Method. An eigenvalue analysis of
the preconditioned system of equations is performed to define some parameters in the
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preconditioning matrix. The chapter contains also the Finite Element variational formu-
lation used, where the stabilization coefficients are properly defined for the preconditioned
system. Steady and unsteady nearly incompressible tests are solved and compared with
solutions of the Navier-Stokes equations for incompressible flows. In addition, the results
of the flow within an opposite-piston engine under cold conditions are presented.

In chapter 4, some thermodynamic and gas-dynamic based models used to describe
IC engine operating characteristics are reviewed. These models were implemented in a
computational code which is useful to compute the global performance of an IC engine
and, furthermore, it could be applied as a generator of boundary conditions for multi-D
models. Implicit time discretization of the differential equations involved in the models
is an option available in the code. The chapter contains, also, a brief description of the
code implementation and some results for different type of IC engines.

Chapter 5 presents two strategies of coupling 1D/multi-D domains for compressible
flows. One of them is based on absorbing boundary conditions, and the other one is simply
a constraint to the state at the coupling interface assuming that the problem is solved in
a ‘monolithic’ way. Results of 1D/1D, 1D/2D and 1D/3D couplings are presented, which
were solved as a ‘monolithic’ system.

The models and techniques presented in chapters 1 to 5 were applied to simulate a par-
ticular engine, the MRCVC [80] (Motor Rotativo de Combustión a Volumen Constante).
The results are summarized in chapter 6.

The base code utilized in this thesis is PETSc-FEM [73]. PETSc-FEM is a general pur-
pose, parallel, multi-physics FEM program for CFD applications based on PETSc [9].
PETSc-FEM comprises both a library that allows the user to develop FEM (or FEM-like,
i.e. non-structured mesh oriented) programs, and a suite of application programs. The
computational tools developed during the thesis were implemented and tested as new
applications of the PETSc-FEM code.



Introducción

El incremento en la capacidad de cálculo en conjunto con el desarrollo de nuevos modelos
matemáticos y métodos numéricos, permite afrontar la resolución de problemas comple-
jos de importancia tanto cient́ıfica como ingenieril. Entre éstos, los problemas CFD (por
Computational Fluid Dynamics) en dominios móviles, tales como los problemas de in-
teracción fluido-estructura (FSI, por Fluid-Structure Interaction), constituyen un tópico
de especial importancia para los investigadores debido a la dificultad que presentan y al
gran número de aplicaciones en las cuales puede hallarse esta clase de problemas. Uno de
tales problemas consiste en la resolución del flujo de fluidos en el interior de motores de
combustión interna (IC, por Internal Combustion).

La modelación de motores IC es una tarea multidisciplinaria que involucra ter-
moqúımica, fluidodinámica, turbulencia, transferencia de calor, combustión y métodos
numéricos. Esta tesis se enfoca en algunos aspectos de la resolución computacional del
problema fluidodinámico. En particular, los temas abordados consisten en el problema de
la dinámica de la malla, la resolución de flujos a bajos números de Mach, y el acoplamiento
de dominios 1D/multi-D para flujos compresibles.

Aplicando una estrategia tipo ALE (por Arbitrary Lagrangian Eulerian) para resolver
esta clase de problemas con dominios deformables, es necesario contar con una técnica
CMD (por Computational Mesh Dynamics) para resolver la dinámica de la malla. Si bien
el movimiento de la malla es un campo artificial en un problema FSI, su importancia es
relevante debido a que afecta considerablemente la eficiencia y precisión del cálculo. En
la resolución de flujos dentro de motores IC, el movimiento de la frontera del dominio es
conocido a priori. En estos casos, el dominio de flujo experimenta una elevada deformación
relativa con cambios en su topoloǵıa. Esto demanda de la estrategia CMD una gran
robustez a fin de evitar el deterioro excesivo de la calidad de la grilla y reducir el número
de remallados en la simulación.

El flujo dentro de un motor IC se caracteriza por presentar en general un número de
Mach bajo, excepto en los primeros instantes en que se abre la válvula o lumbrera de
escape. Los métodos numéricos para flujo compresible basados en la densidad pueden
fallar cuando se los aplica a flujos con bajo número de Mach, lo cual se debe al mal
condicionamiento del sistema de ecuaciones. Por esta razón, resulta necesario aplicar una
técnica que permita la resolución de flujos compresibles en todo el rango de números de
Mach, especialmente en el ĺımite de bajo Mach.

Para realizar la simulación en un motor IC, es necesario entonces disponer de un código
CFD capaz de computar flujos compresibles turbulentos a bajos (y también relativamente
altos) números de Mach en dominios tridimensionales deformables [65]. Dada la alta
complejidad geométrica de los motores y de los procesos f́ısicos que ocurren dentro de
ellos, sólo es posible resolver una parte de tales máquinas con un modelo 3D. De este
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modo, y por tratarse de un problema dinámico, otra dificultad adicional la presentan
las condiciones de borde a imponer a dicho modelo. Usualmente estos problemas son
abordados simulando el resto del motor mediante un simulador de motores 0D/1D, con
lo cual se logra, por un lado, modelar toda la máquina simultáneamente (aunque con un
nivel de detalle variable según el modelo) y, por otro, proveer de condiciones de contorno
apropiadas al código 3D. Aplicando la referida aproximación, surge la necesidad de acoplar
adecuadamente las soluciones obtenidas en los distintos dominios computacionales, las
cuales pueden incluso ser calculadas por distintos códigos.

El amplio espectro en escalas de longitud y tiempo de los flujos dentro de motores IC
requiere un elevado refinamiento de la malla de elementos finitos y, por lo tanto, demanda
una elevada cantidad de recursos computacionales. Luego, es necesario un código paralelo
a fin de obtener resultados precisos en tales problemas. Además, debido a que los esquemas
expĺıcitos y semi-impĺıcitos han demostrado ser ineficientes cuando se los aplica a motores
IC [32], se propone el empleo de un esquema totalmente impĺıcito.

En el caṕıtulo 1 se presentan las ecuaciones que gobiernan el flujo de fluidos en un
motor IC, precisando, las ecuaciones de Navier-Stokes para flujos compresibles. Este
sistema de ecuaciones es simplificado despreciando la radiación y considerando un único
componente, dado que el transporte de especies y la combustión no son el objetivo de
estudio en esta tesis. Además, el fluido es considerado un gas ideal. Debido a que es
imposible con los procesadores actuales resolver todas las escalas de tiempo y longitud
de los flujos en motores IC, resulta necesario modelar la turbulencia. En motores IC, los
tiempos de relajación turbulentos son del mismo orden que los tiempos del ciclo [66], y
los métodos de promediado en el tiempo no son estrictamente aplicables. El modelo de
Simulación de Grandes Torbellinos (Large Eddy Simulation) es el utilizado en la presente
tesis, el cual se describe brevemente en el caṕıtulo 1. La formulación variacional para
el Método de Elementos Finitos empleada y las estrategias numéricas para resolver las
condiciones de contorno se incluyen también en este caṕıtulo.

El caṕıtulo 2 trata acerca del problema de la dinámica de la malla. Se presentan
algunas definiciones relativas a métricas de calidad elemental y de malla. Se formula una
estrategia CMD basada en la minimización de la calidad de la malla y mejorada con un
predictor lineal de la solución, donde se asume que la topoloǵıa de la malla permanece
constante a lo largo de toda la deformación de la misma. Varios casos test son resueltos,
incluyendo problemas CMD en 2D y 3D, los cuales muestran la robustez de la técnica.
Dado que el funcional propuesto es discontinuo, su regularización permite obtener un
método de untagling y smoothing simultáneos. Este método resulta útil como una técnica
CMD que no impone ninguna condición sobre el paso de tiempo utilizado en la simulación
debido a que, para un instante dado, la malla depende sólo de su topoloǵıa y de la
posición de la frontera. Son resueltos algunos benchmarks y también geometŕıas 2D y
3D de cámaras de motores IC aplicando la referida estrategia de untagling y smoothing
simultáneos.

El método utilizado para resolver flujos compresibles a bajos números de Mach se
discute en el caṕıtulo 3. En los motores IC el número de Mach puede variar en un amplio
rango, desde valores muy bajos (en, por ejemplo, el Punto Muerto Superior en un motor
alternativo) hasta valores transónicos (cuando la válvula de escape se abre). Por lo tanto,
son aplicados el método de precondicionamiento de las ecuaciones junto con la técnica
de doble tiempo. La matriz de precondicionamiento utilizada fue originalmente diseñada
por Choi y Merkle [16] para la resolución de flujos compresibles estacionarios. Se realiza
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un análisis de autovalores del sistema de ecuaciones precondicionado, a partir del cual
surge la redefinición de algunos parámetros del precondicionador original. El caṕıtulo
contiene la formulación variacional empleada, donde los coeficientes de estabilización son
apropiadamente definidos para el sistema precondicionado. Son resueltos algunos pro-
blemas incompresibles estacionarios y no estacionarios, comparándoselos con soluciones
de las ecuaciones de Navier-Stokes para flujo incompresible. Además, se presentan los
resultados del flujo dentro de un motor de pistones opuestos funcionando en fŕıo.

En el caṕıtulo 4 se reveen algunos modelos termodinámicos y gasdinámicos usados
para describir las caracteŕısticas de operación de motores IC. Estos modelos fueron imple-
mentados en un código computacional que resulta útil para calcular la performance global
de un motor IC y, además, que podŕıa ser aplicado como un generador de condiciones de
contorno para modelos multidimensionales. Una de las opciones disponibles en el código
es la posibilidad de aplicar una discretización temporal impĺıcita de las ecuaciones dife-
renciales involucradas en los modelos. El caṕıtulo contiene también una breve descripción
del código y algunos resultados para diferentes tipos de motores IC.

El caṕıtulo 5 presenta dos estrategias de acoplamiento de dominios 1D/multi-D para
flujos compresibles. Una de estas estrategias se basa en la utilización de condiciones
de contorno absorbentes, mientras que la otra consiste simplemente en la restricción del
estado sobre la superficie de acople asumiendo que el problema es resuelto en forma
‘monoĺıtica’. Se presentan resultados de acoplamientos 1D/1D, 1D/2D y 1D/3D resueltos
en forma ‘monoĺıtica’.

Los modelos y técnicas presentadas en los caṕıtulos 1 a 5 se aplicaron a la simulación de
un MRCVC [80] (Motor Rotativo de Combustión a Volumen Constante). Los resultados
obtenidos se incluyen en el caṕıtulo 6.

El código base utilizado en esta tesis es PETSc-FEM [73]. PETSc-FEM es un pro-
grama FEM de propósito general, paralelo y multif́ısica para aplicaciones CFD basado en
PETSc [9]. PETSc-FEM se compone de una biblioteca que permite al usuario desarrollar
programas FEM y de un conjunto de códigos para aplicaciones diversas. Las herramientas
computacionales desarrolladas durante la tesis fueron implementadas y validadas como
nuevas aplicaciones de este código.



Chapter 1

Governing equations and numerical
approximation

O’Nightspirit
I am one with thee

I am the eternal power
I am the Emperor

Emperor

1.1 Governing equations

The flow field in an internal combustion engine model is governed by the instantaneous
time-dependent three-dimensional conservation equations of mass, momentum and energy.
These equations can be simplified by neglecting radiation [66] and, in the particular case
of this thesis, a single component is considered.

Let Ω ⊂ Rnd the spatial domain and (0, tf) the temporal domain, where nd is the
number of space dimensions, and let Γ the boundary of Ω. The spatial and temporal
coordinates are denoted by x and t, respectively.

The Navier-Stokes equations governing the fluid flow, in conservation form, are

∂ρ

∂t
+ ∇ · (ρu) = 0 on Ω× (0, tf)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇p−∇ ·T = ρfe on Ω× (0, tf)

∂(ρE)

∂t
+ ∇ · (ρEu) + ∇ · (pu)−∇ · (Tu) + ∇ · q = ρfe · u on Ω× (0, tf)

(1.1)

where ρ, u, p, T, E and q are the density, the velocity, the pressure, the viscous stress
tensor, the total energy per unit mass, and the heat flux vector, respectively, and fe are
external forces. Generally, these forces are null in IC engine simulation. It is assumed
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a perfect gas constitutive relation and a Newtonian fluid defined by the two viscosity
coefficients λ and µ. Thus, the viscous stress tensor is defined as

T = µ((∇u) + (∇u)T ) + λ(∇ · u)I = 2µε(u) + λ(∇ · u)I (1.2)

I being the second order identity tensor, ε(u) = 1
2
((∇u)+(∇u)T ) is the strain rate tensor

and superscript T denotes transpose.
In addition, it is considered the range of fluid behavior within local thermodynamic

equilibrium for which the Stokes relation 3λ+ 2µ = 0 is valid.
Pressure is related to the other variables via the equation of state. For ideal gases,

this equation has the form

p = (γ − 1)ρe (1.3)

where γ is the ratio of specific heats, and e is the internal energy per unit mass which is
related to the total energy per unit mass and kinetic energy as

e = E − 1

2
‖u‖2 (1.4)

The heat flux vector is defined as

q = −κ∇T (1.5)

where κ is the heat conductivity and T is the temperature. In the particular case of ideal
gases, the following relations hold

T =
e

cv

cv =
R

γ − 1

cp =
γR

γ − 1

(1.6)

where cv is the specific heat of the fluid at constant volume, cp is the specific heat of the
fluid at constant pressure, and R is the ideal gas constant. Prandtl number (Pr) relates
the heat conductivity of the fluid to its viscosity according to the following relation

κ =
µcp
Pr

(1.7)

The governing equations (1.1) can be written in compact form as [33]

∂U

∂t
+
∂Fa

i

∂xi

=
∂Fd

i

∂xi

+ S on Ω× (0, tf) (1.8)

where U = [ρ, ρu, ρE]T is the vector of conservative variables, S = [0, ρfe, ρfe · u]T is
the source vector, Fa and Fd are the advective (or inviscid) and viscous flux vectors
respectively, defined as

Fa
i =


ρui

ρu1ui + δi1p
ρu2ui + δi2p
ρu3ui + δi3p
(ρE + p)ui

 (1.9)
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Fd
i =


0
Ti1

Ti2

Ti3

Tikuk − qi

 (1.10)

Here, ui and qi are the components of the velocity and heat flux vectors, respectively, Tik

are the components of the viscous stress tensor, and δij is the Kronecker delta. The flux
vectors in equations (1.9) and (1.10) are expressed for the 3D case.

In the quasi-linear form, equation (1.8) is written as [33]

∂U

∂t
+ Ai

∂U

∂xi

=
∂

∂xi

(
Kij

∂U

∂xj

)
+ S on Ω× (0, tf) (1.11)

where

Ai =
∂Fa

i

∂U
(1.12)

is the advective jacobian matrix, and Kij is the diffusivity matrix satisfying

Kij
∂U

∂xj

= Fd
i (1.13)

1.1.1 Turbulence modeling

The flow field in an internal combustion engine is turbulent and comprises many time and
length scales. The ratio between the time (length) scales of the Kolmogorov and energy-

containing eddies is of the order of Re
−1/2
l (Re

−3/4
l ), where Rel is the turbulent Reynolds

number [74]. In an IC engine cylinder, it is expected the most energetic scale to be of the
order of 1/6 of the largest eddy size (the cylinder bore if the piston is halfway down on
the intake stroke, or the clearance height if the piston is near TDC [46]). Furthermore,
the turbulent velocity when the piston is in the middle of the intake stroke is about
10 times the mean piston speed (Sp) and at TDC, in the absence of swirl, tumble and
squish, is about a half of Sp [46]. Let assume typical values of Sp = 5 m/s, a cylinder
bore of 80 mm, a geometric compression ratio of 8:1, inlet density and temperature of
1 kg/m3 and 300 K, respectively, and an inlet dynamic viscosity of 2 × 10−5 Pa·s. At
the two states considered, halfway down on the intake stroke and at TDC, the turbulent
Reynolds numbers are respectively Rel ≈ 3.33 × 104 and Rel ≈ 1.26 × 103 1. Then,
it is practically impossible with available processors to obtain a numerical solution of
equations (1.1) that accounts for all the turbulent time and length scales and, therefore,
models need to be introduced. There are two main approaches to model turbulence, the
so-called RANS (Reynolds-Average Navier-Stokes) approach, and the LES (Large Eddy
Simulation) models. In RANS methods, a set of partial differential equations describing
suitable averaged quantities are used everywhere in the flow. For periodic engine flows,
ensemble or phase average is replaced instead typical time averaging [32, 66]. Since
the flow during the engine cycle is compressed and expanded, mass-weighted averaging

1The dynamic viscosity in a gas is proportional approximately to
√
T [87]. In addition, isentropic

relations where considered for compression.
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(called Favre averaging) is commonly applied in conjunction with ensemble averaging [32].
LES is an approach in which the large-scale three-dimensional time-dependent turbulence
structure is calculated in a single realization of the flow. Thus, only the small-scale
turbulence need to be modeled, which is more isotropic than the large-scale structure [89].

Although the RANS methods involve a greater number of equations than LES strate-
gies, they are cheaper since they can work with coarser meshes and time steps. In addi-
tion, the LES methods could need an a posteriori statistical analysis in order to compute
turbulent variables. Nevertheless, RANS methods have demonstrated their inability to
produce solutions for the Navier-Stokes equations [47]. This is obviously a very serious
shortcoming of any turbulence modeling procedure, and although it has been recognized
for a long time by theorists, especially mathematicians, it has had little, if any, impact on
engineering analyzes of turbulence. In contrast to RANS, it can be shown that LES pro-
cedures generally converge to DNS (Direct Numerical Simulation) as discretization step
sizes are refined. This occur since models for LES subgrid-scale stress tensor (τSGS) are
generally constructed such that τSGS → 0 as the discretization step size tends to zero [68].
Hence, the use of a LES flow solver is desirable.

In this thesis, the simplest Smagorinsky model [89, 69] will be applied, which takes the
Smagorinsky coefficient as constant, in contrast with the dynamic counterpart proposed
by Germano [28]. This is one of the most popular choices into the LES family of turbulence
models. In this eddy viscosity model, the turbulent dynamic viscosity is defined as

µt = ρ(Csh)
2∆

√
2ε(u) : ε(u) (1.14)

where Cs = 0.1− 0.2 is the Smagorinsky constant, ∆ is a damping function to reduce the
amount of turbulent viscosity in the vicinity of solid objects immersed in the fluid flow,
and h is the grid size (a parameter that divides the size of vortices being resolved by the
size of vortices being modeled). Finally,

√
ε(u) : ε(u) represents the trace of the strain

rate tensor making the eddy viscosity a local parameter.

1.1.2 Boundary conditions

At solid walls, the ‘classical’ approach to impose boundary conditions to the compressible
Navier-Stokes equations is the no-slip condition [33]. For the velocity, this condition is
expressed by

u = uwall (1.15)

where uwall is the velocity of the wall in the considered reference system.
For the temperature, either the wall temperature (Twall) is fixed

T = Twall (1.16)

or the heat flux is determined by the physical conditions, that is

−κ∂T
∂n

= qwall (1.17)

where qwall is the wall heat flux, and n refers to the normal direction to the wall. The last
boundary condition at the wall could be obtained projecting the momentum equation on
the normal direction

∂p

∂n
= (∇ ·T)n (1.18)
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For thin shear layers at high Reynolds numbers, this might be replaced by the boundary
layer approximation [33]

∂p

∂n
= 0 (1.19)

which was used for numerical simulations of internal combustion engines [66] by several
researchers.

For turbulent flows, no-slip boundary condition could be a mistake if the mesh is not
refined enough at boundary layers. In addition, most of the turbulence models that have
been used to calculate the flow field in reciprocating and rotary engines do not account for
low-Reynolds number effects, preferential dissipation, and streamline curvature. There-
fore, these models cannot be applied up to the solid walls, and the boundary conditions
are applied close to the wall but not on it. These boundary conditions are analogous
to those used in statistically stationary, incompressible, turbulent flows along flat plates
in the absence of pressure gradients. The flows in reciprocating and rotary engines are
neither steady nor incompressible, but involve recirculation zones and pressure gradients.
Nevertheless, boundary conditions based on solutions to flat plates are frequently used.

For the velocity, the boundary conditions near a solid wall with uwall = 0 can be
written as follows [66]

u · n = 0

u · t =


u2

f d

ν
if 0 ≤ ufd

ν
≤ 11.63

uf

(
2.5 ln

ufd

ν
+ 5.5

)
if
ufd

ν
> 11.63

(1.20)

where n and t are the unit vectors normal and tangential to the solid wall, respectively;
uf = (τw/ρ)

1/2 is the friction velocity, with τw the shear stress at the wall; d is the distance
from the solid wall to the point closest to the wall; and ν the gas kinematic viscosity.

The boundary condition for the temperature profile near the wall in a turbulent flow
is frequently imposed by means of the Reynolds analogy between linear momentum and
energy [67]. The Reynolds analogy is strictly applicable when the Reynolds fluxes of linear
momentum and energy are equal, and the profiles of the mean velocity and enthalpy are
similar, that is, the laminar and turbulent Prandtl numbers are close to 1. This boundary
condition is expressed as [66]

T =


Twall −

Prqwalld

ρcpν
if 0 ≤ ufd

ν
≤ 11.63

Twall −
Prtqwall

ρcpuf

(
2.5 ln

ufd

ν
+ 5.5

)
if
ufd

ν
> 11.63

(1.21)

where Prt =
νt

αt

is the turbulent Prandtl number, νt = µt/ρ and αt being, respectively, the

turbulent kinematic viscosity and the turbulent thermal diffusivity. The analogy between
linear momentum and energy may not be applicable to reciprocating and rotary engine
flows. Thus, equation (1.21) should be used carefully as it was noted by Ramos [66]

Accurate heat transfer results can be obtained only if the hydrodynamic and
thermal boundary layers are resolved and the boundary conditions are applied
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at the walls. These accurate calculations can be performed only if enough
grid points are placed in the boundary layer to resolve its structure and if
low-Reynolds-number effects are introduced in the turbulence model. [ ... ]
Accurate calculations of the heat transfer to solid walls are essential for deter-
mining the engine efficiency.

Conditions for inlet and outlet boundaries are applied following the approach proposed
by Storti et al. [72]. Considering a point on an inlet/outlet boundary, it is possible to do
a simplified 1D analysis in the normal direction to the local boundary. The projection
matrices onto the right/left-going characteristics modes are defined as

Π±
n = SnΠ

±
V nS

−1
n (1.22)

where Sn is the matrix of eigenvectors diagonalizing the projected system, being Λn =
diag [(λn)j] their respective eigenvalues; and

(Π−
V n)jk =

{
1 if j = k and (λn)j < 0

0 otherwise

Π−
V n + Π+

V n = I

(1.23)

Then, the boundary condition is applied as a constraint to the system of governing
equations as follows

Π−
n (Û)(U− Û) = 0 (1.24)

where Û is defined depending on whether the boundary is either an inlet or an outlet.
Note that in equation (1.24) the projection matrix, which is a non linear function of the
fluid state, is evaluated at the state Û. This is true if it is assumed that the flow is
composed of small perturbations around the state Û. However, as long as the fluid state
departs from the Û value, the condition becomes less and less absorbing.

1.1.3 Arbitrary Lagrangian Eulerian description of governing
equations

It is well known that there are two viewpoints mostly used in the description of the flow
motion equations: one is called the Lagrangian approach, where the observer moves with
the fluid velocity, and the other option is the Eulerian approach, in which the observer is
fixed. The Arbitrary Lagrangian Eulerian (ALE) description is a generalization of these
approaches, where two configurations of the system are considered: an instantaneous con-
figuration Ωt(x) and a reference configuration Ω0(ξ). Then, a mapping function between
Ωt(x) and Ω0(ξ) is defined as x = x(ξ, t). The ALE strategy applied in this thesis for
the resolution of moving domain problems was proposed by Donea et al. [22]. In the
conservation form, the governing equations can be written as

∂(JU)

∂t
+ J

∂

∂xi

(
Fa

i − Fd
i − wiU

)
= JS on Ωt × (0, tf) (1.25)

where J = det

(
∂x

∂ξ

)
, w = [w1, w2, w3]

T =
dx

dt

∣∣∣∣
ξ

and Ωt = Ωt(x).
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Using this ALE strategy, it can be shown (see, for example, the works by Donea et
al. [22], Nomura [59], etc.) that the system of Navier-Stokes in its quasi-linear form can
be written as

∂U

∂t
+ (Ai − wiI)

∂U

∂xi

=
∂

∂xi

(
Kij

∂U

∂xj

)
+ S on Ωt × (0, tf) (1.26)

or

1

J

∂(JU)

∂t
+ (Ai − wiI)

∂U

∂xi

− ∂wi

∂xi

U =
∂

∂xi

(
Kij

∂U

∂xj

)
+ S on Ωt × (0, tf) (1.27)

1.2 Numerical implementation

1.2.1 Finite element formulation

In this section, the variational formulation of the Navier-Stokes equations for compressible
flows is presented. The Finite Element Method stabilized by means of the Streamline
Upwind/Petrov-Galerkin (SUPG) strategy and with the addition of a shock capturing
operator is used. Consider a finite element discretization of the domain Ω into nel sub-
domains Ωe, e = 1, 2, . . . , nel. Based on this discretization, the finite element function
spaces for the trial solutions and for the weighting functions, S h and V h respectively,
can be defined (see equation (1.29)).

Then, the finite element formulation of the problem (1.11) using SUPG is written as
follows [57]:
Find Uh ∈ S h such that ∀Wh ∈ V h∫

Ω

Wh ·
(
∂Uh

∂t
+ Ah

i

∂Uh

∂xi

)
dΩ +

∫
Ω

∂Wh

∂xi

·Kh
ij

∂Uh

∂xj

dΩ

+

nel∑
e=1

∫
Ωe

τ (Ah
k)

T ∂W
h

∂xk

·
[
∂Uh

∂t
+ Ah

i

∂Uh

∂xi

− ∂

∂xi

(
Kh

ij

∂Uh

∂xj

)
− S

]
dΩe

+

nel∑
e=1

∫
Ωe

δsc
∂Wh

∂xi

· ∂U
h

∂xi

dΩe =

∫
Ω

Wh · SdΩ +

∫
Γh

Wh · fdΓ

(1.28)

where

S h = {Uh|Uh ∈ [H1h(Ω)]ndof , Uh|Ωe ∈ [P 1(Ωe)]ndof , Uh = g on Γg}
V h = {Wh|Wh ∈ [H1h(Ω)]ndof , Wh|Ωe ∈ [P 1(Ωe)]ndof , Wh = 0 on Γg}

(1.29)

H1h(Ω) being the finite dimensional Sobolev functional space over Ω, and with f and g
representing the natural and Dirichlet boundary conditions vectors, respectively. Γg and
Γh are the portion of the boundary with Dirichlet and Neumann conditions, respectively.

The first summation of element level integrals in equation (1.28) are added to the
variational formulation to stabilize the computations against numerical instabilities. In
the advection-dominated range, these terms prevent the node-to-node oscillations of the
flow variables, where τ is known as the intrinsic time tensor. The second summation
of element level integrals in equation (1.28) are the shock capturing terms that stabilize
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the computations in the presence of sharp gradients, δsc being the coefficient of shock
capturing. Matrix τ is defined by Aliabadi et al. [1] in the following way

τ = max [0, τa − τd − τδ] (1.30)

where

τa =
h

2(c+ ‖u‖)
I

τd =

∑nd

j=1 β
2
j diag(Kjj)

(c+ ‖u‖)2
I

τδ =
δsc

(c+ ‖u‖)2
I

(1.31)

Here, c =
√
γRT is the sonic speed, h is the element size computed as the element length

in the direction of the streamline

h =
2∑nen

a=1 ‖s ·∇Na‖
(1.32)

Na being the trial function associated with the node a, nen the number of nodes in the
element, s a unit normalized velocity vector, and β = ∇‖U‖2/‖∇‖U‖2‖.

Regarding the shock capturing term, an isotropic operator proposed by Tezduyar and
Senga [75] is presented here. Let j = ∇ρh/‖∇ρh‖ a unit vector oriented with the density
gradient and the characteristic length hJGN = 2(

∑nen

a=1 ‖j ·∇Na‖)−1. The isotropic shock
capturing factor included in equation (1.28) is then defined as

δsc =
hJGN

2
uchar

(
‖∇ρh‖hJGN

ρref

)β∗

(1.33)

where uchar = ‖u‖ + c is the characteristic velocity defined as the addition of the flow
velocity magnitude and the sonic speed, ρref is the density interpolated at gaussian point,
and β∗ is a parameter that could be taken as 1 or 2 according to the sharpness of the
discontinuity to be captured [75].

Comparing (1.11) with (1.26), in the ALE formulation of Navier-Stokes equations only
the advective jacobian are modified. Thus, the finite element formulation stabilized with
SUPG of equation (1.26) is obtained by replacing Ai by Ai−wiI in (1.28), and in the def-
inition of stabilization coefficients (1.31) ‖u‖ by ‖u−w‖. In the case of moving domains,
care should be taken with integrals containing time derivatives due to the integration
domain is a function of t.

1.2.2 Time discretization

Derivatives with respect to time are discretized using the trapezoidal difference scheme,
expressed as

∂U

∂t
≈ Un+1 −Un

ϑ∆t
(1.34)

where ϑ is the implicitness parameter, ∆t is the time step, and the superscripts n and
n+ 1 indicate the level time t and t+ ∆t, respectively.

Furthermore an implicit scheme is used, in such a way that all variables in equa-
tion (1.28) are evaluated at the n + ϑ level time, i.e. with the state vector Uϑ =
ϑUn+1 + (1− ϑ)Un.
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1.2.3 Dynamic boundary conditions using Lagrange multipliers

Boundary conditions at inlet and outlet (1.24) are imposed via Lagrange multipliers, as
proposed by Storti et al. [72]. Let i a node lying on the inlet (or outlet) boundary. Then,
the equations for this node are modified in the following way

Π−
n (Û)(Ui − Û) + Π+

n (Û)Ulm = 0

Ri + Π−
n (Û)Ulm = 0

(1.35)

where Ulm is the vector of Lagrange multipliers and Ri is the FEM residue for node
i. At inlet regions Û = Uref , with Uref a reference state. At outlet regions, Storti et
al. [72] propose to take Û as the state of the fluid in the previous time step if the external
conditions are unknown. They named this strategy ULSAR (Use Last State As Reference)
and show that Riemann invariants are preserved in the limit ∆t→ 0 and h→ 0, if such
invariants exist.

Some internal combustion engines utilize ports for the gas-exchange process, such as
two-stroke and rotative (Wankel [7], MRCVC [80], etc.) engines. Generally, the ports
are placed on fixed walls of the engine (the cylinder or the housing) and, thus, have a
relative motion respect to the flow domain. For example, figure 1.1 shows a scheme of
a two-stroke engine with intake and exhaust ports located on the cylinder wall. In this
case, an observer placed on the centroid of the flow domain sees the ports moving away
in the bottom direction.

exhaust
portport

intake

flow
domain

exhaust
portport

intake

flow
domain

exhaust
portport

intake

flow
domain

Figure 1.1: Two-stroke engine scheme.

A port could be modeled as a ‘hole’ in relative motion with respect to the boundary
domain. This hole changes its passage area as the boundary moves, from open position to
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the closed one, and vice-versa. Due to the nodal displacement produced by the deforma-
tion of the flow domain, mesh nodes lying on a boundary with a hole could change their
position between the wall and the port (an inlet/outlet for the flow problem). Therefore,
the boundary condition applied on each of such nodes must be changed appropriately in
order to account for the node position. This is sketched in figure 1.2, where the mesh
boundary nodes are filled according to the type of boundary condition. At time t, nodes
1 to 5 have absorbing boundary conditions since they lie on the passage area of the ports.
At time t+ ∆t and due to the mesh movement, nodes 1 to 4 are located on the cylinder
walls and their boundary condition must change to the wall type. The strategy used
consists in switching from an absorbing boundary condition (equation (1.35)) when the
node is placed on the port region to a wall boundary condition when the node moves
on the solid wall. The wall boundary condition is applied by means of constraints using

exhaust
portport

intakeexhaust
portport

intake 4
5

3 5
4
3

1
2

wall boundary condition

absorbing boundary condition

t ∆t+   t

1
2

Figure 1.2: Change in the type of boundary condition due to the mesh movement.

Lagrange multipliers in order to keep the total number of degrees of freedom constant.
For instance, in a 3D problem using a no-slip boundary condition and considering as null
the velocity of the solid wall, the system of equations to solve for the node i is written as

MUi + (I−M)Ulm = 0

Ri + MUlm = 0
(1.36)

where M = diag [0, 1, 1, 1, 0].



Chapter 2

Mesh dynamics

At the mass grave of religions man’s triumphant age begins
the heartblood of these tyrants will wash us clean of sin
we’ll stand among the victors through this colossal war
the sight of moving mountains is what we are here for

Alghazanth

Several scientific and industrial applications of Computational Mechanics involve do-
mains with moving boundaries. Examples of this kind of problems include free surfaces,
two-fluid interfaces, fluid-object interaction, fluid-structure interaction, and moving me-
chanical components.

In computation of fluid flow problems with moving boundaries and interfaces, either
an interface-tracking or an interface-capturing technique could be used, depending on the
complexity of the interface as well as other aspects of the problem. An interface-tracking
technique requires meshes that ‘track’ the interfaces, then, they need to be updated as
the flow evolves. Besides, in an interface-capturing technique the computations are based
on fixed spatial domains, where an interface function sets the location of the interface.
This function needs to be computed in order to ‘capture’ the interface within the finite
element mesh covering the area where the interface is located [76, 77].

In fluid-structure interaction problems, one of the most popular interface-tracking
techniques is the ALE formulation [37, 11, 22], as described in chapter 1. In such appli-
cations, a body-conforming mesh has to be regenerated at each time step, or the existing
grid has to be allowed to deform in order to follow the computational domain geometries.
The former option is rather cumbersome and computationally expensive, especially for 3D
problems, and could introduce an additional degradation of the numerical solution due
to the projection of solutions from a mesh to another one. Furthermore, when implicit
schemes are applied in an environment of parallel computing, the matrix profile must be
calculated at each remeshing stage. More precisely, a total or a partial change in the
topology of the mesh involves changes in the matrix profile. Thus, this additional compu-
tational cost introduced by the remeshing could become very important if the frequency
of remeshing stages increases. The second option introduces the concept of a moving and
deforming grid known as ‘dynamic’ mesh. In this case, the motion of the grid could cause



2.1 Mesh quality 12

the deterioration of the mesh quality and, in some situations, generate an invalid mesh
where any of the grid elements is inverted. It is well known that poor quality elements
have strong influence on stability, convergence and accuracy of the numerical method
used. In Computational Mechanics, the strategies developed to solve the mesh motion
are grouped in a special topic named Computational Mesh Dynamics (CMD).

In this thesis, the moving mesh approach is preferable upon the remeshing approach
due to the reasons mentioned above. Although a FSI problem may have instants at which
a new mesh must be introduced, the goal is to develop a CMD strategy that permits to
reduce the total number of remeshing stages. For relatively small domain deformations,
there are many techniques which can solve the dynamics of the mesh. However, when
the boundary displacements are relatively high most of these methods could fail to give
a valid mesh. The domain deformation in internal combustion engines is very high,
with topological changes and contact between different boundaries. Therefore, the CMD
strategy utilized to solve the mesh dynamics in these problems should be as robust as
possible. An advantage in the particular case of internal combustion engines, is the fact
that the movement of the boundaries is known a priori and has a periodic behavior.
Thus, the complete sequence of meshes could be generated before the resolution of the
CFD problem.

2.1 Mesh quality

Following the paper by Knupp [39], an element quality metric is defined as
Definition. An element quality metric is a scalar function of node positions that measures
some geometric property of the element.

If a 3D element has J nodes with coordinates xj ∈ R3, j = 0, 1, . . . , J − 1, then a

mesh quality metric is denoted by f̂ : R3J → R.
Some examples of element quality metrics are

• Volume (V ).

• Aspect ratio, defined as the ratio between the radius of the sphere circumscribed to
the element and the radius of the sphere inscribed in the element.

• Minimal dihedral angle.

• Size skewness (η), defined as

η =
V − Vref

Vref

where Vref is the volume of the equilateral element with the same (radius of the)
sphere circumscribed as the actual element.

Definition. For a given element quality metric f̂ , the mesh quality (f̂mesh) is the minimum
of f̂ over all the elements in the mesh, i.e. f̂mesh = mine f̂e.
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2.2 The mesh dynamics strategy

The Computational Mesh Dynamics strategy developed could be classified as a mesh
smoothing method. The strategy is based on an optimization problem where the func-
tional is defined in terms of some appropriate element quality indicator.

The mesh topology (element connectivity) is assumed to remain constant, and the
nodal coordinates are updated at each time step minimizing a given functional. In their
most general form, the proposed functional is written as

F = F (x) = F ({xα
j }) (2.1)

where x = {xα
j } represents the whole set of nodal coordinates, and xα

j is the α coordinate
of the node j. The widely used pseudo-elastic CMD strategies can be expressed in that
form, being F the functional of elastic energy.

At the time step n, the problem to solve is written as1

min
xn

F (xn)

s. to xn ∈ Γtn ⇔ xn−1 ∈ Γtn−1

(2.2)

where Γt is the domain boundary. As it is observed, the nodes on the domain boundary
are free to slide in the tangent direction. This possibility represents a non-linear restric-
tion for the optimization problem (2.2) in the general case. Note that the constraint in
equation (2.2) reduces in 1 the number of degrees of freedom for each boundary node.
Thus, nodes lying on the intersection of two boundaries have two degrees of freedom less,
and so on. In the particular case of vertexes, for instance, the number of constraints is
equal to the number of spatial dimensions (and the number of degrees of freedom) and,
hence, the node is attached to the vertex. A most simple type of boundary condition con-
sists in fixing the nodal displacement in a predetermined value, but it is more restrictive
from the point of view of the optimization problem.

2.2.1 Functional design

Being the dynamics of the mesh an artificial field in a FSI problem, there is enough
freedom to design the functional in order to obtain meshes having good quality. Some
design conditions for F are

• F should be computed from element contributions (as in an usual finite element
assembly process).

• The minimum of F should give the best mesh quality.
• F should be well behaved enough in order to solve the minimization problem with

Newton-like methods. In general, it will require F to have continuous first deriva-
tives.

• F should be convex in order to guarantee uniqueness of the minimum and positivity
of the stiffness matrices (the Hessian matrices of the functional).

1The notation of equation (2.2) stands for ‘minimize F (xn) subject to constraints xn ∈ Γtn ⇔ xn−1 ∈
Γtn−1 ’.
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The first item requires that the functional may be computed as

F = g(F1({xα
j }1), F2({xα

j }2), . . . ) (2.3)

where Fe({xα
j }e) is the functional for element e, which is a function of the coordinates of

its nodes and g(·) is some associative function that preserves convexity, for instance the
sum or the maximum

g(F1, F2, ...) = F1 + F2 + ...

g(F1, F2, ...) = max(F1, F2, ...)
(2.4)

The second requirement is somewhat in conflict with the third and fourth ones. In the
ideal case, Fe would be some indicator of the element badness (or distortion), and g(·)
would be the maximum of its arguments, so the minimization of the mesh functional is
equivalent to search for the mesh whose badness (i.e. the badness of the worst element)
is minimum. However, using the maximum for g(·) it leads to functionals with non-
differentiable first derivatives. Therefore functionals of the form

F =
∑

e

|Fe({xα
j }e)|p, (2.5)

will be consider, preserving regularity while for p → ∞ the maximum (L∞) criterion is
recovered.

Regarding for the design of the element functional Fe itself, at first sight it should be
a function of its deformation only, in order to be invariant under dilatation, translation
or rotation. However, the corresponding functional would be non-convex. Consider, for
instance, a 1D problem covering the interval [0, 1] with two linear elements, as in figure 2.1.
There are three nodes, for which the position of nodes 1 and 3 are fixed by the boundary

x1=0 x =13x2 x

Figure 2.1: Invariance under dilatation.

conditions and the only unknown variable is the position of node 2. But if the functional
is invariant under dilatation, then the functional for all 1D elements would be the same,
and the position of the node 2 would be undetermined. In order to regularize the problem
a term depending on the volume should be added to the functional.

The convexity of the functional is perhaps the most difficult restriction to accomplish.
Consider for instance the case of two triangles T = ABC and T ′ = A′B′C ′ in figure 2.2.
Both of them are well oriented (counterclockwise) and they are not too far from an
equilateral one, therefore they should have a relatively low functional value (badness).
Consider now the linear path that connects both of them, i.e. the family of triangles
T (α) that are formed by linear interpolation of the coordinates of T and T ′. For instance,
for the A vertex

xA(α) = (1− α)xA + αxA′ (2.6)

The triangles for α = 0, 0.25, 0.5, 0.75 and 1 are shown in figure 2.2. If the functional is
convex, it should satisfy the inequality

F (T (α)) ≤ (1− α)F (T ) + αF (T ′) (2.7)
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in such a way the badness of the interpolated triangles for 0 < α < 1 should be lower
than the extreme ones, i.e. they should be ‘nicer’. But as could be seen in the figure, for
α = 0.5 the triangles collapse in a line, so it not seems to be an appropriate criterion of
badness that would be convex. Then the convexity requirement on the element functional
is dropped.

A

B

C

A’

B’

C’

α=0.5

α=0 α=1

Figure 2.2: Convexity preservation.

Considering the items discussed above, the following expression for the element func-
tional is proposed

Fe = Cv

(
Ve

V e
ref

− 1

)m

+ Cqq
n
e (2.8)

where Ve is the element volume, V e
ref is the target element volume, qe is any element-

wise quality indicator, Cq and Cv are weight coefficients for shape and size terms in the
functional respectively. The exponent m must be even and n ∈ Z− in order to set the
optimization problem as a minimization one. Then, the element distortion is defined as
the reciprocal of the element quality. Furthermore, when negative values are adopted for
the exponent n, the functional behaves like a geometric mean over the elements and, thus,
gives more weight to the most distorted elements. Normally, Cv should be kept as small
as possible but preserving the well-posedness of the problem. Exponents m and n allow
to use different discrete norms to measure the element distortion and the element size
change, e.g. n = −2 means Euclidean norm, and n→ −∞ means maximum norm. This
last case is equivalent to maximize the worst element quality [92].

Depending on how the system is solved, there are two possibilities: local methods and
global methods. The global methods update the nodal position simultaneously for the
whole set of nodes, while the local algorithms apply their methodologies over each subset
of nodes until the whole set of nodes is updated, i.e., the free nodes are relocated one
by one iteratively, keeping the remainder fixed until the convergence is reached. Local
methods are to global ones as explicit schemes are to implicit schemes for the resolution
of differential equations with preponderant diffusive character. Furthermore, there is no
guarantee that a solution of a global strategy may always be reached for a local method.
In this thesis, the optimization problem is solved with a global scheme in order to avoid
the drawbacks that local methods present.
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The coordinate xα
j is written as its initial grid coordinate plus a deformation ũα

j . When
Newton-like methods are used, it is necessary to compute the gradient of the functional
and, in some cases, its Hessian matrix too. The derivative of the functional given by
equation (2.8) respect to ũα

j could be written as

Rα
j =

∂F

∂ũα
j

=
mCv

Vref

(
V

Vref

− 1

)m−1
∂V

∂ũα
j

+ nCqq
n−1 ∂q

∂ũα
j

(2.9)

The Hessian matrix is given by

Kα β
j k =

∂

∂ũβ
k

(
∂F

∂ũα
j

)
=
mCv

Vref

(
V

Vref

− 1

)m−1
[
m− 1

V − Vref

∂V

∂ũβ
k

∂V

∂ũα
j

+
∂

∂ũβ
k

(
∂V

∂ũα
j

)]
+

+ nCqq
n−1

[
n− 1

q

∂q

∂ũβ
k

∂q

∂ũα
j

+
∂

∂ũβ
k

(
∂q

∂ũα
j

)]
(2.10)

The way in which the functional was written allows its application for any type of
element if the quality indicator is properly defined. Here, it is proposed to use the following
geometric quality indicator based on the subdivision of the element in simplexes (triangles
in 2D and tetrahedra in 3D)

q = C

[
N∑

i=1

(qS,i)
n

]1/n

(2.11)

where C is a normalization constant such that 0 < q ≤ 1, N is the total number of
simplexes in the all possible subdivisions of the element in simplicial ones, and qS,i is
computed for the simplex element i in the subdivision and it is given by

qS =
V

Se

(2.12)

with Se =
∑

j l
nd
j , being lj and V the length of the j−edge and the volume of the

simplex, respectively. As can be shown, with an appropriate normalization constant qS is
an algebraic quality metric for simplicial elements. Thus, the quality indicator for non-
simplicial elements is based on those defined for simplicial ones. Due to this fact, without
loss of generality, only the simplex element case is considered in the analysis that follows.

According to equation (2.9), for the computation of the functional gradient it is nec-
essary to have the expression of the derivative of the quality indicator with respect to the
deformation. Therefore, the derivative of the expression (2.11) with respect to ũα

j (for
N = 1) is

∂q

∂ũα
j

=
C

S2
e

(
Se
∂V

∂ũα
j

− V
∂Se

∂ũα
j

)
(2.13)
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Computing the derivative of the last equation with respect to ũβ
k , the following ex-

pression is obtained

∂

∂ũβ
k

(
∂q

∂ũα
j

)
= − 2

Se

∂Se

∂ũβ
k

∂q

∂ũα
j

+
C

S2
e

[
Se

∂

∂ũβ
k

(
∂V

∂ũα
j

)
+
∂Se

∂ũβ
k

∂V

∂ũα
j

− ∂V

∂ũβ
k

∂Se

∂ũα
j

−

V
∂

∂ũβ
k

(
∂Se

∂ũα
j

) ] (2.14)

Due to V and Se are functions of the element nodal coordinates, it is algebraically
convenient to adopt some local coordinates, for instance using the nodal distance to a
given element node taken as the origin. Adopting the node with label 1 in the element as
the reference node for every element in the mesh, the local coordinates can be defined as

x̃α
j = xα

j+1 − xα
1 (2.15)

with j = 1, . . . , nen−1 and α = 1, . . . , nd, where nen is the number of nodes in the element.
This coordinate change allows to simplify the algebraic expressions for the computation
of the element volume and the edges length, with no increment in complexity for the
derivatives expressions. For example, for the volume, using the chain rule leads to

∂V

∂ũα
j

=
∂V

∂x̃γ
i

∂x̃γ
i

∂ũα
j

(2.16)

From the definition given by equation (2.15), it is found that the tensor

∂x̃γ
i

∂ũα
j

= (δ(i+1)j − δ1j)δαγ (2.17)

is constant. Applying the chain rule in the equation (2.16), the second derivatives of the
element volume may be computed as

∂

∂ũβ
k

(
∂V

∂ũα
j

)
=

∂

∂x̃µ
l

(
∂V

∂x̃γ
i

)
∂x̃µ

l

∂ũβ
k

∂x̃γ
i

∂ũα
j

(2.18)

In order to obtain expressions for the derivatives of the elemental volume respect to
the local coordinates, the element type must be specified. As mentioned above, triangles
and tetrahedra will be considered.

For triangles, the ‘volume’ (i.e. the area) could be computed as

V =
1

2

∣∣∣∣∣∣
x1

1 x2
1 1

x1
2 x2

2 1
x1

3 x2
3 1

∣∣∣∣∣∣
In local coordinates, the last expression is written as

V =
1

2

∣∣∣∣∣∣
0 0 1

x1
2 − x1

1 x2
2 − x2

1 1
x1

3 − x1
1 x2

3 − x2
1 1

∣∣∣∣∣∣ =
1

2

∣∣∣∣ x̃1
1 x̃2

1

x̃1
2 x̃2

2

∣∣∣∣
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Therefore, the element volume expression is simplified to the following

V =
1

2
(x̃1

1x̃
2
2 − x̃2

1x̃
1
2) (2.19)

The derivative of equation (2.19) with respect to x̃γ
i could be written as

∂V

∂x̃γ
i

=
1

2

[
δγ1(x̃

2
2δi1 − x̃2

1δi2) + δγ2(x̃
1
1δi2 − x̃1

2δi1)
]

(2.20)

Then, the derivative of the last equation with respect to x̃µ
l is expressed as

∂

∂x̃µ
l

(
∂V

∂x̃γ
i

)
=

1

2
(δl2δi1 − δl1δi2)(δγ1δµ2 − δγ2δµ1) (2.21)

The denominator of equation (2.12) for the 2D-case in local coordinates is written as

Se = |x̃1|2 + |x̃2|2 + |x̃2 − x̃1|2 (2.22)

where

|x̃j|2 =

nd∑
α=1

(
x̃α

j

)2
(2.23)

The derivatives of the equation (2.22) are given by the following expressions

∂Se

∂x̃γ
i

= 2
[
x̃γ

i + (−1)i(x̃γ
2 − x̃γ

1)
]

(2.24)

∂

∂x̃µ
l

(
∂Se

∂x̃γ
i

)
= 2δµγ

[
δil + (−1)i(δ2l − δ1l)

]
(2.25)

The volume of a tetrahedral element could be computed as

V =
1

6

∣∣∣∣∣∣∣∣
x1

1 x2
1 x3

1 1
x1

2 x2
2 x3

2 1
x1

3 x2
3 x3

3 1
x1

4 x2
4 x3

4 1

∣∣∣∣∣∣∣∣
This expression is reduced to a third order determinant when local coordinates are intro-
duced

V =
1

6

∣∣∣∣∣∣∣∣
0 0 0 1

x1
2 − x1

1 x2
2 − x2

1 x3
2 − x3

1 1
x1

3 − x1
1 x2

3 − x2
1 x3

3 − x3
1 1

x1
4 − x1

1 x2
4 − x2

1 x3
4 − x3

1 1

∣∣∣∣∣∣∣∣ =
1

6

∣∣∣∣∣∣
x̃1

1 x̃2
1 x̃3

1

x̃1
2 x̃2

2 x̃3
2

x̃1
3 x̃2

3 x̃3
3

∣∣∣∣∣∣
The last determinant may be computed using the third order Levi-Civita tensor (εpqr) as

V =
1

6
εpqrx̃

p
1x̃

q
2x̃

r
3 (2.26)
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The summation over the power of length edges in the denominator of the element
quality indicator for a tetrahedron in local coordinates may be expressed as

Se = |x̃1|3 + |x̃2|3 + |x̃3|3 + |x̃2 − x̃1|3 + |x̃3 − x̃2|3 + |x̃1 − x̃3|3 (2.27)

The derivatives of the equations (2.26) and (2.27) are given by the following expressions

∂V

∂x̃γ
i

=
1

6
εpqr(x̃

q
2x̃

r
3δ1iδpγ + x̃p

1x̃
r
3δ2iδqγ + x̃p

1x̃
q
2δ3iδrγ) (2.28)

∂

∂x̃µ
l

(
∂V

∂x̃γ
i

)
=

1

6
εpqr[δ1lδpµ(x̃r

3δ2iδqγ + x̃q
2δ3iδrγ) + δ2lδqµ(x̃r

3δ1iδqγ + x̃p
1δ3iδrγ) +

δ3lδrµ(x̃q
2δ1iδpγ + x̃p

1δ2iδqγ)]

(2.29)

∂Se

∂x̃γ
i

= 3
[
|x̃i|x̃γ

i − |x̃i+1 − x̃i|(x̃γ
i+1 − x̃γ

i ) + |x̃i − x̃i−1|(x̃γ
i − x̃γ

i−1)
]

(2.30)

∂

∂x̃µ
l

(
∂Se

∂x̃γ
i

)
= 3

{ [
|x̃i|−1x̃µ

i x̃
γ
i + |x̃i|δµγ

]
δil −

[|x̃i+1 − x̃i|−1(x̃µ
i+1 − x̃µ

i )(x̃γ
i+1 − x̃γ

i ) +

|x̃i+1 − x̃i|δµγ](δi+1,l − δil) +

[|x̃i − x̃i−1|−1(x̃µ
i − x̃µ

i−1)(x̃
γ
i − x̃γ

i−1) +

|x̃i − x̃i−1|δµγ](δil − δi−1,l)
}

(2.31)

The element functional (2.8) is continuous if qe 6= 0 for all mesh elements, but Fe(x)
tends to infinity when qe tends to zero. With the quality metric (2.12), this last situation
could happen when there is at least one element in the mesh with Ve → 0, due to Se is
bounded below if the element do not shrinks to a single point. Therefore, the application
of this technique is restricted only to valid meshes, since infinite barriers arise when the
element volume tends to zero, making it impossible to recover a valid mesh starting from
an invalid one.

2.2.2 Differential predictor

The optimization strategy presented in section §2.2 means that at each time step the
unknown node positions are obtained by solving the minimization problem (2.2). The
mesh coordinates vector (x) is composed by nodes at the boundary (xb) and the internal
nodes (xint)

x =

[
xb

xint

]
(2.32)

A Newton-like strategy is used to solve this optimization problem and, for the sake of
clarity, it is assumed that boundary nodes have their displacement prescribed. At each
time step, the minimization problem consists in finding the vector x that minimizes the
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functional F (x). Due to the fact that some components of x (those in xb) are fixed by
the boundary conditions, then

xn
int = argmin

x̂int

F

([
xn

b

x̂int

])
(2.33)

The recurrence formula from the Newton-Raphson strategy is

xn,k+1
int = xn,k

int − (Kk)−1Rk (2.34)

where

R =
∂F

∂xint

K =
∂R

∂xint

(2.35)

This generates a sequence xn,k
int that, if it converges, will give the solution for the opti-

mization problem

lim
k→∞

xn,k
int = xn

int (2.36)

The simplest choice for the initial value xn,0
int is taking the unknown vector at the previous

time step, i.e.

xn,0
int = xn−1,∞

int (2.37)

However, this has the drawback that, if the elements near the moving boundary are small,
then the initial combination [xn−1,∞

int ,xn
b ] may lead to invalid elements, even for small time

steps. In fact, the time step is limited by the element size at the wall, and the limit time
step of the moving mesh problem decreases with mesh refinement.

To avoid this, a linear predictor for the initial mesh is performed. If the solution xint(t)
is considered for each t in the range tn−1 ≤ t ≤ tn, then

R(xint(t),xb(t)) = 0 (2.38)

Taking derivatives with respect to time and making an evaluation at t = tn−1(
∂R

∂xint

)
tn−1

ẋint(t
n−1) +

(
∂R

∂xb

)
tn−1

ẋb(t
n−1) = 0 (2.39)

then the Newton-Raphson sequence can be initialized with the extrapolation

xn,0
int = xn−1,∞

int + ∆t ẋint(t
n−1)

= xn−1,∞
int −∆t

(
∂R

∂xint

)−1

tn−1

(
∂R

∂xb

)
tn−1

ẋb(t
n−1)

(2.40)

where the dot designates time differentiation. For instance, consider a 1D problem with a
homogeneous mesh of N linear elements in the interval [0, 1]. The right boundary is fixed
and the left boundary moves to the right with velocity 1. With the standard initialization
strategy, the limit time step is initially ∆t = h = 1/N , since a larger time step will cause
the left boundary to pass over the position of the first internal node (initially at x = h).
Besides, with the differential predictor, the limit time step is ∆t = 1, since, in fact,
the differential predictor gives the optimal solution, and the subsequent Newton-Raphson
iteration is not needed. It has been verified through numerical experiments that with the
differential predictor the limiting time step ∆t is independent of the mesh refinement.
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2.2.3 Avoiding the relaxation of the initial mesh

Pseudo-elastic CMD strategies have the property that they do not move the initial mesh
unless the domain boundary is deformed. This may be justified by means of elastic energy
minimization arguments.

This property is not shared by the proposed functional because sometimes the initial
mesh introduced by the user is not the optimal mesh with respect to this functional.
Consider, for instance, the structured mesh M1 shown in figure 2.3. The mesh is composed
by 200 triangular elements. Even if the mesh has a good quality, the optimization strategy
tends to bring each element to a regular (equilateral) shape, then after a relaxation stage
the mesh M3 is obtained. In this case, during the relaxation process the nodes on sides
AB, CD are fixed, whereas those on BC, AD are left to slide on the horizontal direction.
As a consequence of the optimization problem, the elements near vertexes A and C tend to
shrink, whereas those near B and D tend to grow. This effect is caused by the particular
way in which the squares have been split up into triangles. Note how the elements
tend to reach the equilateral shape in the relaxed mesh. After the mesh has relaxed,
subsequent displacements of the boundary nodes produce displacement of the internal
nodes, as described before.

This initial ‘relaxation’ stage may or may not be desirable. If the initial mesh has
bad quality, then this stage should produce a better new mesh. However, if the initial
mesh has some ad-hoc refinement, then it is possible that the relaxation stage will revert
this refinement. Consider for instance the mesh M2 in figure 2.3, which has a refinement
towards the side AB in such a way that the horizontal spacing near CD is 3.5 times
larger than the same at AB. As a result of the relaxation process, the relaxed mesh M3 is
reached. The resulting relaxed mesh depends only on the topology of the mesh and on the
constraints on the boundary nodes, but not on the initial position of the internal nodes.
In fact, both meshes M2 and M1 (with and without refinement, respectively) produce
the same final mesh M3 after relaxation.

The functional can be easily modified in order to keep the initial refinement. First,
note that for simplicial elements there is a unique linear transformation (x0,T) that
transforms the coordinates {xreg,j} of the regular element (i.e. the equilateral triangle in
2D, the regular tetrahedron in 3D) to the actual element coordinates {xj}

xj = x0 + Txreg,j (2.41)

It is easy to see that the functional can be expressed as a function of the transformation
matrix T

Fe = g(T) (2.42)

This fact can be seen because the functional can be computed by taking the nodal co-
ordinates of the regular element, applying the transformation and finally computing the
edge lengths, volume, and the functional. All these computations are encapsulated in
the function g( · ). Of course, the functional does not depend on the translation x0. In
fact, it only depends on the metric of the transformation TTT, because it is independent
of rotations. However, for the analysis that follows, it is needed to accept that it only
depends on the transformation matrix, as reflected in (2.42). By construction, g has a
minimum when T = cO, with c ∈ R a scaling factor and O an orthogonal matrix, since
in this case the actual element is similar to the regular one.
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M2 = initial mesh with refinement

M3 = relaxed mesh

M1 = initial homogeneous mesh
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Figure 2.3: Relaxation of meshes.

The purpose is to modify the functional in order to the optimal element shape for
Fe is not longer the regular element shape but it could be the shape of some reference
element with coordinates {xref,j} (see figure 2.4). It is easy to see that this can be done
by considering the transformation from the reference element to the actual element as

Fe = g(TT′−1
) (2.43)

where T′ transforms the regular element to the reference element. For instance, as men-
tioned above, a minimum is reached when TT′−1 = cO, i.e. when the current element
is similar in shape to the reference one.

Note that this modification can be simply introduced by computing the transforma-
tions T,T′ and then computing the functional with the coordinates x′j = TT′−1xref,j. An
example can be seen in figure 2.5. The original mesh on the right has a refinement ratio of
1:10 near the AB side. Then, it is deformed on the side AB with a ramp of amplitude 0.2
(resulting in the mesh shown on the left of the figure). Note that if no initial relaxation
is produced, the final mesh still has the refinement towards the AB side.

Computations of the analytical jacobians are also straightforward. The jacobians with
respect to x′j are computed in the standard way, and then they are composed with the
jacobian

∂x′j
∂xj

= TT′−1
T−1 (2.44)
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Figure 2.4: Compensation for initial deformation in reference mesh.
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Figure 2.5: Mesh deformation with surface refinement.

2.2.4 Results

The proposed CMD strategy was applied to several test problems, in 2D and 3D. A test
is considered successful if it achieves a valid mesh at every time step. Values for Cq = 1,
Cv = 0 and n = −1 were adopted in the tests solved. The boundary was moved in such
a way to produce an initial valid mesh for the nonlinear solver at each time step. The
imposed law of movement for a boundary moving node i was of the form φi(t) = aiφ(t),
where ai is the spatial amplitude and

φ(t) = tanh

(
t

τ̃

)
(2.45)

is the temporal part of the dependency, τ̃ being a coefficient that represents the duration
of the change from the starting value to the end value and t ∈ (0, 1).

Regarding for the nonlinear system resolution, the computational cost depends on
the percentage of the domain deformation. Using a tolerance of 1 × 10−5 in the residue,
for small deformation domain it is enough with one or two Newton iterations, while for
harder problems, between five and seven Newton iterations were employed to guarantee
the residual convergence.
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In the next sections the definition of each case together with their results are presented.

Step 2D

Figure 2.6 sketches the domain and the deformation sequence for this problem. The
mesh used has 200 triangular elements and 121 nodes, and the time step adopted was
∆t = 0.005. On the nodes of the boundary domain the displacements have been imposed,
being null for those nodes on fixed boundaries.

A

O

B

C

x

t

x2

1

Figure 2.6: Domain of step 2D test.

In figure 2.7 several meshes obtained during the deformation sequence are shown. In
figure 2.8 the minimum and mean values of the element quality indicator q as a function
of the mesh deformation is plotted. As can be noted, the application of the strategy to
this problem makes it possible to reach deformations larger than 99 %. Of course, the
meshes obtained with the highest percentages of relative deformation may not be useful
for a computation. Such deformations are reached in order to show the robustness of the
method.

Figure 2.7: Mesh deformations for step 2D test: 50 % (left), 90 % (center) and 99 %
(right).
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Figure 2.8: Step 2D minimum and mean element quality as a function of mesh deforma-
tion.

Step 3D

This test is the 3D extension of the test presented in the last section. Figure 2.9 shows
the domain for different deformations. The top face of the cube is moved in the vertical
direction and, during the deformation, this face is transformed into two planes of different
heights joined by a truncated cone with upper radius r1 = 0.5l and lower radius r2 = 0.9l,
where l is the length side of the cube.
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Figure 2.9: Problem definition for step 3D test.
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The mesh used has 1080 elements and 343 nodes. As boundary conditions, imposed
displacements were used. For nodes on moving boundaries, only the component of dis-
placement in the direction x3 is nonzero. The time step is ∆t = 0.005 and the time law of
movement is given by equation (2.45) with τ̃ = 0.4. Figure 2.10 shows the surface mesh
at three different instants allowing to see how the moving mesh is deformed. The mean
and minimum values of element quality indicator q as a function of mesh deformation is
shown in figure 2.11.

Figure 2.10: Mesh deformations for step 3D test: 50 % (left), 80 % (center) and 87 %
(right).
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Figure 2.11: Step 3D minimum and mean element quality as a function of mesh deforma-
tion.

Moving a square inside another square

This test consists in a unit square inside another square with three units as length side.
Initially, both squares are centered, as can be observed in figure 2.12. The internal square
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is displaced in the vertical direction towards the top side of the external square. This test
presents some features similar to the problem of a reciprocating piston or the closing of a
poppet valve in an IC engine. The mesh has 710 triangular elements and 415 nodes, the
time step adopted was ∆t = 0.005, and τ̃ = 0.5 in equation (2.45).

O

D C

BA
x

C’

B’A’

D’ t

2x

1

Figure 2.12: Problem definition for square within another square test.

Figure 2.13 shows deformed meshes for different times. As can be observed, it is
possible to attain deformations larger than 99 % for this test case. In figure 2.14 the
mean value and minimum value of element quality indicator q as a function of mesh
deformation are shown.

Figure 2.13: Mesh deformations for square within another square test: 50 % (left), 90 %
(center) and 99 % (right).

Translation, rotation and bending 2D test

This test was proposed by Stein et al. [71] and it is concerned with the deformation of a two
dimensional unstructured triangular mesh containing a very thin embedded structure, in
this case a zero thickness plate was considered. The mesh domain is defined as |x1| ≤ 1.0
and |x2| ≤ 1.0, and the structure is placed in the region defined as x2 = 0.0 and |x1| ≤ 0.5.
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Figure 2.14: Minimum and mean element quality as a function of mesh deformation for
square within another square test.

Around the structure, the mesh has three structured layers of elements of width l2 = 0.01
with 50 elements along the span-wise of the structure (l1 = 0.02). Figure 2.15 shows the
original mesh which has 4.8K elements and 2.4K nodes. This kind of refinement is typical
of viscous flow problems where the drag and lift deserve special attention.

Figure 2.15: Initial mesh for the translation, rotation and bending 2D test.

The test involves three different types of structure movements: a rigid translation
along direction x2, a rigid 2D rotation around the origin, and a prescribed bending. The
maximum rigid translation in the vertical direction was ∆x2 = 0.5, for the rotation was
∆θ = π/4 and for bending the structure finally adopted a half circle shape (θ = π). For
every case the maximum deformation was adopted after 100 time steps. The nodes inside
the structured layers were moved rigidly with the structure while the nodes on the domain
boundaries are free to slide in the tangential direction.

Figure 2.16 shows the meshes for the time step of maximum deformation for each case.
A detail of the region in the vicinity of the structure is also included.
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Figure 2.16: Final deformed meshes for translation (top), rotation (center) and bending
(bottom) tests.

2.3 Simultaneous mesh untangling and smoothing

The CMD strategy presented requires valid meshes at the begin of each time step, as
discussed in section §2.2. This limitation affects the maximum time step that can be
used for the CMD problem, since the movement of the domain boundary could cause the
tangling of the mesh (see section §2.2.2). In FSI problems this limitation is sometimes
by-passed decreasing the time step size. However the computational cost suffers large
increments, specially if some clustering of nodes is used near the moving boundary to
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capture fluid dynamic details like boundary layers. When the mesh turns invalid, an
untangling methodology should be used to recover a valid mesh. Untangling methods are
commonly based on the element volume [38] and, in general, smoothing and untangling
procedures are treated separately. Thinking of FSI problems, the CMD method should
have the capability of solving the mesh motion even though inverted elements were found,
guaranteeing a smooth mesh at each time step. Therefore, a simultaneous procedure of
smoothing and untangling is preferable [25, 20, 23, 52]. It is in this sense that the CMD
strategy, enhanced with simultaneous untangling and smoothing, is useful. The technique
provides a way to recover a valid mesh, if it exists, despite starting from an invalid one.

Another approach commonly used to solve the mesh dynamics in FSI problems is to
move the mesh as long as it is possible, and remesh when it is tangled or too distorted.
It is possible to go back to the previous time step, or a few time steps before the mesh is
tangled, to generate a (fully or partially) new mesh, project the solution from the old mesh
to the new one, and keep on moving the new mesh. The projection introduces an error
over the solution and it should be properly designed in order to conserve some physical
quantities. Then, it is remarkable to note that one of the main disadvantages of remeshing
lies on its inherent non-compliance of some conservation laws for the solution of FSI
problems. Furthermore, an excessive number of remeshings increases the computational
cost for implicit schemes in an environment of parallel computing due to the updating
of the matrix profile. In some sense, simultaneous mesh untangling and smoothing is a
procedure that allows to reduce the number of remeshing stages used during a simulation.
With this feature, the error introduced by the projection needed for remeshing and the
extra cost of updating the matrix profile may be decreased.

2.3.1 Functional regularization

In order to circumvent the drawbacks produced by the singularities of the proposed func-
tional when the element volume tends to zero, it was modified the element quality indicator
following an idea presented by Escobar et al. [23]. The modification consists in replacing
the volume in equation (2.12) by the function

h(V ) =
1

2
(V +

√
V 2 + 4δ2) (2.46)

This is a strictly increasing function of the volume and it is also a positive function for all
V (see figure 2.17). The regularization parameter δ represents the value of the function
for a null volume.

The modified functional is written as

F ∗e (x) = Cv

(
Ve

V e
ref

− 1

)m

+ Cqq
∗n
e (2.47)

where, for simplicial elements,

q∗ =
Ch(V )

Se

(2.48)

Due to V > 0∀V , the regularized functional is continuous in the whole space of nodal
coordinates.
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δ

Figure 2.17: Function h(V ).

The dependence of h(V ) with the parameter δ is such that

lim
δ→0

h(V ) =

{
V if V ≥ 0
0 if V < 0

Therefore, when the parameter δ tends to zero, the modified functional tends to the
original one (for V ≥ 0), and also, the modified optimal solution tends to the original
one. Particularly, in the region of valid meshes, as δ → 0, the function F ∗(x) converges
pointwise to F (x). Besides, by considering that ∀V > 0,

lim
δ→0

h′(V ) = 1 (2.49)

and

lim
δ→0

h(r)(V ) = 0, for r ≥ 2 (2.50)

it is easy to show that the derivatives of the modified functional verify the same property
of convergence.

The purpose is to find a solution close enough to the optimal solution of the original
functional, assuming that a valid mesh exists for the given topology and boundary posi-
tion. Thus, it should be defined a decreasing sequence {δk} such that δk → 0 as k →∞.
Then, with the elements of such a sequence applied for regularizing the functional, a
simultaneous mesh untangling and smoothing strategy is obtained. This strategy could
be used as a CMD technique with the property of not conditioning the time step in FSI
problems.

2.3.2 Solution strategy

According to numerical examples, the lower the parameter δ, the slower the convergence
rate of the optimization algorithm, without guarantee of final convergence. Moreover, if δ
is not small enough the ‘optimal’ mesh finally obtained may be invalid, being even worse
for high relative domain deformations. Therefore, two main problems arise
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• finding the decreasing rate of the sequence {δk} to ensure the final convergence to
a valid mesh, if it exists.

• finding a suitable initial value for the sequence (δ0).

To determine an equation that allows the decreasing of δ, this parameter is assumed
as a new global variable only for theoretical purposes, i.e. considering F ∗ = F ∗(x, δ). If
the problem is posed in terms of the variables (x, δ) and using a Newton-like solver, the
problem is written as follows ∂2F ∗

∂x2

∂2F ∗

∂x∂δ
∂2F ∗

∂δ∂x

∂2F ∗

∂δ2

[
∆x

∆δ

]
= −

 ∂F ∗

∂x
∂F ∗

∂δ


Writing the last equation in the following way

∂2F ∗

∂x2
∆x +

∂2F ∗

∂x∂δ
∆δ =− ∂F ∗

∂x
∂2F ∗

∂δ∂x
∆x +

∂2F ∗

∂δ2
∆δ =− ∂F ∗

∂δ

(2.51)

it is observed that this system may be solved in an uncoupled way if the parameter δ is
kept fixed for the first equation (∆δ = 0). This is equivalent to solve the system (2.51)
using the block Gauss-Seidel method. Thus, the variable increments ∆x and ∆δ are
obtained

∆x =−
(
∂2F ∗

∂x2

)−1
∂F ∗

∂x

∆δ =−

(
∂F ∗

∂δ
+
∂2F ∗

∂δ∂x
∆x

)
∂2F ∗

∂δ2

(2.52)

The expression for ∆δ in (2.52) is adopted as the maximum value to reduce δ. There-
fore, the updated δ in the iteration k is defined in the following way

δk = max(δk−1 − α̃|∆δk−1|, β̃δk−1) (2.53)

where α̃ and β̃ are constants lower than one.
In addition, it was found that the off-diagonal terms in the element-wise matrix have

a strong influence on the convergence of this optimization method. In the untangling
stage, it is advisable to relax these off-diagonal terms to make the matrix more diagonal-
dominant. However, in the smoothing stage these terms should be restored to take ad-
vantage of the convergence rate of full Newton schemes. Here, the relaxation parameter
for these off-diagonal terms (γ̃ ≤ 1) may be constant or a function of the iterations. For
example, for a 2D case the element-wise matrix is modified as

Ke =


(
∂2F ∗

∂x2
1

)
e

γ̃

(
∂2F ∗

∂x1∂x2

)
e

γ̃

(
∂2F ∗

∂x2∂x1

)
e

(
∂2F ∗

∂x2
2

)
e
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The problem is solved by the Newton-Raphson method with Armijo inexact line
search [61]. At each iteration δ is diminished only if the line search strategy gives a
unit step as result.

If the mesh is initially invalid, the initial value δ0 is chosen according to the following
criterion based on the minimum volume (Vmin = mine Ve). Due to the fact that h(V ) is a
strictly increasing function, then

hmin = h(Vmin) =
1

2

(
Vmin +

√
V 2

min + 4δ2

)
(2.54)

Defining h∗min = hmin/δ as a user-defined parameter and getting δ from the last equation,
the following criterion to initialize δ arises

δ0 =


h∗minVmin

h∗min
2 − 1

+ εδ if Vmin ≤ εδ

0 if Vmin > εδ

where εδ > 0 is the minimum value given to the initial value of δ such that δ0 > 0 when
Vmin = 0.

2.3.3 Results

In this section, the numerical results for some test examples are presented. These examples
are CMD problems in 2D and 3D with different deformations of the boundary. In the
whole set of test cases, the following convergence criteria had been applied

• Valid mesh.

• For the iteration k,
|qk

min − qk−1
min |

qk
min

< εq, being qmin = mine qe and εq > 0 a prefixed

tolerance.

The relaxation coefficient for the Hessian matrix was chosen as γ̃ = 0.5 for the untan-
gling stage, and γ̃ = 1 for the smoothing stage. In the whole set of numerical examples,
the following set of parameter values were used: Cv = 0, Cq = 1, n = −1, α̃ = 1, β̃ = 0.1,
εq = 0.01, h∗min = 0.75 and εδ = 1 × 10−6. In these tests, the reference element used was
the regular element.

Step 2D

This test was defined in section §2.2.4, and here is solved for a relative domain deformation
of 50 %, 90 % and 99 % using the simultaneous untangling and smoothing strategy. The
total mesh deformation is carried out in one time step in order to show the robustness of
the proposed algorithm. For each case, the initial tangled mesh and the resulting valid
grid are presented in figures 2.18 to 2.20. In addition, the evolution of the mesh quality
with iterations is included in figure 2.21.

Figure 2.22 shows the comparison between the smoothing (S) and the simultaneous
untangling and smoothing (U-S) strategies. It is observed that the elapsed time in the
computation with the U-S technique is approximately independent of the deformation. It
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Figure 2.18: Mesh deformation of 50 % for step 2D test, initial (left) and final (right)
meshes.

Figure 2.19: Mesh deformation of 90 % for step 2D test, initial (left) and final (right)
meshes.

Figure 2.20: Mesh deformation of 99 % for step 2D test, initial (left) and final (right)
meshes.

does depend on the number of time steps used, and tends towards the elapsed time of the
S method as the number of time steps are increased.

In order to verify the utility of the differential predictor (DP) explained in sec-
tion §2.2.2, the test was solved for a relative domain deformation of 90 % varying the
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Figure 2.21: Mesh quality as a function of iterations for step 2D test.
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Figure 2.22: Computational time in terms of the relative domain deformation for step 2D
test.

amount of time steps used. In table 2.1 the total number of iterations in each case (with
and without DP) is presented. As it is observed, the use of the DP makes it possible to
decrease in a noticeable way the number of iterations (and therefore the cost), mainly
when the time step used diminishes.

Step 3D

As presented in section §2.2.4, this test is the 3D extension of the step 2D test. The test
is solved for 50 %, 80 % and 87 % of relative domain deformation using one time step for
each case. Figures 2.23 to 2.25 show the initial and final meshes obtained.
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number of time steps used iterations with DP iterations without DP

1 15 13
2 19 27
4 34 47
8 39 69

Table 2.1: Total number of iterations to reach a relative domain deformation of 90 % for
step 2D test.

Figure 2.23: Mesh deformation of 50 % for step 3D test, initial (left) and final (right)
meshes.

Figure 2.24: Mesh deformation of 80 % for step 3D test, initial (left) and final (right)
meshes.

Figure 2.26 shows the mesh quality as a function of iterations. For 87 % of mesh
deformation, the number of iterations is high since the boundary position is close to
the limit in which a valid mesh exists for the conditions of the test. A comparison of
computational cost with mesh deformation between S and U-S strategies was done, and
the results achieved are shown in figure 2.27.

Again, as in previous tests, the advantage of applying the DP can be observed in
table 2.2. In this case, the problem was solved for a relative domain deformation of 70 %
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Figure 2.25: Mesh deformation of 87 % for step 3D test, initial (left) and final (right)
meshes.
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Figure 2.26: Mesh quality as a function of iterations for step 3D test.

varying the size of the time step.

number of time steps used iterations with DP iterations without DP

1 8 7
2 9 12
4 13 24
8 20 48

Table 2.2: Total number of iterations to reach a relative domain deformation of 70 % for
step 3D test.
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Figure 2.27: Computational time in terms of the relative domain deformation for step 3D
test.

Scaled cube

This test was proposed by Montenegro et al. [52] and it consists in a unit cube with 625
tetrahedrons and 216 nodes. The invalid initial mesh was obtained by transforming the
cube into another cube of 10 units of side length, changing the coordinates of some nodes
in the following way: the internal nodes were kept fixed, those nodes lying on the edges
were relocated on the edges of the new cube and those nodes lying on the faces of the
original cube were projected on the new faces, respectively (see figure 2.28). Figure 2.28
shows the final mesh obtained.

In figure 2.29 the minimum quality as a function of the number of iterations is pre-
sented.

Figure 2.28: Initial tangled mesh (left) and the resulting final mesh (right) for the scaled
cube test.
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Figure 2.29: Mesh quality as a function of iterations for the scaled cube test.

Axisymmetrical flowmeter

Finally, the methodology is applied to IC engine geometries. One of the most important
device to measure the mass flow rate of different cylinder heads is the flowmeter bench.
This example consists in solving the mesh dynamics of an axisymmetrical flowmeter,
whose geometry is shown in figure 2.30. The head of the valve moves as a rigid solid and
the portion of the boundary representing its stem stretches and shortens depending on
the displacement of the valve. The other boundary that stretches and shortens is the axis
of symmetry. Initially, the valve lift is 5 mm, and the valve is moved with a linear law in
the x2-direction until reaching the minimum valve lift of 0.5 mm.

The mesh has 12K triangular elements and 6.4K nodes, with h ' 0.2 mm in the region
between the valve and its seat. Nodes lying on the vertical walls of the cylinder and those
lying on the valve stem are left to slide in the x2-direction, while the remaining boundary
nodes have their displacements prescribed. In figure 2.31(a) it is shown a close-up of the
mesh utilized. Figure 2.31(b) presents the mesh from which the CMD strategy starts, and
where invalid elements were filled in green. The final valid mesh is shown in figure 2.31(c).
In this case, the total domain deformation was applied in one time step.

In table 2.3 it is summarized the elapsed computational time for obtain a valid mesh
for the minimum valve lift varying the number of time steps. The problem was solved with
and without the differential predictor for comparison purposes. The coefficients used for
the U-S technique were chosen in order to minimize the total number of iterations when
one time step is utilized. As it is observed in the table, when the differential predictor is
applied the elapsed computational time remains approximately unchanged.

Diesel engine with three valves

The last case presented in this chapter is the mesh dynamics for the 3D geometry of a
diesel engine. The engine has three valves and bowl-in piston. The purpose is to solve
the movement of a unique mesh along the whole cycle in order to show how the CMD



2.3 Simultaneous mesh untangling and smoothing 40

H

h

rv

R

O x

moving
valve

x2

1

Figure 2.30:
Axisymmetrical flowmeter.

(a) Initial position (b) 100 % def. - Initial
mesh

(c) 100 % def. - Final mesh

Figure 2.31: Mesh close-up for the axisymmetrical
flowmeter.

number of time steps elapsed time without DP elapsed time with DP

1 39.486 s. 77.721 s.
2 113.897 s. 79.217 s.
5 121.616 s. 82.272 s.
10 204.734 s. 78.549 s.

Table 2.3: Total elapsed computational time for the axisymmetrical flowmeter test.

strategy works with a real IC engine geometry. Hence, the valve closure is approximated
with a small enough minimum valve lift greater than zero.

Some views of the chamber geometry are included in figure 2.32. The cylinder bore
is 93.0 mm, the stroke is 103.0 mm, and the geometric compression ratio is 17.8:1. The
maximum intake valve lift is 9.0 mm and the maximum exhaust valve lift is 11.0 mm.
The valve timing values relative to TDC (when the intake stroke starts) are the following

• Intake Valves Opening (IVO): 5◦

• Intake Valves Closing (IVC): 212◦

• Exhaust Valve Opening (EVO): 485◦

• Exhaust Valve Closing (EVC): 715◦

The (topology of the) mesh was generated with the valves placed at a half of the
maximum lift from their seats and the crown piston at a half of the stroke from the head.
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Figure 2.32: Geometry of the combustion chamber of the diesel engine.

The mesh is coarse in the cylinder, but refined in the region of valves, ducts and piston
bowl. The mesh has 925700 tetrahedrons and 157630 nodes. The mesh dynamics was
solved with the simultaneous mesh untangling and smoothing technique and using the
differential predictor presented in section §2.2.2. The time step used corresponds to 1
crank angle degree. Due to the initial mesh was generated with a configuration of the
boundary that not corresponds to any instant in the cycle, firstly the valves and piston
are moved to the reference crank angle. In this case, such angle was adopted as the TDC
when the intake stroke starts.

The mesh quality as a function of the crank angle is plotted in figure 2.33, where
the element quality metric applied was q (see equation (2.11)). Figure 2.34 shows the
minimum mesh dihedral angle as a function of the crank angle. As could be observed,
the mesh quality is approximately constant along the whole cycle. In order to compare,
the initial mesh has a quality q = 0.0211 and a minimum dihedral angle of 1.4812◦.

Figures 2.35, 2.37 and 2.39 show the distribution of the element quality in the domain
for three crank angles. These angles correspond to the TDC with the three valves closed
(0◦), the maximum intake valve lift (108.5◦), and maximum exhaust valve lift (600◦). The
elements with worse quality in the mesh are located between a valve and its seat when
the valve approaches the closed position.

2.4 Conclusion

A CMD strategy, which is based on the mesh distortion minimization, was proposed and
tested. The element distortion is computed as the reciprocal of an appropriate element
quality indicator. In this thesis, a geometric element quality metric is used. The method
has proven to be very robust, allowing for valid mesh deformation levels close to the
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Figure 2.33: Mesh quality as a function of crank angle for the diesel engine.
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Figure 2.34: Minimum mesh dihedral angle as a function of crank angle for the diesel
engine.

maximum extent possible. Several test cases in 2D and 3D were successfully solved,
including combustion chamber geometries of IC engines.

The regularization of the element functional leads to a simultaneous mesh untangling
and smoothing technique. Basically, the method needs the definition of a decreasing
sequence for the regularization parameter (δ). Here, a definition for such a sequence
was given and tested in various CMD problems. While this proposal have worked in a
good shape for the cases solved, the optimal sequence for computing δ remains an open
problem. The number of iterations, and thus the computational cost, can be decreased
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Figure 2.35: Mesh quality field at 0 crank angle degree (TDC) for the diesel engine.

Figure 2.36: Mesh quality field over the transversal planes shown in figure 2.35.

by the use of the proposed solution predictor.
On the other hand, the proposed method can be useful for mesh generation. In this

case, the topology is generated in an auxiliary domain in which the mesh may be generated
in a structured way. Then, the boundary nodes in that mesh are relocated on the real
boundary. This sharp movement of the boundary nodes is similar to the situation faced
in mesh dynamics. In appendix B, the generation of conformal meshes is presented.
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Figure 2.37: Mesh quality field at 108.5 crank angle degree (maximum intake valve lift)
for the diesel engine.

Figure 2.38: Mesh quality field over the transversal planes shown in figure 2.37.
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Figure 2.39: Mesh quality field at 600 crank angle degree (maximum exhaust valve lift)
for the diesel engine.

Figure 2.40: Mesh quality field over the transversal planes shown in figure 2.39.



Chapter 3

Resolution of compressible flows in
the low Mach number limit

My quest reverse the time... within the dark mind
Strength in it I find... within the dark mind

Immortal

Low Mach number (M) flows represent a limit situation in the solution of compressible
flows. When the Mach number approaches to zero, the strategies based on density to
solve the flow equations suffer severe deficiencies, both in efficiency and accuracy. Turkel
et al. [82] and Guillard and Viozat [30] have identified that, in the low Mach number
limit, the discretized solution of the compressible fluid flow equations may fail to provide
an accurate approximation to the incompressible flow equations. In the subsonic regime,
when the magnitude of the flow velocity is small in comparison with the acoustic wave
speed, dominance of convective terms within the time-dependent equation system renders
the system stiff and the solvers could converge slowly [16]. Time-marching procedures
may suffer severe stability and accuracy restrictions and become inefficient for low Mach
number flow regimes. Here, for explicit schemes, the time step must satisfy the Courant-
Friedrichs-Levy (CFL) conditions, where numerical stability considerations lead to small
time steps. On the other hand implicit methods suffer from stiffness due to large disparity
in the eigenvalues of the system, the condition number of the system of equations being
O(1/M) in the low Mach number limit [16]. There are two main approaches to circumvent
this drawback: firstly, the modification of compressible solvers (density-based) downward
to low Mach numbers [16, 83, 85, 43, 91]; secondly, extending incompressible solvers
(pressure-based) towards the compressible regime [33]. Also there are unified formulations,
as the method proposed by Mittal and Tezduyar [50].

The in-cylinder flow in an internal combustion engine is characterized by low Mach
numbers, except in the exhaust blowdown phase [32]. Thus, this application limits the
strategies for low Mach number flows to those, under a unified formulation, work correctly
for (at least) all subsonic Mach numbers.

For density-based methods, two distinct techniques have been proposed to capture so-
lution convergence for low-Mach number regimes: preconditioning and asymptotic meth-
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ods. Both techniques achieve rescaling of the system condition number. The asymptotic
method introduces a perturbed form of the equations discarding specific terms, so that
the physical acoustic waves are replaced by pseudo-acoustic modes. The magnitude of the
propagation speeds of these pseudo-acoustic modes are similar to the fluid velocity [16].
Although perturbation procedures are highly robust and applicable for both viscous and
inviscid flows, the nature of the perturbation limits their usage, particularly with respect
to mixed compressible-incompressible flows.

Preconditioning schemes consist in premultiplying time derivatives by a suitable pre-
conditioning matrix. This scales the eigenvalues of the system to similar orders of magni-
tude and removes the disparity in wave-speeds, leading to a well-conditioned system [82].
The modified equations have only steady-state solutions in common with the original
system (hence, are devoid of true transients). For the application of these methods to
unsteady problems the ‘dual-time-stepping’ technique has emerged, where the physical
time derivative terms are treated as source and/or reactive terms. During each physical
time step, the system of pseudo-temporal equations is advanced in artificial time to reach
a pseudo-steady-state [83, 85, 43]. Several local preconditioning matrices have been de-
signed for steady state problems, with very good results [16, 56]. However, recent works
have shown that these preconditioners may not be appropriate for unsteady flows [85].

In internal combustion engines applications, one procedure widely used is a semi-
implicit method named acoustic subcycling [32]. In this method, all terms in the governing
equations that are not associated with sound waves are explicitly advanced with a larger
time step ∆t similar to the used with implicit methods. The terms associated with acoustic
waves (the compression terms in the continuity and energy equations and the pressure
gradient in the linear momentum equation) are explicitly advanced using a smaller time
step δt that satisfies the CFL stability criterion, and of which the main time step is an
integral multiple. While this method works well in many internal combustion engines
applications where the Mach number is not too low, it is unsuitable for very low Mach
number flows since the number of subcycles (∆t/δt) tends to infinity as the Mach number
tends to zero. Pressure gradient scaling can be used to extend the method to lower Mach
numbers [32]. The Mach number is artificially increased to a larger value (but still small in
an absolute sense) by multiplying the pressure gradient in the linear momentum equation
by a time-dependent scaling factor 1/α2(t), where α(t) > 1. This reduces the effective
sound speed by the factor α. Coupling pressure gradient scaling with acoustic subcycling
reduces the number of subcycles by α [5].

In this thesis, it is proposed to use the method of preconditioning due to its ability
to work in a wide range of Mach and Reynolds numbers [58]. This method is applied in
conjunction with the ‘dual-time-stepping’ technique. The preconditioning matrix applied
is the proposed by Choi and Merkle [16] to solve steady compressible flows and which
has been adapted by Nigro et al. [55, 56] to the finite element method. Via an eigenvalue
analysis of the system of equations, some parameters involved in this matrix are redefined
in order to solve transient problems.
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3.1 Problem definition and eigenvalues analysis

The eigenvalue analysis of the Navier-Stokes equations for compressible flows is done by
using viscous variables, defined as

Q = [p,u, T ]T (3.1)

In the low Mach number limit, it is convenient to make the analysis using the viscous
variables instead the conservative ones because, at a fixed time, the density tends to be
constant in the space domain.

The preconditioning of equations consists in premultiply the time derivatives by a
properly defined matrix. The purpose is to modify the eigenvalues of the system of
equations in order to decrease the condition number. Due to this fact, it is only applicable
to steady state simulations. In order to apply the preconditioning strategy in unsteady
problems, the dual time technique has emerged [42]. In this technique, two times must
be considered: the physical time (t) and the pseudo-time (τ). The solution is obtained by
means of preconditioned fully implicit pseudo-transient iterations adding a pseudo-time
derivative to equation (1.11). At each physical time step, the system is solved until a
pseudo-steady state is reached when τ → ∞. If Γ denotes the preconditioning matrix,
the system of equations modified by the dual time strategy is written as [83]

Γ
∂U

∂τ
+
∂U

∂t
+ Ai

∂U

∂xi

=
∂

∂xi

(
Kij

∂U

∂xj

)
+ S (3.2)

When the system approaches to the pseudo-steady state, the term
∂U

∂τ
tends to zero.

Thus, the solution of equation (3.2) at fixed time t tends to the corresponding solution of
equation (1.11).

In the viscous variables basis, equation (3.2) is expressed as

Γ
∂U

∂Q

∂Q

∂τ
+
∂U

∂Q

∂Q

∂t
+ Ai

∂U

∂Q

∂Q

∂xi

=
∂

∂xi

(
Kij

∂U

∂Q

∂Q

∂xj

)
+ S (3.3)

Let

Γv = Γ
∂U

∂Q
(3.4)

the preconditioning matrix in the viscous variables basis. Hence, after premultiplying
equation (3.3) by the inverse matrix Γ−1

v , the following expression is obtained

∂Q

∂τ
+ Γ−1

v

∂U

∂Q

∂Q

∂t
+ Γ−1

v Ai
∂U

∂Q

∂Q

∂xi

= Γ−1
v

∂

∂xi

(
Kij

∂U

∂Q

∂Q

∂xj

)
+ Γ−1

v S (3.5)

The analysis is done by using the preconditioning matrix proposed by Choi and
Merkle [16] for the resolution of steady state problems at the low Mach limit. The pre-
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conditioning matrix takes the form

Γv =



1

βM2
r

0 0 0 0

u1

βM2
r

ρ 0 0 0

u2

βM2
r

0 ρ 0 0

u3

βM2
r

0 0 ρ 0

ρe+ p

ρβM2
r

− δ ρu1 ρu2 ρu3
γρR

γ − 1


(3.6)

where Mr is a reference Mach number, δ is a constant that plays the role of a coefficient
of the time derivative of pressure, and β = zc2, being z = max(zinv, zvis),

zinv = 1

zvis =
αvis(αvis − 1)

M2
r [αvis − 1 + c2/(u · s)2]

αvis =
˜CFL

σ̃Reh

In the last equation, ˜CFL and σ̃ are, respectively, the CFL and the Fourier numbers for
the preconditioned system based on pseudo-time discretization parameters, Reh is the cell
Reynolds number based on the characteristic element length h, and s is the unit vector
aligned with the flow velocity. The reference Mach number Mr replaces the Mach number
because the term 1/M2 in the preconditioning matrix becomes singular in regions where
the Mach number tends to zero (e.g. stagnation points). In the next section a discussion
about the election of Mr is presented (see equation (3.19) for the definition given by Choi
and Merkle [16]).

The preconditioned equations are nearly identical to the equations obtained when the
method of artificial compressibility is applied, with the addition of the energy conservation
equation [16]. Considering null the source vector and a steady flow in the physical time,
the individual equations are

1

βM2
r

∂p

∂τ
+ ∇ · (ρu) = 0

ρ

(
∂u

∂τ
+ u ·∇u

)
+ ∇p = ∇ ·T

ρcp

(
∂T

∂τ
+ u ·∇T

)
= δ

∂p

∂τ
+ u ·∇p+ ∇ · (κ∇T ) + ∇ · (Tu)

(3.7)

In order to study the eigenvalues of the system of equations, a dispersion analysis on
equation (3.5) is done. Let

Ãv, i = Γ−1
v Ai

∂U

∂Q

K̃v, ij = Γ−1
v Kij

∂U

∂Q

S̃v = Γ−1
v S

(3.8)
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The discretization of physical time derivative is done using backward differences

∂Q

∂t
≈ ctQ

n+1 − E(Qn,Qn−1, . . . )

∆t
(3.9)

where ct is a constant that depends on the temporal order of the scheme. Then, the
system of equations (3.5) can be written as

∂Q

∂τ
+

ct
∆t

Γ−1
v

∂U

∂Q
Q + Ãv, i

∂Q

∂xi

=
∂

∂xi

(
K̃v, ij

∂Q

∂xj

)
+ S̃v +

1

∆t
Γ−1

v

∂U

∂Q
E(Qn,Qn−1, . . . )

(3.10)

In order to simplify the notation, the index n+1 for the variables evaluated at the current
time is dropped from equation (3.10).

If the source term is assumed to have no effect on the dispersion equation and neglect-
ing the diffusive terms (Euler equations), the following equation is reached

∂Q

∂τ
+

ct
∆t

Γ−1
v

∂U

∂Q
Q + Ãv, i

∂Q

∂xi

= 0 (3.11)

By introducing a Fourier mode

Q = Q0 exp
[
i(kTx− ωτ)

]
(3.12)

into the equation (3.11), the following equation of dispersion for ω is obtained(
−iωI +

ct
∆t

Γ−1
v

∂U

∂Q
+ ikiÃv, i

)
Q = 0 (3.13)

Due to the finite number of mesh nodes, the wavelengths are limited by the grid spacing.
To take this filtering into account it is set ‖k‖ = φ/h, where h is a measure of the grid
spacing and φ ∈ [0, π]. Let λ = ω/‖k‖ the wave speed and uk = uTk/‖k‖. Writing
equation (3.13) as a system of equations GQ = 0, and looking for solutions for Q 6= 0,
achieves G as

G = −i ct
‖k‖∆t

Γ−1
v

∂U

∂Q
+

ki

‖k‖
Ãv, i − λI (3.14)

after dividing by i‖k‖. The equation GQ = 0 have a non-trivial solution if detG = 0.
This condition is equivalent to compute the eigenvalues of the matrix

Ĝ = −i ct
‖k‖∆t

Γ−1
v

∂U

∂Q
+

ki

‖k‖
Ãv, i (3.15)

Let the CFL numbers

CFLu =
uk∆t

h

CFLc =
c∆t

h

(3.16)
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Then, the eigenvalues of Ĝ are

λ(Ĝ)1,2,3 = uk(1− ictCFL
−1
u )

λ(Ĝ)4,5 =
uk

2
(1− ictCFL

−1
u )T±

(3.17)

where

T± = (1 +M2
r χ)±

√
(1−M2

r χ)2 − 4M2
r

[
1

(iM + ctCFL−1
c )2

+ 1− χ

]
(3.18)

In equation (3.18), χ = γ − (γ − 1)δ and the definition of Mr allows to choose among
different preconditioning matrices. The eigenvalues of the preconditioned system using
the preconditioning matrix designed for steady state solutions can be obtained by means
of the definition of Mr proposed by Choi and Merkle [16]

Mr =


Mε if M < Mε

M if Mε ≤M < 1

1 if M ≥ 1

(3.19)

or, equivalently, Mr = min(1,max(M,Mε)), where Mε is a cut-off of the Mach number in
a neighborhood of stagnation points.

When the ALE strategy is applied (see section §1.1.3), the eigenvalues for the precon-
ditioned system of Euler equations using the dual-time formulation are written as

λ(ĜALE)1,2,3 = uk(1− ictCFL
−1
u )− wk

λ(ĜALE)4,5 =
1

2
[uk(1− ictCFL

−1
u )− wk]T

ALE
±

(3.20)

being

TALE
± = (1 +M2

r χ)±

√
(1−M2

r χ)2 − 4M2
r

[
1

(iM̃ + ctCFL−1
c )2

+ 1− χ

]
, (3.21)

M̃ = (uk − wk)/c, and wk = wTk/‖k‖.
For viscous flows, it is not longer easy to compute the eigenvalues of the system.

Therefore, many authors use approximations that depend on the Reynolds number. In
the following section, a numerical analysis of the viscous flow case is presented.

3.1.1 Preconditioning strategies

The condition number of the system is defined as

CN =
max(|λi|)
min(|λi|)

=
max(1, |T+|, |T−|)
min(1, |T+|, |T−|)

(3.22)

Figure 3.1 shows the condition number of the system of Euler equations as a function of the
Courant number CFLc, where ct = 1, δ = 1 (χ = 1),Mε = 1×10−6 andM = 1×10−3. The
preconditioning matrix for steady state solutions (SP, Steady Preconditioner) corresponds
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to the definition of Mr given by equation (3.19). For unsteady problems, Vigneron et
al. [85] suggest

Mr = min(1,max(
√
M2 + CFL−2

c ,Mε)) (3.23)

This definition is named UP (Unsteady Preconditioner) on figure 3.1. In addition, the
condition number of the non-preconditioned system (NP) is included, which, in the case
δ = 1, is obtained when Mr = χ−1/2 in equation (3.18).
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Figure 3.1: Condition number as a function of Courant number CFLc with M = 1×10−3

and Mε = 1× 10−6 for the inviscid case.

As it is shown in the figure, when the ‘unsteady’ preconditioning is applied the condi-
tion number of the system is O(1) for all CFLc numbers in the inviscid case. For viscous
flows, the eigenvalues of the system were computed numerically adopting firstly z = zinv

for the definition of β in equation (3.6). Figure 3.2 shows the condition number of the
system for several Reynolds numbers using the inviscid reference Mach number (Mr|inv)
defined in equation (3.23). For Reynolds numbers lower than 1 the condition number of
the system increase significantly, specially for high CFLc numbers. Merkle [49] proposed
to use the following approximation

Mr =

{
Mr|inv if Re > 1

M/Re if Re < 1
(3.24)

In figure 3.3 the condition number of the system as a function of Reynolds number for
CFLc = 1 × 104, 1 × 102 is plotted. Two pairs of curves are shown in the figure, one
of them corresponds to the reference Mach number for inviscid flows and the other one
was obtained by using the approximation (3.24). The approximation could not be good
enough for low CFLc numbers, as it is shown in figure 3.3. In this thesis, no correction is
used for the viscous flow case since the original definition of the preconditioning matrix
includes some control of the time step in the viscous regions via the β parameter. From
the viewpoint of the conditioning of the system, the β parameter allows to keep the
condition number O(1) for all Reynolds and CFLc numbers, as it is shown in figure 3.4
for M = 1× 10−3.
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Figure 3.2: Condition number as a function of Courant number CFLc for several Reynolds
numbers with the reference Mach number for the inviscid case and M = 1× 10−3.
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Figure 3.3: Condition number as a function of Reynolds number with CFLc = 1×104, 1×
102 and M = 1× 10−3.

3.2 Numerical implementation

3.2.1 Finite element formulation

In order to simplify the notation, the mesh velocity is considered null since when the ALE
technique is used, only the advective jacobians are modified in the system of equations
(see equation (1.26)). The variational formulation of the problem is written as follows:
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Figure 3.4: Condition number as a function of Reynolds number for several CFLc num-
bers, with M = 1× 10−3.
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∂Uh
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∂Uh

∂xi
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∫
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ij
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∂xj

dΩ

+

nel∑
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τ ′(Ah
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h

∂xk

·
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Γh∂U

h

∂τ
+
∂Uh

∂t
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i

∂Uh

∂xi

− ∂

∂xi

(
Kh

ij

∂Uh

∂xj

)
− S

]
dΩe

+

nel∑
e=1

∫
Ωe

δ′sc
∂Wh

∂xi

· ∂U
h

∂xi

dΩe =

∫
Ω

Wh · SdΩ +

∫
Γh

Wh · fdΓ

(3.25)

where spaces S h and V h are defined by equation (1.29). The primes in τ ′ and δ′sc
indicate that a redefinition of these stabilization parameters must be done due to the
preconditioning.

The derivative with respect to τ is discretized using the backward Euler difference
scheme

∂U

∂τ
≈ Un+1,m+1 −Un+1,m

∆τ
(3.26)

Notice the indexes used to indicate each time level: n + 1 is the current physical time
step and m + 1 is the current pseudo-time step. In addition, an implicit formulation is
proposed in both, t and τ .

The definition of the matrix of intrinsic time scale (τ ′) is very important in order to
stabilize the numerical scheme correctly. For this formulation, it is proposed to apply the
SUPG strategy, i.e. to stabilize the numerical scheme considering the advective part of
the system only. From equation (3.5) and using the definitions given in (3.8), the system
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of Navier-Stokes equations expressed in the viscous variables basis is written as

∂Q

∂τ
+ Γ−1

v

∂U

∂Q

∂Q

∂t
+ Ãv, i

∂Q

∂xi

=
∂

∂xi

(
K̃v, ij

∂Q

∂xj

)
+ S̃v (3.27)

The numerical diffusivity introduced by the SUPG method in the inviscid case is [36]

K̃num
v = Ãvτ̃vÃv (3.28)

where τ̃v is the matrix of intrinsic time scale in the viscous variables basis. In the conser-
vative variables basis this matrix is expressed as

τ ′ =
∂U

∂Q
τ̃v
∂Q

∂U
Γ−1 =

∂U

∂Q
τ̃vΓ

−1
v (3.29)

There are several approaches to compute the matrix τ̃v. One of them is the definition
given by Hughes and Mallet [36] adapted to the preconditioned system

τ̃v = ‖B̃v‖−1 (3.30)

being

B̃v =
∂ξi
∂xj

Ãv, j (3.31)

the preconditioned advective jacobians transformed to the master element, in which ξi
represents the master element coordinates.

Another option is the proposed by Le Beau et al. [40]. For the preconditioned system,
this proposal is expressed as

τ̃v =
h

2 max |λ(Ãv)|
I (3.32)

In this thesis, the definition given by equation (3.32) is used to stabilize the numerical
scheme plus a correction due to viscous effects (see, for instance, the work by Mittal and
Tezduyar [50]). The eigenvalues of the advective jacobian matrix Ãv are

λ(Ãv)1,2,3 = u

λ(Ãv)4,5 =
u(1 + βM2

r χ/c
2 ± c̃)

2

(3.33)

where c̃2 = u2

(
1 +

βM2
r χ

c2

)2

+ 4βM2
r

(
1− u2

c2

)
.

Considering the non preconditioned system, for the wave with propagation speed λ(A)j

the numerical diffusion introduced by the stabilization strategy given by equation (3.32)
is proportional to

hλ2(A)j

2 maxi |λ(A)i|
Thus, at the low Mach number limit, there are sub-stabilized modes due to the disparity
in the wavespeeds. This sub-stabilization could leads to spurious numerical oscillations
in the solution.
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Regarding for the shock capturing operator, it is used a modification of the ‘standard’
definition given by (1.33). The characteristic velocity is computed as uchar = ‖u‖+ c̃, and
the operator is affected by a tuning coefficient (ã)

δ′sc = ã
hJGN

2
(‖u‖+ c̃)

(
‖∇ρh‖hJGN

ρref

)β∗

(3.34)

3.2.2 Dynamic boundary conditions

As with the stabilization in the Finite Element Method, the dynamic boundary conditions
must be reformulated for the preconditioned system of equations. The idea here is to
follow the proposal by Storti et al. [72] but applied to the equation (3.10) expressed in
viscous variables basis. In multidimensional problems a simplified 1D analysis in the
normal direction to the boundary is done by considering the projection of the advective
jacobians onto this direction, as follows

Ãv, n = Ãv, ini (3.35)

where ni are the components of the unit vector normal to the local boundary. After
diagonalization of the projected jacobian

Ãv, n = M̃v, nΛ̃v, nM̃
−1
v, n (3.36)

with Λ̃v, n = diag[λ(Ãv, n)], the projection matrices onto the right/left-going characteris-
tics modes in the diagonal basis (V variables) are obtained by

(
Π−

V n

)
ij

=

{
1 if i = j and λi(Ãv, n) < 0

0 otherwise

Π−
V n + Π+

V n = I

(3.37)

The projection matrices in the viscous variables basis are computed changing the basis

Π±
Qn = M̃v, nΠ

±
V nM̃

−1
v, n (3.38)

Finally, coming back to the U basis, the projection matrices expressed in this basis
are

Π±
Un =

∂U

∂Q
Π±

Qn

∂Q

∂U
(3.39)

As explained in section §1.2.3, the dynamic boundary conditions are applied using
Lagrange multipliers. Therefore, for a node i on the boundary, the system of equations
to be solved is

Π−
Un(Û)(Ui − Û) + Π+

Un(Û)Ulm = 0

Ri(U) + ΓΠ−
Un(Û)Ulm = 0

(3.40)

The state Û is adopted according to the direction of the normal flow respect to the
boundary, as in section §1.2.3.
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3.3 Results

The preconditioning strategy presented in this chapter to solve compressible flows at the
low Mach number limit was applied to several problems. Among the solved problems,
there are steady and unsteady incompressible flows with moving domains. The purpose
of these problems was to compare the preconditioned-system solution and the solution
obtained by using a standard incompressible Navier-Stokes code. Furthermore, a test
inherently compressible, which is the simulation of the in-cylinder flow in an opposed-
piston IC engine under cold conditions, was solved.

The pseudo-time step is increased during the pseudo-transient following the rule

∆τm+1 = ∆τ 0 ‖Rn,0‖
‖Rn,m‖

(3.41)

where Rn,m is the global residue and ∆τ 0 is an initial pseudo-time step defined by the
user.

3.3.1 Flow in a lid driven cavity

This test has served as a benchmark for the Navier-Stokes equations for incompressible
flow for decades. The problem consists in a fluid into a square cavity whose top wall moves
with uniform velocity. Two Reynolds numbers cases 100 and 1000 are considered and a
60×60 quadrangles mesh is employed. A uniform grid is used for Re = 100, and a stretched
grid is used for Re = 1000, with a ratio of 1:10 between elements near the wall and elements
in the central region of the domain. The Mach number of the moving lid is 4.5×10−4. Wall
boundary conditions are no slip and constant temperature. Initially, the fluid is at rest and
its pressure and temperature are constants. The test was solved with the preconditioning
strategy presented in this chapter and also with a standard incompressible Navier-Stokes
(NSI) code. The incompressible Navier-Stokes equations were solved using a stabilized
finite element SUPG-PSPG [15] [78] (Pressure-Stabilizing/Petrov-Galerkin) method (see
appendix A). Figures 3.5 to 3.7 show the density, the magnitude of the velocity, and the
pressure perturbation, respectively. The pressure perturbation is computed as p− p̄, with
p̄ = 1 × 105 Pa. Notice that the solution obtained is smooth and with no numerical
oscillations.

In order to verify the accuracy of the presented method, the velocity profiles at vertical
and horizontal centerlines of the cavity (x1 = 0.5 and x2 = 0.5, respectively) are com-
pared with two numerical solutions of the incompressible Navier-Stokes equations, one
of them by Ghia et al. [29] and the other one by using the FEM formulation presented
in appendix A (implemented in the PETSc-FEM code). The u1 velocity is compared at
the vertical centerline of the cavity, and the u2 velocity is compared at the horizontal
centerline of the cavity. Figures 3.8 and 3.9 show the results, where good agreement can
be observed.

3.3.2 Flow in a channel with a moving indentation

This test case consists in a flow through a 2D channel with a moving indentation, which has
been studied experimentally by Pedley and Stephanoff [62], and numerically by Ralph and
Pedley [64] and by Demirdz̆ić and Perić [21]. Figure 3.10 shows a scheme of the channel
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(a) Re = 100 - UP (b) Re = 1000 - UP

Figure 3.5: Density field ([kg/m3]) for flow in a lid driven cavity.

(a) Re = 100 - UP (b) Re = 1000 - UP (c) Re = 1000 - NSI

Figure 3.6: Magnitude of the velocity field ([m/s]) for flow in a lid driven cavity.

(a) Re = 100 - UP (b) Re = 1000 - UP (c) Re = 1000 - NSI

Figure 3.7: Pressure perturbation field ([Pa]) for flow in a lid driven cavity.

geometry. The shape of the indentation was taken from Pedley and Stephanoff [62], whose
specified the following analytic function which approximately fit the real shape used in
the experiment

x2(x1) =


H for 0 < x1 < c1
0.5H{1− tanh [a(x1 − c2)]} for c1 < x1 < c3
0 for x1 > c3
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Figure 3.9: Comparison of u2 velocity
component at horizontal centerline of
the cavity with numerical solution by
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where a = 4.14, c1 = 4b, c3 = 6.5b, c2 = 0.5(c1 + c3), and

H = 0.5Hmax [1− cos(2πt∗)] (3.42)

being t∗ =
t− t0

Υ
.

b

l

xc
c
c

1

2

3

l1

x2

1

2

H

Figure 3.10: Geometry of the channel (not to scale): b = 1 cm, l1 = 9.85 cm, l2 = 18.0
cm.

Here b is the channel height, Υ is the oscillation period and Hmax = 0.38b specifies the
maximum blockage of the channel cross-section at t∗ = 0.5. The geometry is symmetric
around x1 = 0. The Strouhal number based on the channel height, the bulk velocity
U = 2/3u1, max and the oscillation period,

St =
b

UΥ
, (3.43)

is 0.037. The Reynolds number based on the same reference quantities is 507. At the
initial time t = t0 the flow is assumed to be fully developed (Poiseuille flow). The
maximum velocity is u1, max = 1.5 m/s. The velocity profile at the inlet cross-section is
taken to remain constant throughout the cycle. Also a unit density is imposed at the inlet
cross-section. At the other channel end, dynamic boundary conditions with the ULSAR
strategy were imposed, as presented in section §3.2.2. Walls are assumed isothermic and



3.3 Results 60

no slip boundary condition is imposed on them. Mesh dynamics was solved applying the
method described in chapter 2. The mesh used has 12.4K triangular elements and 6.8K
nodes. The physical time step adopted in the simulation was ∆t = Υ/200, and the initial
pseudo-time step ∆τ 0 = 1 (see equation (3.41)).

Figures 3.11, 3.12 and 3.13 show the density, the magnitude of the velocity, and the
pressure perturbation (with p̄ = 1× 105 Pa) at times t∗ = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9 and 1. These results were obtained by using the preconditioning strategy presented
above.

Figure 3.11: Density field ([kg/m3]) for the flow in a channel with a moving indentation
computed by using the UP strategy. From top to bottom, times t∗ = 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9 and 1.

Table 3.1 compares the solution obtained by means of the UP strategy and two so-
lutions of the Navier-Stokes equations for incompressible flow, one obtained using the
PETSc-FEM code and the other extracted from the bibliography. The comparison is done
taking the maximum velocity differences and the time in which appear the three first
vortices.

Figure 3.14 shows the positions of the first three eddies center as a function of time.
In that figure, the experimental data reported by Pedley and Stephanoff [62], and the nu-
merical solutions of the UP technique and the Navier-Stokes equations for incompressible
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Figure 3.12: Magnitude of the velocity field ([m/s]) for the flow in a channel with a moving
indentation computed by using the UP strategy. From top to bottom, times t∗ = 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.

UP López et al. [45] Demirdz̆ić and Perić [21]
Max. velocity [m/s] 2.916 at t∗ = 0.37 2.931 at t∗ = 0.38 2.645 at t∗ = 0.4

1st vortex t∗ = 0.22 t∗ = 0.23 t∗ = 0.2-0.25
2nd vortex t∗ = 0.345 t∗ = 0.35 t∗ = 0.35-0.4
3rd vortex t∗ = 0.425 t∗ = 0.42 t∗ = 0.45

Table 3.1: Comparison of results obtained by using the UP strategy and two solutions
of the incompressible Navier-Stokes equations for the channel with a moving indentation
test.

flow [45] are included. According to Pedley and Stephanoff [62], the abscissa is defined as

x∗1 =
(x1 − c1)(10St)1/3

b
(3.44)

Also this test was solved using the non-preconditioned system of equations, with the
same conditions as presented above. In figures 3.15, 3.16 and 3.17 the density field, the
velocity magnitude field and the pressure perturbation field are shown at t∗ = 0.2, 0.4, 0.6,
0.8 and 1 respectively. The non-preconditioned solution does not represent the behavior
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Figure 3.13: Pressure perturbation field ([Pa]) for the flow in a channel with a moving
indentation computed by using the UP strategy. From top to bottom, times t∗ = 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.

Experiment

NSI

UP

 0.8

 0.6

 0.4

 0.2

 0
 1  2  3  4  5  6

x*

t*

 7

 1

 0

1

Figure 3.14: Comparison of predicted and experimentally observed positions of first three
vortices center.
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of the flow since it does not produce the different vortices experimentally observed. The
pressure field has numerical oscillations, which can not be observed in figure 3.17 due to
the scale used. Thus, the pressure perturbation field at t∗ = 0.5 is shown in figure 3.18
with an appropriate color scale. Figure 3.19 presents the same field represented as a 3D
plot.

Figure 3.15: Density field ([kg/m3]) for the flow in a channel with a moving indentation
computed by using the NP strategy. From top to bottom, times t∗ = 0.2, 0.4, 0.6, 0.8
and 1.

Figure 3.16: Magnitude of the velocity field ([m/s]) for the flow in a channel with a moving
indentation computed by using the NP strategy. From top to bottom, times t∗ = 0.2, 0.4,
0.6, 0.8 and 1.
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Figure 3.17: Pressure perturbation field ([Pa]) for the flow in a channel with a moving
indentation computed by using the NP strategy. From top to bottom, times t∗ = 0.2, 0.4,
0.6, 0.8 and 1.

Figure 3.18: Pressure perturbation field ([Pa]) for the flow in a channel with a moving
indentation computed by using the NP strategy at t∗ = 0.5, where the scale was modified.
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Figure 3.19: Pressure perturbation field ([Pa]) for the flow in a channel with a moving
indentation computed by using the NP strategy at t∗ = 0.5 represented as 3D elevation
and where the scale was modified.

3.3.3 In-cylinder flow in an opposed-piston engine

The last case presented in this chapter is the resolution of the fluid flow inside the cylinder
of an opposed-piston engine under cold conditions, i.e. without combustion. This test
was selected in order to apply the preconditioning strategy to an inherently compressible
case similar to what it is found in real engine geometries and also due to its simplicity.
The engine geometry was taken from the KIVA-3 [4] tutorial. The cylinder bore is 100
mm, the stroke of each piston is 85 mm, and the geometric compression ratio is 9.5:1. The
cylinder has 8 exhaust ports equally distributed in the circumferential direction and 12
intake ports uniformly separated also. Assuming the reference angle as the EDC (External
Dead Center), the timing of the ports are the following

• Intake Port Opening (IPO) = 295.13◦

• Intake Port Closing (IPC) = 64.87◦

• Exhaust Port Opening (EPO) = 280.2◦

• Exhaust Port Closing (EPC) = 79.8◦

In order to simplify the problem, the flow domain is reduced to a two-dimensional one
by means of the intersection between the 3D cylinder and a plane containing the axis of
the cylinder. This plane must be oriented in such a way to ‘cut’ two intake and exhaust
ports simultaneously. The resultant geometry is shown in figure 3.20 for pistons located
at EDC.

The mesh was generated with the pistons at EDC (ports totally opened) and has 76K
triangular elements (structured) and 38K nodes. The mean element size is h = 0.5 mm.
Due to the simplicity of the geometry and the boundary movement, the mesh dynamics is
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Figure 3.20: Geometry of the simplified 2D model for the opposed-piston engine case
(pistons at EDC).

solved by using an algebraic law following a linear distribution with respect to the position
of pistons at IDC (Internal Dead Center).

No-slip condition is imposed at solid walls. In addition, solid walls are assumed in-
sulated. Mixed absorbing/wall boundary conditions are used to model the ports, as ex-
plained in section §1.2.3. For absorbing boundary conditions, the reference state used for
intake ports is Ui

ref = [1.2195 kg/m3, 0 m/s, 0 m/s, 105 kPa]T , and for the exhaust ports
is Ue

ref = [0.662 kg/m3, 0 m/s, 0 m/s, 95 kPa]T . The engine speed is 3000 rpm. The time
step used in the simulation corresponds to 0.5 crank angle degree (CAD) and, for the con-
ditions of the flow in the test, a CFLu O(1) is obtained along the whole simulation. The
stationary cyclic state is reached with approximately four cycles. The following results
correspond to the last cycle simulated.

For some instants in the cycle, the density and pressure fields into the chamber are
depicted in the following figures. The purpose is to show that the unsteady precondi-
tioning strategy presented in this chapter produces smooth solutions (without numerical
oscillations) when it is applied to computations of in-cylinder flows problems. Figures 3.21
and 3.22 show the distribution of density and pressure into the cylinder at EDC and IDC,
respectively. In figure 3.23 these fields are plotted at an intermediate position of the
pistons, corresponding to 270 CAD.

In figure 3.24, the mean density and pressure in the cylinder during a whole cycle are
presented. This brief overview of the results obtained is completed with some pictures
of the magnitude of the flow velocity at several instants in the cycle. Figure 3.25 shows
these results.
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Figure 3.21: Density ([kg/m3], left) and pressure ([Pa], right) fields at EDC (0◦).

Figure 3.22: Density ([kg/m3], left) and pressure ([Pa], right) fields at IDC (180◦).
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Figure 3.23: Density ([kg/m3], left) and pressure ([Pa], right) fields at 270◦.
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Figure 3.24: Cylinder mean density (left) and pressure (right) through a cycle for the
opposed-piston engine.
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(a) 0 CAD (b) 90 CAD

(c) 180 CAD (d) 300 CAD

Figure 3.25: Magnitude of flow velocity field ([m/s]) at several instants during a cycle.



Chapter 4

Thermodynamic and gas-dynamic
based IC engine models

Unleash the ultimate all-devastating
wave of deac-dimensional ironflames
Release the over-poxer of de-dreation

Emflame cosmos, space time, from infinite to infinite
Endtime, endspace,

infernal eternal, eternity frozen
Supreme total annihilation divine to dimension Zero

Otargos

This chapter reviews some models and their primary use to describe IC engine operat-
ing characteristics. For the processes that govern engine performance, two basic types of
models have been developed. These can be categorized as thermodynamic or fluid dynamic
in nature, depending on whether the equations which give the model its predominant
structure are based on energy conservation or on the analysis of the fluid motion. Other
labels given to thermodynamic energy-conservation-based models are: zero-dimensional
(since in the absence of any flow modeling, geometric features of the fluid motion cannot
be predicted), phenomenological (since additional detail beyond the energy conservation
equations is added for each phenomenon in turn), and quasi-dimensional (where spe-
cific geometric features, e.g. the spark-ignition engine flame geometry or the diesel fuel
spray shapes, are added to the basic thermodynamic approach). The fluid-dynamic model
widely used is the represented by the one-dimensional gas-dynamic equations. This ap-
proach is applied to intake and exhaust manifolds, for which the assumption of plane wave
motion could be satisfactory. Thermodynamic models are used for some components of
the engine such as cylinders, valves, pipe junctions, air-boxes, etc. The 1D approach be-
comes unsatisfactory for a detailed modeling of unsteady flows in these components since
complex wave motion occurs into them. Such devices are considered as boundary regions
in the 1D simulation.

The development of a computational code able to predict IC engine performance and
emissions began at CIMEC (Centro Internacional de Métodos Computacionales en In-
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genieŕıa) with the implementation of a single-cylinder four-stroke spark-ignition engine
simulator [54]. Then, with the target focused on the prediction of more real situations,
models for pipe junctions in multi-cylinder configurations were added. In order to check
the suitability and reliability of this computational tool in industrial applications, that
code was written in the compiled language Fortran 90/95 and several test cases were
solved validating the results with measurements [2]. This engine simulator uses explicit
schemes for time integration, which is standard for that kind of computational tool.

Since the goal is to use the 0D/1D code as a generator of dynamic boundary conditions
for CFD-3D models, the availability of a version of the 0D/1D engine simulator with
implicit time integration gives greater generality to the tool. With this purpose a new
code was written using an object-oriented programming language. The numerical code
developed is able to simulate spark-ignition and compression-ignition, two-stroke and
four-stroke, multi-cylinder and multi-valve engines, naturally aspirated or turbo-charged.
Also, different geometries of the combustion chamber are available.

4.1 Mathematical models

4.1.1 Pipe model

One-dimensional unsteady flow equations are used for modeling pipes and manifolds. In
order to include effects like variable cross-section, viscous friction, and wall heat transfer,
some source terms are added to the inviscid gas dynamic model represented by the system
of Euler equations. The resultant system of equations can be written as [12]

∂ρ

∂t
+
∂(ρu)

∂x
= − 1

F

dF

dx
ρu

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
= − 1

F

dF

dx
ρu2 − ρG

∂(ρE)

∂t
+
∂[(ρE + p)u]

∂x
= − 1

F

dF

dx
u(ρE + p) + q̇π

D

F

(4.1)

where F is the pipe cross-section area;

G = f
u|u|
2
π
D

F

is the specific friction force, with the friction coefficient given by f = 8τw/ρu
2, τw being

the viscous shear stress at the pipe wall and D the equivalent diameter of the pipe; and
q̇ is the heat transfer per unit mass of fluid per unit time.

The friction coefficient is frequently assumed to be that of a fully developed, steady-
state, turbulent flow [34]

f = 0.316Re−1/4 (4.2)

where the Reynolds number is defined as

Re =
ρ|u|D
µ

(4.3)
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The film heat transfer coefficient can be calculated by using the Reynolds-Colburn anal-
ogy [34] as

StPr2/3 =
f

8
(4.4)

where St is the Stanton number (St = Nu/RePr) and Nu is the Nusselt number. Sub-
stitution of equation (4.2) into equation (4.4) yields

Nu =
hfD

κ
= 0.0395Re3/4Pr1/3 (4.5)

hf being the film heat transfer coefficient. For constant-temperature walls (Twall), the heat
transfer rate per unit area can be expressed as

q̇ = hf(Twall − T ) = 0.0395
κ

D
Re3/4Pr1/3(Twall − T ) (4.6)

4.1.2 Cylinder model

The cylinder model used is a single-zone model in which the charge is assumed to be a
homogeneous mixture of ideal gases at all times. The equations of the model are the
conservation of mass and the first law of thermodynamics

dm

dt
=

∑
j

ṁj

d

dt
(me) = −pV̇ + Q̇ch − Q̇ht +

∑
j

hjṁj

(4.7)

where m is the mass contained in the cylinder; ṁj is the instantaneous mass flow rate
through the j-th inlet/outlet (intake and exhaust valves, fuel addition, leakages, etc.); e
is the specific internal energy of the mixture; V is the cylinder volume; Q̇ch represents the
the heat release due to combustion; Q̇ht is the heat transfer rate; and hjṁj represents the
enthalpy fluxes through the j-th inlet/outlet.

The model is closed specifying the geometry of the combustion chamber, the heat
release rate, the heat transfer rate through the cylinder walls, and the mass flow rate of
air and fuel. The sub-models used here will be presented in the following sections.

Geometry of the combustion chamber

The geometric data necessary for the cylinder model are the total surface area of the cylin-
der walls (A), the volume of the cylinder and its time derivative. In the code developed,
it is possible to simulate conventional reciprocating engines, opposed-piston engines, and
the MRCVC (Motor Rotativo de Combustión a Volumen Constante [80]). For all these
cases, analytical formulae were implemented to compute the geometric variables of the
combustion chamber.
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Heat transfer model

The instantaneous heat transfer rate that appears in equation (4.7) is calculated ap-
plying Nusselt-Reynolds-Prandtl number correlations as, for example, the developed by
Woschni [90] or Annand [6]. All of them allows to compute a film transfer coefficient hf

with expressions like the following

Nu =
hfL

κ
= CReαPrβ (4.8)

where L is a characteristic dimension; and C, α and β are constants.
Then, the heat transfer rate to the walls is

Q̇ht = Ahf(T − Twall) (4.9)

where T is the temperature of the gas into the cylinder, and Twall is the cylinder wall
temperature.

Heat release model

In order to model combustion, several approaches and mathematical models are used.
These approaches have the goal to describe the actual heat release via combustion as
exactly as possible by means of the so-called substitute heat release rates [48].

For spark-ignition engines, the mass fraction of burnt gases (xb) is computed by using
a Wiebe function [32]

xb =
mb

m
= 1− exp

[
−c

(
θ − θig

∆θ

)s+1
]

(4.10)

In equation (4.10) mb represents the mass of burnt gases; θ is the crank shaft angle; ∆θ
is the duration of combustion; θig denotes the angle at which burning starts; c and s are
parameters, where s is designated as the shape parameter and c accounts for combustion
efficiency. The heat release rate can be computed as

Q̇ch = Hcẋbmf (4.11)

Hc being the calorific heat content of the fuel and mf the total mass of fuel trapped into
the cylinder.

For compression-ignition engines, two substitute heat release rates were implemented:
the model proposed by Watson et al. [86] and the double Wiebe function [51, 53]. In the
model by Watson et al. the mass burning rate of fuel is expressed as

dxb

dt
=

ω

∆θ
[βc1c2τ

c1−1(1− τ c1)c2−1 + (1− β)c′1c
′
2τ

c′1−1 exp (−c′1τ c′2)] (4.12)

where τ = (θ−θig)/∆θ, and ω is the angular speed of the shaft. The coefficients proposed
in the original model are

• c1 = 2 + 1.25 × 10−8(Ntd)
2.4, where N is the engine speed, in rpm; and td is the

ignition delay, in ms.
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• c2 = 5000.

• c′1 = 14.2φ−0.644
ig , φig being the equivalence ratio at the time of ignition.

• c′2 = 0.79(c′1)
0.25.

• β = 1− 0.926φ0.37
ig t−0.26

d .

The double Wiebe function is an extension of the model used for spark-ignition engines
in order to describe the premixed and diffusive combustion periods observed in diesel
engines [66]. The mass fraction of burnt gases can be written as

xb = 1− xp exp

[
−c

(
θ − θig

∆θp

)sp+1
]
− xdi exp

[
−c

(
θ − θig

∆θdi

)sdi+1
]

(4.13)

where xp is the mass fraction of fuel burnt in the premixed combustion period, xdi is
the mass fraction of fuel burnt in the diffusive combustion period, ∆θp and ∆θdi are,
respectively, the duration of premixed and diffusive combustion.

In diesel engines, the ignition delay time can be calculated as the difference between
the time at which combustion starts (tig) and the time at which injection starts (tinj). The
time tig can be obtained from the following expression [8]:∫ tig

tinj

dt

td
= 1 (4.14)

which accounts for the pressure and temperature variations resulting from compression.
The ignition delay time as a function of T and p was correlated for a variety of fuels with
the expression

td = Cp−n exp (Ta/T ),

being C, n and Ta constants [8]. Also, the empirical formula developed by Hardenberg
and Hase for predicting the ignition delay time in direct-injection diesel engines was
implemented in the code. This formula is given by the following expression [31]

td[CA] = (0.36 + 0.22S̄p) exp

[
EA

(
1

R̃T
− 1

17190

) (
21.2

p− 12.4

)0.63
]

(4.15)

where the temperature of the charge is given in kelvins and the pressure in bars (taken
as TDC conditions), S̄p is the mean piston speed (meters per second), R̃ is the universal
gas constant, and EA (joules per mole) is the apparent activation energy given by

EA =
618840

CN + 25
(4.16)

CN being the fuel cetane number.
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Scavenge model

The scavenge process in two-stroke engines is modeled via a semi-empirical model pro-
posed by Blair [14]. The mass of delivered air trapped into the cylinder at exhaust closure
(mat) is computed as mat = ηSmt, where mt is the total mass retained after the exhaust
port closure, and the scavenging efficiency (ηS) can be computed as

ηS = 1− exp (bσv + d) (4.17)

b and d being constants experimentally determined, which depend on the type of scavenge.
σv is the scavenge ratio by volume, defined as the ratio between the volume of air supplied
during the scavenge period and the cylinder volume.

4.1.3 Valve model

To calculate the flow rates through the intake and exhaust valves, an analogy with flow
through convergent nozzles proposed by Benson [12] is used. The model assumes the
passage area through the valve as the nozzle throat (whose state is represented by the
subscript T in the equations), and the nozzle connecting the cylinder (subscript C in the
equations) and the end of the pipe (subscript P in the equations). Depending on the
direction of the flow velocity with respect to the pipe end, the problem could be an inlet
(from cylinder to pipe) or an outlet (from pipe to cylinder). In addition, the flow at the
throat could be sonic or subsonic. The equations of the model are presented below.

• Subsonic inlet: (
dp

dt

)
P

± ρP cP

(
du

dt

)
P

=
(
RHS±2

)
P

alongλ±

ρTuTψ = ρPuP

c2C = c2P + δu2
P

pC

pT

=

(
ρC

ρT

)γ

c2C = c2T + δu2
T

pT = pP

(4.18)

where ψ = FT/FP , δ = (γ − 1)/2, and

RHS±2 = ρ(γ − 1)

(
q̇

ρ
π
D

F
+ uG

)
∓ ρcG− ρuc2

F

dF

dx
(4.19)

In system (4.18), the first equation accounts for the compatibility along the incoming
Mach line λ±; the second equation is the mass conservation between T and P ; the
third and fifth equations represent the energy conservation between C and P , and C
and T , respectively; the fourth equation represents an isentropic evolution between
the cylinder and the nozzle throat; and the last equation is the condition on the
pressure at the nozzle exit.
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• Subsonic outlet: (
dp

dt

)
P

± ρP cP

(
du

dt

)
P

=
(
RHS±2

)
P

alongλ±

ρTuTψ = ρPuP(
Dp

Dt

)
P

− c2P

(
Dρ

Dt

)
P

= (RHS1)P alongλ0

pP

pT

=

(
ρP

ρT

)γ

c2P + δu2
P = c2T + δu2

T

pT = pC

(4.20)

with

RHS1 = (γ − 1)

(
q̇π
D

F
+ ρuG

)
(4.21)

and D/Dt denoting the material derivative. From first equation to the last one in
the system (4.20), they represent, respectively, the compatibility along the incom-
ing Mach line, the mass conservation between T and P , the compatibility along
the incoming path line λ0, the isentropic evolution between P and T , the energy
conservation between P and T , and the condition on the pressure at the nozzle exit.

• Sonic inlet: for this case, the system of equations is the same as equation (4.18)
with the last equation replaced by the condition cT = uT .

• Sonic outlet: for this case, the system of equations is the same as equation (4.20)
with the last equation replaced by cT = uT .

4.1.4 Pipe junctions model

The pipe junction model used was proposed by Corberan [18]. If the junction is composed
by r incoming pipes and s outgoing pipes, the model is expressed as

• Mass conservation
N∑

j=1

ṁj = 0, with ṁj = ρjFjujnj

where N = r+ s is the total number of pipes at the junction, Fj is the cross-section
area of the j-th pipe and nj its exterior normal.

• Energy conservation

N∑
j=1

ḣj = 0, with ḣj =
ṁj

γ − 1
(c2j + δu2

j)

• Compatibility equation along incoming Mach lines λ±j(
dp

dt

)
j

± ρjcj

(
du

dt

)
j

=
(
RHS±2

)
j
, j = 1, · · · , N
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• Compatibility equation along incoming path lines λ0
j(

Dp

Dt

)
j

− c2j

(
Dρ

Dt

)
j

= (RHS1)j , j ∈ r

• Equality of pressure at all branches in the junction

pi = pj, ∀i 6= j

• Equality of enthalpy at all outgoing branches in the junction

c2i + δu2
i = c2j + δu2

j , ∀i, j ∈ s, i 6= j

4.2 Numerical implementation

The use of an implicit scheme for the discretization of equations that model the several
devices do not represent a problem for its practical implementation, with the exception
of the models of valve and pipe junction. As presented above, the systems of equations
that model valves and pipe junctions change with the flow regime and the direction of its
velocity.

In the valve model, to determine whether the problem is an inlet or an outlet, the
cylinder pressure and the stagnation pressure at the end of the pipe (p0P ) are compared.
This stagnation pressure is given by [88]

p0P = pP

[
1 + δ

(
uP

cP

)2
]γ/(γ−1)

(4.22)

The valve is considered open when the passage area is larger than a prefixed tolerance
εA > 0. Then, if pC > p0P the inlet flow equations are solved, otherwise it is considered
an outgoing flow. Besides, to take into account the transition between subsonic and sonic
regime flow the following convex combination is used

E = (1− χ)Esonic + χEsubsonic (4.23)

where Esubsonic and Esonic represent the systems of equations that model the subsonic and
sonic cases, respectively; and

χ =
1

2

[
1 + tanh

(
cT − uT

αcT

)]
(4.24)

α being a coefficient that adjusts the transition of χ between 0 and 1. In the valve
model, the compatibility equations along the characteristic curves are used to complete
the system of equations. These must be solved according to an explicit scheme, implying
that the states at the pipe end, the valves, and the cylinder, at the time t do not depend
on the state at interior points in the pipe at time t + ∆t. Thus, the system of equations
for the valve is decoupled from the remaining equations. However, the resolution is done
in a coupled way with the goal of being able to implement other valve models of (full)
implicit type in the code. When the valve is either opening or closing, it is important
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to determine the direction of the flow due to the change in the system of equations that
model each situation, which directly influences the global convergence. To predict the
flow direction it is assumed an isentropic flow through a convergent nozzle between the
cylinder and the corresponding end of the pipe. The flow is established between the states
U0 and Ue, which are assumed constant and are identified with either the state in the
cylinder (UC) or the state at the end of the pipe (UP ), depending on the relationship
between the pressure in the cylinder and the stagnation pressure p0P . If pC ≥ p0P , then
it is adopted U0 = UC and Ue = UP , being the direction of flow from the cylinder to the
pipe. When pC < p0P , then U0 = UP and Ue = UC , yielding to a flow from the pipe to
the cylinder. The critical pressure

pcrit = p0

(
2

γ + 1

)γ/(γ−1)

(4.25)

determines if the nozzle throat is choked or not. If pe > pcrit, the predicted state at valve
(UT ), i.e. the nozzle throat, is taken as

pT = pe

ρT = ρ0

(
pT

p0

)1/γ

uT =

{
γ

δ

pT

ρT

[(
p0

pT

) γ−1
γ

− 1

]}1/2

(4.26)

If pe ≤ pcrit, then it is assumed

pT = pcrit

ρT = ρ0

(
2

γ + 1

)1/(γ−1)

uT =

(
2γ

γ + 1

p0

ρ0

)1/2

(4.27)

To solve the system of equations (4.1), the stabilized Finite Element Method with the
SUPG technique is used. Time derivatives were discretized applying a trapezoidal finite
difference scheme.

The code was implemented in the scripting language Python [84]. Python is a dynamic
object-oriented programming language that can be used for many kinds of software de-
velopment. It offers strong support for integration with other languages and tools, and
comes with extensive standard libraries. Object-oriented programming allows to develop
the code in an organized manner, and the possibility of integration with other languages
make it suitable for solving the coupling between the engine simulator and CFD codes.
Another feature that Python offers is the possibility of writing higher-level parts of large-
scale scientific applications and driving simulations in parallel architectures like clusters
of PCs [19].

Regarding the implementation, a class was defined for each device, with methods that
perform the computation of sub-models and the contributions to both global residue
and global jacobian matrix. For instance, the class Cylinder contains the methods
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combustion, geometry, heat transfer, etc. All of these classes derive from the classes
that define an specific set of equations for each device. For example, the class Flow involve
the equations of mass, energy and linear momentum conservation. This allows to add new
features to the code as, for example, transport of chemical species with very few changes.
Currently, only the class Flow is implemented in the code. The constructor of each class
defines attributes for the object, some of them are required data and the remaining ones
are optional (defined through default values).

The global nonlinear system of equations is solved via the Newton-Raphson method.
The linear system arising at each nonlinear iteration is solved with functions contained
into the package NumPy [60].

The code also allows to define the parameters of calibration and the operational vari-
ables as functions of the engine speed, the cycles, and the time.

4.3 Results

In the next sections, the results obtained from the application of the code to the simulation
of some internal combustion engines are presented. The cases were selected to show the
spectrum of IC engines that can be simulated.

4.3.1 Four-stroke spark-ignition engine test

The first example of application is a 8.4 liters V10 four-stroke spark-ignition engine.
Tables 4.1 and 4.2 contain the main data of the engine.

Cylinder

Bore 103.0 mm
Stroke 100.6 mm
Connecting rod length 158.55 mm
Compression ratio 9.6:1

Table 4.1: Main cylinder data of V10 engine.

Intake valve Exhaust valve

Diameter 52.8 mm 40.89 mm
Max. lift 14.4 mm 13.59 mm
VO 41◦ BTDC 129◦ BBDC
VC 123◦ ABDC 41◦ ATDC

Table 4.2: Valve data of V10 engine.

The intake manifold pipes have a diameter of 60 mm and a length of 525 mm. The
diameter of the exhaust pipes is 50 mm and their length is 500 mm. The wall temperature
of these pipes is 298 K and 373 K for the intake and exhaust manifolds, respectively.

The equivalence ratio, the coefficient of heat transfer through the cylinder walls, and
the crank angle where the combustion starts, are functions of the engine speed. These
functions were obtained from the experimental data available. The combustion is modeled
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by using a Wiebe function, and the wall temperature of the cylinder is 573 K. The engine
was tested at speeds ranging from 1600 rpm to 6000 rpm.

Figures 4.1 to 4.3 show the computed indicated power, the torque and the average
mass flow rate of air versus the real curves obtained experimentally.

in
d

ic
at

ed
 p

o
w

er
 [

h
p

]

 800

 700

 600

 500

 400

 300

 200

 100
 1500  2000  2500  3000  3500  4000  4500  5000  5500  6000

engine speed [rpm]

experimental
calculated

Figure 4.1: Indicated power as a function of rpm.
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Figure 4.2: Torque as a function of rpm.

4.3.2 Two-stroke spark-ignition engine test

This test case was taken from the literature [14] and consists in a two-stroke spark-ignition
single-cylinder research engine denominated QUB 400. The engine speed is 3000 rpm at
full throttle. To model the crankcase compression it is used a cylinder without combustion,
then the computational model is composed by two cylinders as could be observed in
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Figure 4.3: Average mass flow rate of air at intake port as a function of rpm.

figure 4.4. The engine has six transfer ducts between the cylinder and the crankcase, which
were modeled as a unique pipe with the same total cross-sectional area (see figure 4.4).
Ports were assumed as poppet valves with appropriate discharge coefficients, and where
the valve lift was defined in such a way to make the passage area computed by the code
the same as the instantaneous passage area of the real port. The complete set of data can
be found in the literature by Blair [14].

exhaust
tankduct

transfer
exhaust

port
transfer

port

cylinder

intake
port

crankcase

Figure 4.4: Computational model of QUB 400 engine.

Figure 4.5 shows the pressure in the cylinder, in the crankcase, in the transfer duct,
and in the intake and exhaust ports as a function of the crank angle during a cycle. Mass
flow rate through transfer and exhaust ports are shown in figure 4.6, where positives
values represent incoming flow to cylinder.

Table 4.3 shows some performance characteristics: power, indicated mean pressure
(IMEP), scavenge efficiency (ηS), peak cylinder pressure (pmax) and the crank angle at
which it occurs. Results reported by Blair [14] and experimental data are included for
comparison.

These results were in a very good agreement with those presented by Blair [14] coming
from his numerical simulations and also with his experiments.
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Figure 4.5: Variation of pressure during a cycle.
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Figure 4.6: Mass flow rates through transfer and exhaust ports.

Calculated Blair [14] Exp.

Power [kW] 12.37 12.37 12.40
IMEP [bar] 6.83 6.81 6.80
ηS 0.77 0.84 -
pmax [bar] 37.0 36.2 36.9
Angle [deg] 15.9 16.2 -

Table 4.3: Performance characteristics of QUB 400 engine.
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4.3.3 Four-stroke diesel engine test

The next test case was selected to show the application of the code to a real diesel engine.
It was the KamAZ-7405 diesel engine applied to heavy duty vehicles and taken from the
web-page http://www.diesel-rk.bmstu.ru/. The main engine data are the following:

• Number of cylinders: 8.

• Cylinder data:

– Bore: 120 mm.

– Stroke: 120 mm.

– Connecting rod length: 225 mm.

– Compression ratio: 16:1.

– Injection starting angle: 14◦ BTDC.

– Combustion starting angle: 9◦ BTDC.

– Duration of combustion: 69◦.

– Wall temperature: 459 K.

• Intake pipe data:

– Diameter: 44 mm - 52 mm.

– Length: 150 mm.

– Wall temperature: 292 K.

• Exhaust pipe data:

– Diameter: 38 mm.

– Length: 400 mm.

– Wall temperature: 743 K.

• Intake valve data:

– Diameter: 40 mm.

– Maximum lift: 8.845 mm.

– IVO: 15◦ BTDC.

– IVC: 50◦ ABDC.

• Exhaust valve data:

– Diameter: 40 mm.

– Maximum lift: 8.803 mm.

– EVO: 65◦ BBDC.

– EVC: 15◦ ATDC.

http://www.diesel-rk.bmstu.ru/
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Case N pi Ti pe minj

[rpm] [bar] [K] [bar] g/cycle

1 2200 1.97 390 1.51 0.0778
2 1400 1.52 354 1.36 0.0838
3 1000 1.28 338 1.20 0.0818

Table 4.4: Operational variables of KamAZ-7405 diesel engine.

Table 4.4 contains the operational data of the three cases solved. In that table, pi and Ti

are the intake manifold mean pressure and temperature, respectively; pe is the exhaust
manifold mean pressure; and minj is the mass of fuel injected per cycle.

The combustion was modeled using two Wiebe functions, and the ignition delay time
was calculated with the correlation proposed by Hardenberg and Hase (equation (4.15)).

The calibration of the code was done at 2200 rpm, defining the parameters for the
two Wiebe functions, the coefficients of the heat transfer model, and the duration of the
combustion. The results are presented in table 4.5 together with the relevant experimental
results, where SFC is the specific fuel consumption and Ga is the mean mass flow rate of
air through the intake system. In general there is a good agreement with experimental
data, the differences being within the typical error margins for the type of code employed.

Power IMEP SFC Ga

[kW] [bar] [g/kW h] [kg/s]

Case 1
Calc. 193.4 11.69 212.4 0.326
Exp. 193.6 11.70 212.4 0.346

Case 2
Calc. 139.5 12.08 201.8 0.174
Exp. 138.8 12.03 202.8 0.182

Case 3
Calc. 91.6 10.95 214.4 0.107
Exp. 92.5 11.05 212.2 0.112

Table 4.5: Performance characteristics of KamAZ-7405 diesel engine.



Chapter 5

Coupling of 1D/multi-D domains for
compressible flows

Mother north - united we stand (together we walk)
Phantom north - I’ll be there when you hunt them down

Satyricon

Generally, when CFD-3D models are used to simulate the fluid flow in IC engines,
due to computational resources availability reasons only a few components of the engine
are studied at each time step. Usually, the boundary conditions for these 3D models are
dynamic and, hence, are not easy to impose. A typical approach is to use 0D/1D codes
as boundary condition generators for the 3D problem.

When dimensionally heterogeneous models are applied to solve a given problem, the
need to perform the coupling between sub-domain arises. For IC engine simulation, the
coupling between multi-D and 1D domains is the most useful. Thus, the methods pre-
sented in this chapter are focused on such coupling type.

The Domain Decomposition theory provides the framework to develop a coupling
domain algorithm. Several research work was done in this sense, specially considering
elliptic operators and the advection-diffusion-reaction equation [13, 63, 26, 17, 81, 27, 3].
Given a boundary value problem defined on a domain Ω, a partition of that domain
in ns sub-domains (Ωi, i = 1, . . . , ns) is built. These sub-domains could be disjoint or
overlapping. The original boundary value problem is reformulated in a split form on the
sub-domains, and the sub-domain solutions satisfy suitable matching conditions at sub-
domain interfaces. These boundary conditions are named transmission conditions [63],
and could involve appropriate combinations of the following types

• Dirichlet type: condition on the unknown of the problem.

• Neumann type: condition on the first derivative of the unknown.

• Robin type: linear combination of Dirichlet and Neumann conditions.
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For second order differential equations problems, some combination of the above
cited boundary conditions could fail to give the original solution on the corresponding
sub-domain [35]. In particular, Dirichlet/Dirichlet (D/D) coupling as well as the Neu-
mann/Neumann (N/N) coupling are not possible. For advection-dominated advection-
diffusion equations it is important that the boundary conditions accounts for the flow di-
rection. Some techniques, as the adaptive strategies, introduce iterative methods splitting
the above interface conditions in a way which is adapted to the local flow direction [17, 81].
Other methods, such as the proposed by Alonso et al. [3], do not care about the local
direction of the advective field, but only need that the boundary value problems defined
on the sub-domains are associated with a suitable coercive bilinear form.

As mentioned above, the purpose is to link dimensionally heterogeneous models for
numerical simulation of IC engines. Thus, the focus is placed on the governing equations
of compressible fluid flows, namely, the Navier-Stokes and Euler equations. For these
equations, the different boundary condition types are interpreted here as follows

• Dirichlet: condition on the vector state (U) or the advective flux (Fa). This is
true due to Fa is a function of the vector state only, and not of their derivatives.
Moreover, in the case of a perfect gas the advective flux is a homogeneous function
of degree 1 of the conservative variable vector [10, 70], this is

Fa(λU) = λFa(U) for anyλ ∈ R

and taking derivatives with respect to λ and setting λ = 1, it is obtained the
relation [33]

Fa(U) =
∂Fa

∂U
U = AU

• Neumann: condition on the diffusive flux (Fd), since it contains first order deriva-
tives (see equation (1.10)).

• Robin: some linear combination of the other two types, for instance, a condition on
the total flux (F = Fa + Fd).

For viscous flows, the system of equations contains second order derivatives and, hence,
conditions on the state and its first derivatives must to be imposed on the coupling
boundary [33].

The discussion is started with the analysis of a 1D domain case divided into two
intervals. Let Ω a bounded, open interval of R discretized by a grid with N elements and
N + 1 nodes numbered from 1 to N + 1. After standard discretization, for instance with
the SUPG stabilized Finite Element Method, a system of equations of the following form
is obtained

P


E1(U1,U2) = 0

E2(U1,U2,U3) = 0

...

EN+1(UN ,UN+1) = 0

(5.1)

It has been assumed that the equation at node i involves only the nodal states at nodes
i−1, i and i+1, as is true for first order Finite Difference Method and FEM discretization
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methods. Also a steady system of equations is assumed. The system (5.1) represents
(N + 1) × ndof equations in the (N + 1) × ndof unknowns {U1,U2, . . . ,UN+1}. It is
assumed that this non-linear system of equations has a unique solution. Equations at the
boundary nodes may include some mixture of Dirichlet or Robin and Neumann boundary
conditions.

This system of equations is split up at a certain internal node i, so that the domain
Ω = [x1, 1, x1, N+1] is split in the sub-domains Ω1 = [x1, 1, x1, i] and Ω2 = [x1, i, x1, N+1] (see
figure 5.1). Now, node i splits in i1 and i2 for the left and right sub-domains, respectively.
Appropriate boundary conditions at i1 (i2) for Ω1 (Ω2) must be provided. These conditions
must ensure that each sub-domain problem can be solved independently, and that the
problem is well posed. An iterative approach to solve the problem must guarantee that
the solutions at each boundary converge to the solution of the coupled system, i.e.

Uk
i1, U

k
i2 → Ui

Uk
j → Uj ∀j, j 6= i

(5.2)

for k →∞, k being the iteration number.
In addition, it is assumed that the equation at node i can be separated in its right

and left contributions

Ei(Ui−1,Ui,Ui+1) = Ei1(Ui−1,Ui) + Ei2(Ui,Ui+1) = 0 (5.3)

x x1,N+1

x

1,1

1,i

x1,i2x1,i1

P

P

1,N+1x1,1x

P1 2

Figure 5.1: Sketch of 1D domain splitting.

In this thesis, non-overlapping sub-domain coupling methods will be considered.

5.1 Coupling domains through absorbing boundary

conditions

The coupling interface is an inlet/outlet for the left and right sub-domains. Thus, an
approach to solve the coupling of domains could be by using absorbing boundary condi-
tions at the coupling interface. The technique presented in section §1.1.2 to solve dynamic
boundary conditions will be considered. In order to formulate the coupling strategy based
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on absorbing boundary conditions, some options to solve the problem are analyzed. One
possibility is at each step to solve the left system using Dirichlet boundary conditions at
i1, and compute the (total) flux at this boundary. Then, this flux is passed to the right
domain as a Robin boundary condition and the solution at the right domain is computed.
This, in turn, produces a value at the boundary Ui2 which is passed as a new Dirichlet
boundary condition at the left boundary, and so on. Others combinations of Dirichlet,
Neumann and Robin boundary conditions are possible.

5.1.1 Algorithm Robin/Robin

For instance, the iterative algorithm using a Robin/Robin (R/R) approach is written as

P1


E1(U

k+1
1 ,Uk+1

2 ) = 0

E2(U
k+1
1 ,Uk+1

2 ,Uk+1
3 ) = 0

...

Ei1(U
k+1
i−1 ,U

k+1
i1 ) + Rk = 0

P2


Ei2(U

k+1
i2 ,Uk+1

i+1 )−Rk = 0

Ei+1(U
k+1
i2 ,Uk+1

i+1 ,U
k+1
i+2 ) = 0

...

EN+1(U
k+1
N ,Uk+1

N+1) = 0

Rk+1 = Rk + ω̃(Uk+1
i1 −Uk+1

i2 )

(5.4)

Note that

• Terms Rk are ‘reactions’, i.e. terms that represent the fluxes that come from the
opposite domain or from a Dirichlet boundary condition.

• Both sub-domain problems P1 and P2 can be solved independently at each step.
They only need Rk, which is evaluated in the previous step.

• The new value Rk+1 is computed as the sum of Rk and an increment proportional
to the imbalance of U at the boundary with a relaxation factor (ω̃).

It can be shown that if such a scheme converges, then it converges to the solution of
the original problem. Effectively, letting k → ∞, the last equation in (5.4) reduces to
Ui1 = Ui2. Replacing this in the i1 and i2 equations, and adding them, the reaction R is
eliminated and the original equation (5.3) is recovered.

A key problem is to determine the best combinations of boundary conditions that
make the fixed point algorithm to converge as fast as possible. In the context of the
solution of hyperbolic systems of equations, some combinations of boundary conditions
can be much better than others depending on the direction of waves propagation.

5.1.2 Robin/Dirichlet scheme for right-going characteristics

If all characteristics go right (i.e. the sense of propagation is positive), then it is natural
to use Dirichlet boundary conditions on the right domain, and Robin on the left. The
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algorithm R/D is as follows

P1


E1(U

k+1
1 ,Uk+1

2 ) = 0

E2(U
k+1
1 ,Uk+1

2 ,Uk+1
3 ) = 0

...

Ei1(U
k+1
i−1 ,U

k+1
i1 ) + Rk = 0

P2


Uk+1

i2 = Uk
i1

Ei+1(U
k+1
i2 ,Uk+1

i+1 ,U
k+1
i+2 ) = 0

...

EN+1(U
k+1
N ,Uk+1

N+1) = 0

Rk+1 = Ei2(U
k+1
i2 ,Uk+1

i+1 )

(5.5)

The counting of equations and unknowns for the P1 problem is the same as for a
standard problem with Robin boundary conditions at the i1-th node. There are i× ndof

equations in the i× ndof unknowns {U1, . . . ,Ui1} (Rk is known at the k + 1 stage, since
it comes from the previous stage k). On the other hand, the counting for P2 is similar
to a problem with Dirichlet boundary conditions at i2. It represents (N − i + 1) × ndof

equations on the {Ui+1, . . . ,UN+1} unknowns (Uk+1
i2 is given by the Dirichlet boundary

condition).

5.1.3 Dirichlet/Robin scheme for left-going characteristics

If all eigenvalues are left-going, then the appropriate scheme would be

P1


E1(U

k+1
1 ,Uk+1

2 ) = 0

E2(U
k+1
1 ,Uk+1

2 ,Uk+1
3 ) = 0

...

Uk+1
i1 = Uk

i2

P2


Ei2(U

k+1
i2 ,Uk+1

i+1 )−Rk = 0

Ei+1(U
k+1
i2 ,Uk+1

i+1 ,U
k+1
i+2 ) = 0

...

EN+1(U
k+1
N ,Uk+1

N+1) = 0

Rk+1 = −Ei1(U
k+1
i−1 ,U

k+1
i1 )

(5.6)
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5.1.4 Characteristics-based split for general systems

For a general problem with positive and negative eigenvalues, problems at each side of
the coupling interface could be written in the following way

P1



E1(U
k+1
1 ,Uk+1

2 ) = 0

E2(U
k+1
1 ,Uk+1

2 ,Uk+1
3 ) = 0

...

Ei1(U
k+1
i−1 ,U

k+1
i1 ) + Π+

U1R
k + Π−

U1R
k+1 = 0

Π−
U1(U

k+1
i1 −Uk

i2) = 0

P2



Ei2(U
k+1
i2 ,Uk+1

i+1 )−Π+
U2R

k −Π−
U2R

k+1 = 0

Π−
U2(U

k
i1 −Uk+1

i2 ) = 0

Ei+1(U
k+1
i2 ,Uk+1

i+1 ,U
k+1
i+2 ) = 0

...

EN+1(U
k+1
N ,Uk+1

N+1) = 0

(5.7)

where Π±
Uj = Π±

Uj(Uij), j = 1, 2 are the projection matrices onto the right/left-going
characteristic modes [72] computed with the outward unit normal (nj) at the coupling
interface for the sub-domain j. Due to n1 = −n2, if both projection matrices are computed
at the same state, then Π±

U1 = Π∓
U2 = Π±

U . Note that after each iteration P1 provides the
left going part of the new reactions (Π−

URk+1), whereas P2 provides the left going part.
Altogether, the whole reaction vector Rk+1 is obtained.

Counting of equations and unknowns is a little more complicated in this case. There
are indof + n− equations and unknowns for P1, where n− is the number of left-going
characteristics. The n− equations come from the last row of equations, since Π−

U has rank
n−. The n− additional unknowns come form the term Π−

URk+1, since the term Π+
URk is

known. For the problem P2, the counting of equations and unknowns is analogue.
Again, if the system converges it can be shown that it converges to the solution of the

coupled problem. Effectively, if the scheme converges the following system is obtained

P1


E1(U1,U2) = 0

...

Ei1(Ui−1,Ui1) + Π+
U1R + Π−

U1R = 0

Π−
U1(Ui1 −Ui2) = 0

P2



Ei2(Ui2,Ui+1)−Π+
U2R−Π−

U2R = 0

Π−
U2(Ui1 −Ui2) = 0

Ei+1(Ui2,Ui+1,Ui+2) = 0

...

EN+1(UN ,UN+1) = 0

(5.8)

Adding restrictions,

Π−
U1(Ui1 −Ui2) + Π−

U2(Ui1 −Ui2) = (Π−
U1 + Π−

U2)(Ui1 −Ui2) = 0 (5.9)
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implies Ui1 = Ui2 and Π±
U1 = Π∓

U2 = Π±
U , as noted above. Again, adding the i1-th

and i2-th equations, the original i-th equation (5.3) is recovered. The advantage of this
scheme is that for each sub-domain the system of equations obtained is equivalent to a
problem with absorbing boundary conditions.

5.1.5 Resolution by penalization

In this section, the algorithm to solve by penalization the scheme proposed in equa-
tion (5.7) is presented. Assuming Π±

U1 = Π∓
U2 = Π±

U , both restrictions can be added

Π−
U(Uk+1

i1 −Uk
i2) + Π+

U(Uk
i1 −Uk+1

i2 ) = 0 (5.10)

since each part can be recovered by multiplying at right by Π−
U or Π+

U . For instance if it
is multiplied by Π+

U , the equation

Π+
U(Uk

i1 −Uk+1
i2 ) = 0 (5.11)

is recovered, because Π+
UΠ+

U = Π+
U and Π+

UΠ−
U = 0

Now, in order to ‘regularize’ the problem, a small term can be added to equation (5.10)

Π−
U(Uk+1

i1 −Uk
i2) + Π+

U(Uk
i1 −Uk+1

i2 )− ε(Rk+1 −Rk) = 0 (5.12)

in such a way Rk+1 can be eliminated and a penalized version is obtained.

Rk+1 = Rk +
1

ε

[
Π−

U(Uk+1
i1 −Uk

i2) + Π+
U(Uk

i1 −Uk+1
i2 )

]
(5.13)

Replacing in the i1-th equation

Ei1(U
k+1
i−1 ,U

k+1
i1 ) + Π+

URk + Π−
URk+1 = 0

Ei1(U
k+1
i−1 ,U

k+1
i1 ) + Π+

URk + Π−
URk +

1

ε
Π−

U(Uk+1
i1 −Uk

i2) = 0

Ei1(U
k+1
i−1 ,U

k+1
i1 ) + Rk +

1

ε
Π−

U(Uk+1
i1 −Uk

i2) = 0

(5.14)

In a similar way, the equation for the i2-th node can be written as

Ei2(U
k+1
i2 ,Uk+1

i+1 )−Rk − 1

ε
Π+

U(Uk
i1 −Uk+1

i2 ) = 0 (5.15)

Some simple examples were solved with this coupling strategy based on absorbing
boundary conditions. The cases successfully solved consist in splitted 1D domains where
a perturbation is created in the state as initial condition of the flow. The results obtained
in such cases are good when they are compared with solutions in a unique domain, but
the convergence rate is generally low. The strategy fails when it is applied to solve the
first test of Sod. As it is known, this test presents discontinuities in their solution [33]
which causes the failure of the coupling strategy. The inability of the technique to solve
flows with discontinuities is an important drawback for its use in IC engines simulation
since, for instance, contact discontinuities are present in exhaust pipes [32].

Due to the fact that it is not the goal here to develop a general coupling technique
able to work with different codes, other useful strategy for the purpose of this thesis is
presented in the following section. Nevertheless, the coupling strategy based on absorbing
boundary conditions deserves further development which is proposed as future work.
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5.2 Coupling for implicit schemes ‘monolithically’

solved

The coupling strategy presented in the previous section could be useful when the governing
equations on each domain are solved by different codes. Using an implicit scheme for time
integration and assuming that the resolution could be performed as a ‘monolithic’ system,
the coupling strategy reduces to a constraint between the states at the interface nodes.
This strategy could be useful when the codes that perform the computation on each sub-
domain are not ‘black boxes’, but the contributions to the global residue (and perhaps
the global jacobian matrix) are available.

For the problem (5.1), if the equality of states at the coupling node is imposed, then
it results in the linear constraint Ui1 = Ui2. With the notation of the previous section
and using Lagrange multipliers (Ulm) to impose the constraint, the system of equations
is expressed as 

E1(U1,U2) = 0

E2(U1,U2,U3) = 0

...

Ei1(Ui−1,Ui1) + Ulm = 0

Ui1 −Ui2 = 0

Ei2(Ui2,Ui+1)−Ulm = 0

...

EN+1(UN ,UN+1) = 0

(5.16)

where the constraint Ui1 −Ui2 = 0 imposes the continuity of the solution and forces the
continuity of fluxes through the coupling interface. By elimination and using (5.3), it is
easy to see that the problem (5.16) reduces to (5.1).

5.2.1 Coupling of 1D/multi-D domains

If the purpose is to link a multi-D domain with a 1D domain, the constraints are not
straightforward as in the 1D/1D coupling. In this case, the conditions at the coupling
interface for the multi-D domain are defective [24, 41] and a simplification must be done
at the coupling interface.

One possibility is to impose each node at coupling surface of the multi-D domain to
have the same state as the corresponding node in the 1D domain. Let M the number of
nodes lying on the coupling interface of the multi-D domain, and let j the node identifying
the end of the 1D domain. Then, the Mndof constraints are

Uj = Ui i = 1, . . . ,M (5.17)

This kind of coupling could be useful with a uniform flow (‘piston’-like) through the multi-
D domain boundary, limiting the shape of variables profile in the coupling interface. For
instance, this limitation does not allow to apply a no-slip boundary condition at walls,
even whether the flow is parallel to the wall.
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Another option is to equalize the mean value of the state on the whole coupling surface
and the corresponding state in the 1D domain, i.e.∫

S

UMDdS =

∫
S

U1DdS = U1DS (5.18)

where S is the coupling surface. The constraint (5.18) could cause the code failure since the
problem is not restricted enough, without guarantee of a unique solution. For example, it
is possible to obtain a profile of density with non physical negative values on the coupling
surface and whose mean value is a feasible value.

5.3 Results

Several test cases were solved using the coupling strategy based on a monolithic system
with linear constraints, as presented above. The following sections show some of these
results for 1D/1D, 2D/1D and 3D/1D couplings. In the whole set of test cases, the ‘stan-
dard’ Navier-Stokes equations for compressible flow are solved, i.e. the equations (1.8)
with the variational formulation given by (1.28).

5.3.1 1D/1D coupling

In this particular case, strategies (5.17) and (5.18) are equivalent. Using two or more sub-
domains, the solution obtained is equal to the solution computed from a unique domain.

5.3.2 2D/1D coupling

The 2D/1D coupling test proposed consists in a reservoir connected to the atmosphere
by a pipe with length L = 7 m. Pressure and temperature of gas into the reservoir
are constant, with values of p0 = 1.2 × 105 Pa and T0 = 278.75 K, respectively. The
atmospheric pressure is pa = 1 × 105 Pa. Initially, the gas inside the pipe is at rest,
and at the same pressure and density as the gas into the reservoir. At t = 0, the pipe
end connected to the atmosphere is suddenly open. The pipe is modeled using three
sub-domains, 1D at the pipe ends and 2D in its middle region as shown in figure 5.2 (1D-
2D-1D). Also, in order to compare the solutions, the problem is solved using three 1D
domains (1D-1D-1D). The duct is adiabatic and without friction, and the fluid is inviscid.

The 2D domain is discretized by using an unstructured mesh containing 592 triangular
elements. For 1D domains uniform meshes are used, with element size h = 0.05 m. The
time step in the simulations is ∆t = 1 × 10−4 s, which gives a CFL number O(1). The
left coupling section is located at x1 = 2 m, and the right coupling section at x1 = 5 m.

Solving the problem with the constraints given by equation (5.17) for the density, the
pressure and the mean axial velocity, the test is successful and the whole time interval
can be solved. Figures 5.3(a) to 5.3(c) show the results achieved at coupling sections. As
expected, there are no differences between the cases 1D-2D-1D and 1D-1D-1D.
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Figure 5.2: Gas discharge from a reservoir to the atmosphere.

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2
t [sec]

de
ns

ity
 [k

g/
m

  ]

right section

left section

1D−1D−1D
1D−2D−1D
1D−2D−1D

3

(a) Density

 0

 50

 100

 150

 200

 250

 300

 0  0.05  0.1  0.15  0.2

ax
ia

l v
el

oc
ity

 [m
/s

]

t [sec]

left section (1D−2D−1D)
right section (1D−2D−1D)
1D−1D−1D

(b) Axial velocity

 100

 102

 104

 106

 108

 110

 112

 114

 116

 118

 120

 0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

pr
es

su
re

 [k
P

a]

t [sec]
 0

left section

right section

1D−2D−1D
1D−2D−1D
1D−1D−1D

(c) Pressure

Figure 5.3: Time evolution of solution at coupling sections.
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5.3.3 3D/1D coupling

This case consists in the exhaust manifold of a six-cylinder spark-ignition four-stroke
engine1. The purpose is to solve a junction of the manifold with a CFD-3D code and to
solve the rest of the engine with 0D/1D models. The exhaust manifold is composed by
three junctions, as it is shown in figure 5.4. Two of these junctions connect three header
pipes with one of the two intermediate pipes (junctions 3-to-1). These pipes converge to
the third junction that connects them with the exhaust tailpipe (junction 2-to-1). The
diameters and lengths of the pipes in the manifold are the following

• Header pipes: D = 51.7 mm, L = 570 mm.

• Intermediate pipes: D = 61 mm, L = 650 mm.

• Tailpipe: D = 70− 85 mm, L = 600 mm.

Figure 5.4: Exhaust manifold geometry.

One of the junctions 3-to-1 is modeled as a 3D domain, and coupled to 1D domains
representing the pipes connected with it. The geometric model is shown in figure 5.5,
where a (relatively short) stretch of the pipes were added to the 3D model of the junction
in order to avoid the failure of the 1D approximation at the coupling section. With the
aim of simplifying the resolution, only the branch of the exhaust manifold containing the
junction 3-to-1 is solved. In figure 5.6 a sketch of the computational model of the branch
is presented. This figure shows two models, one of them is composed by four 1D pipes and
the 3D junction, while in the other one the junction is represented as a 0D component.
In this last case, the model by Corberan (see section §4.1.4) is applied to solve the pipe
junction. Thus, a comparison of the solution in the coupling interfaces between both
computational models is done and a verification of the hypothesis in the junction model
by Corberan is made also.

The boundary conditions for these models are obtained simulating the whole engine by
using the 0D/1D code until a stationary (cyclic) state is reached. The engine speed is 8000
rpm and, therefore, the period of the cycle is Υ = 0.015 s. For the 3D junction, insulated
walls are considered and slip condition is imposed on them. At coupling interfaces, the
density and pressure over the whole section are equalized to the corresponding value of
the 1D domains. In addition, the component of the velocity in the normal direction to

1I want to thank to Juan Pablo Alianak for provide me the computational 3D geometric model of the
six-cylinder exhaust manifold.
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the surface is equalized to the axial velocity at end pipes connected to the 3D domain.
The tangential components of velocity on inlet/outlet sections are constrained to be null.
The mesh of the 3D model has 278K tetrahedra and 67K nodes, and the 1D domains were
discretized by means of uniform meshes with element size of h = 5 mm. The time step of
the simulation is ∆t = 5 × 10−5 s. Several periods were simulated using the monolithic
coupling strategy until to reach (approximately) a stationary state in the solution. For
the 1D-1D/0D-1D model, the discretizations in time and space are the same as in the
1D-3D-1D model.

Figure 5.5: Geometry of the junction 3-to-1.

1D 1D1D / 0D

junction (0D)

P4

P1

P3

J4

3D1D 1D
J3

J1

J2P2

Figure 5.6: Computational models to solve a branch of the exhaust manifold.

Some instantaneous distributions of the pressure over the junction skin and streamlines
are shown in figures 5.7 to 5.12, where

t∗ =
t− t0

Υ
(5.19)
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is the non-dimensional time, being t0 the start time of the cycle.

Figure 5.7: Pressure field over the junction 3-to-1 skin at t∗ = 0.

Figure 5.8: Pressure field over the junction 3-to-1 skin at t∗ = 0.4.
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Figure 5.9: Pressure field over the junction 3-to-1 skin at t∗ = 0.8.

Figure 5.10: Streamlines at t∗ = 0 for the junction 3-to-1.
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Figure 5.11: Streamlines at t∗ = 0.4 for the junction 3-to-1.

Figure 5.12: Streamlines at t∗ = 0.8 for the junction 3-to-1.
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Solutions from 1D-3D-1D and 1D-1D/0D-1D models are compared at coupling 1D/3D
interfaces, named from P1 to P4 as it is indicated in figure 5.6. These comparisons are
presented in figures 5.13 to 5.15. In figure 5.14 the velocity is referred as axial velocity
which, for the 3D model, should be interpreted as the component of the velocity vector
in the normal direction to the given surface.

In the coupling sections of the header pipes, the waves in both models tend to have
similar behavior, especially when the pulse of the velocity wave reaches the interface.
The solution of the 1D-1D/0D-1D model is more oscillatory than the solution of the
other model, which is because the pipe junction 0D model has no inertia. In general, the
amplitude values are near each other on both solutions, being more attenuated for the
1D-3D-1D solution. The largest differences are found when the flow is established from
the junction to the pipe. The influence of both the finite volume of the pipe junction and
its geometric shape is more clearly evident in the solutions obtained in coupling section
P4. In this interface, the pressure peaks on the 1D-3D-1D solution are higher than on the
1D-1D/0D-1D model.
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Figure 5.13: Time evolution of density at coupling sections through a cycle.

The CFD 3D could be useful to validate or to improve a 0D model. For the junction
3-to-1 solved, the hypothesis of the pipe junction 0D model by Corberan will be checked.
This model is composed by conservation equations, incoming path/Mach lines equations,
the equality of the pressure in all pipes end, and the equality of the enthalpy in all
outgoing branches in the junction, as presented in section §4.1.4. With the exception of
the incoming path/Mach lines equations, the remaining equations can be verified.



5.3 Results 101

1D−3D−1D
1D−1D/0D−1D

−300

−200

−100

 0

 100

 200

 300

 400

 500

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ax
ia

l v
el

oc
ity

 [m
/s

]

t*

(a) Section P1

1D−3D−1D
1D−1D/0D−1D

−300

−200

−100

 0

 100

 200

 300

 400

 500

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ax
ia

l v
el

oc
ity

 [m
/s

]

t*

(b) Section P2

1D−3D−1D
1D−1D/0D−1D

−300

−200

−100

 0

 100

 200

 300

 400

 500

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ax
ia

l v
el

oc
ity

 [m
/s

]

t*

(c) Section P3

1D−3D−1D
1D−1D/0D−1D

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ax
ia

l v
el

oc
ity

 [m
/s

]

t*

(d) Section P4

Figure 5.14: Time evolution of axial velocity at coupling sections through a cycle.
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Figure 5.15: Time evolution of pressure at coupling sections through a cycle.
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The mass conservation equation is evaluated by computing the following quantity as
a function of time ∑4

i=1 ṁi

ṁref

(5.20)

where ṁref =
∑4

i=1 |ṁi|. For the last cycle simulated, the curve for expression (5.20) is
plotted in figure 5.16(a). Important deviations from the zero value (as assumed in the 0D
model) could be observed in the figure.

In a similar manner, for the energy conservation it is calculated the following expression∑4
i=1 ḣi

ḣref

(5.21)

with ḣref =
∑4

i=1 |ḣi|. The results obtained are shown in figure 5.16(b) where, again, the
difference between the 0D assumption and the 3D solution is relatively high.
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Figure 5.16: Relative differences in the hypothesis of the pipe junction 0D model by
Corberan.

In figure 5.16(c) the relative difference of pressure is presented, which is computed as

p4 − pi

p4

, i = 1, 2, 3 (5.22)

where p4 is the mean pressure over the surface corresponding to the interface between
the junction and the intermediate pipe (J4, see figure 5.6), and pi the mean pressure over
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the respective surfaces for header pipes (named Ji, i = 1, 2, 3 in figure 5.6). With p4 as
reference pressure the maximum error is approximately 18 % and, as could be inferred
from the figure, it is expected errors of the same order whether other pressures were
adopted as reference.

The final hypothesis in the model by Corberan is the equality of the enthalpy in all
outgoing pipes. From the viewpoint of the intermediate pipe the interface J4 is an inlet
for all times, then, the enthalpy over such a section (h4) is adopted as reference. The
relative difference of outgoing enthalpy is computed as

h4 − hi

h4

, i = 1, 2, 3 (5.23)

hi being the mean enthalpy over the section Ji. Figure 5.16(d) shows this relative dif-
ference, where the maximum error is about 10 %. As could be noted, the curves are
discontinuous due to the change in the sense of flow through the cycle.

Summarizing, for the example solved the major deviations in the assumptions of the
Corberan model were found in the conservation of mass and energy. This could be because
the volume of the junction is neglected in this 0D model. The hypothesis of equality of
pressure in all branches and the equality of the enthalpy in all outgoing pipes present a
moderate relative error.



Chapter 6

Numerical simulation of the
MRCVC engine

- Because you were inspired by the devil?
- Yes... that’s it.

I was inspired by the devil.
I’m inspired by the devil!

Dialog from the film ‘The Name Of The Rose’

In this chapter, the computational tools developed in previous chapters are applied to
simulate the Constant-Volume Combustion Rotative Engine (MRCVC, for Motor Rotativo
de Combustión a Volumen Constante [80]).

The main feature of the MRCVC engine is that the combustion could be performed
at constant volume (effectively). To be more precise, when the chamber reaches its min-
imum volume and during a finite angular interval, the chamber changes its shape but
not its volume. Furthermore, the combustion chamber has a ratio surface area/volume
similar to those found in reciprocating engines [79]. Thus, a net increment on the engine
thermodynamic efficiency could be reached when it is compared with both, the rotative
Wankel engine and the classical engine with reciprocating pistons. The MRCVC engine
has a perfect static and dynamic balance of its moving components, and hence, allowing
to achieve high smoothness and low engine vibration. Also, the contact between apex
seals and walls is harmonic, which should permits to reduce wear and noise.

6.1 Operation and geometry of MRCVC

The MRCVC was invented and patented by Jorge Toth [80], and it is under development
at the Applied Mechanical Department of National University of Comahue (Neuquén,
Argentina). In order to test the kinematic of the mechanism designed, at present, only
a compressor with the geometry of the MRCVC was built [79]. This engine is composed
by a rotor and two or more vanes inside a cylindrical housing. Figure 6.1 illustrates
the geometry of a MRCVC with four vanes. The central region of the housing and the
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vanes have oval shape, with apex seals to avoid gas leakage. The rotor is a ring with
cylindrical hollows allowing the relative rotation movement of the vanes. Each vane must
keep parallel its centerline with respect to the other vanes while their centers revolve
around the output shaft. In this form, the vanes have translational movement only. This
kinematic constraint is accomplished by means of a rim, which also links the engine
shaft with the rotor and vanes. Breathing could be through ports in the side housings
and/or through lateral ports in the center housing. However, the gas-exchange system is
undefined yet and it is under development.

Figure 6.1: Cutaway drawing of four-vanes MRCVC engine.

Considering as null the radii of the apex seals, the geometry of MRCVC engine is com-
pletely defined by specifying the number of vanes (n), the radius of the trajectory center
of the vanes (R), the half length of vane centerline (r), and the height of the chamber
(h) [79]. Figure 6.2 shows a sketch of the top view of the MRCVC indicating the main
geometric parameters. This geometric simplification is applied in this thesis to model the
flow domain. Although a MRCVC with the simplest geometry is technologically unfeasi-
ble, the simplification turns simpler the analysis but retaining the main characteristics of
the machine.

The rotation angle of engine shaft (θ) is measured clockwise relative to the trailing
vane position when the chamber has its maximum volume at the start of compression
‘stroke’. Due to the symmetry of the MRCVC geometry, it is enough to analyze the
angular interval

0 ≤ θ ≤ n+ 2

2n
π (6.1)

which corresponds to a variation of the chamber volume from its maximum value to
the minimum one. The geometry chamber for the remain part of the cycle is obtained
by flipping the domain around the geometric symmetry axis. In order to get analytical
formulae for describing the chamber geometry, the interval (6.1) is split in five sub-intervals
due to topological changes and boundary redefinition. These intervals are defined as
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rr

r

θ

R

vane

rotor

stator

Figure 6.2: Basic geometry of a three-vane MRCVC and definition of its main geometric
parameters.

• Interval 1:

0 ≤ θ <
n− 2

2n
π − φ

where φ = arcsin
( r
R

)
.

• Interval 2:
n− 2

2n
π − φ ≤ θ <

n− 2

2n
π + φ

• Interval 3:
n− 2

2n
π + φ ≤ θ <

n+ 2

2n
π + φ− 2ψ

where ψ = arctan

(
2r√

R2 − r2

)
.

• Interval 4:
n+ 2

2n
π + φ− 2ψ ≤ θ <

n+ 2

2n
π − φ

• Interval 5:
n+ 2

2n
π − φ ≤ θ ≤ n+ 2

2n
π

Figure 6.3 illustrates the position and shape of the flow domain for the angles at lower
and higher limits of each sub-interval covering the interval (6.1).

Both, the surface area of the chamber walls (A) and the chamber volume (V ) as a
function of the shaft angle are necessary for 0D/1D simulations. On the other hand, the
boundaries of the flow domain for the multi-D case were computed as a function of θ also.
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(a) θ = 0 (b) θ =
n− 2
2n

π − φ (c) θ =
n− 2
2n

π + φ

(d) θ =
n+ 2
2n

π + φ− 2ψ (e) θ =
n+ 2
2n

π − φ (f) θ =
n+ 2
2n

π

Figure 6.3: Changes of flow domain definition during a ‘stroke’ for a 3-vanes MRCVC
engine.

The complete set of equations describing the cited geometric variables are presented in
appendix C.

As mentioned above, the crank shaft rotates (n + 2)π/2n radians when the chamber
evolves from its maximum volume to the minimum volume. Considering as a ‘stroke’ the
evolution of the chamber volume between extrema values, then, the cycle duration is

∆θ = 2π

(
1 +

2

n

)
(6.2)

in order to complete the four-stroke cycle. Note that the cycle duration depends on the
number of vanes and, thus, contrasts with classical reciprocating and rotative engines,
which works with two-stroke (∆θ = 2π) or four-stroke (∆θ = 4π) operating cycles.

There are n+ 2 operating chambers along a cycle, which produce a power ‘stroke’ per
cycle. Therefore, n power pulses occur for each output shaft revolution.

6.2 Engine performance characteristics using 0D/1D

models

In this section, the results obtained from the simulation of a MRCVC using a 0D/1D code
are presented. Although there are not experimental results for this engine, the simulation
has two purposes: firstly, to obtain a first estimate of the performance characteristics;
and secondly, to test two type of port geometry.
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The engine simulated has n = 3 vanes, with R = 116.1 mm and r = h = 44.1 mm.
The maximum chamber volume is 500 cm3 and the geometric compression ratio is 9:1.
As discussed in the last section, the cycle duration for the geometric configuration used
is 600◦, with five operating chambers per cycle. The MRCVC considered is spark-ignited
and naturally aspirated.

In order to simplify the computational model, the engine is simulated as five indepen-
dent cylinders. Thus, ports could be modeled as poppet valves with appropriate passage
area and discharge coefficients. But, with this approach, the wave interference between
two contiguous chambers can not be modeled. The chamber wall temperature is adopted
as 450 K and the combustion is modeled via a Wiebe function, being 267◦ the initial angle
of combustion and 60◦ its duration. Table 6.1 contains the intake and exhaust manifolds
data. The model is tested from 2000 rpm up to 6000 rpm. For this analysis, the reference

Intake manifold Exhaust manifold

Length 500 mm 400 mm
Diameter 50 mm 50 mm
Wall temperature 298 K 743 K

Table 6.1: Intake and exhaust manifolds data of MRCVC engine.

shaft angle (0◦) is taken as the angle of the center vane labeled with 1 in figure 6.4.

6.2.1 Port design 1

In the first port design tested, the ports are placed in the central housing as sketched in
figure 6.4. In this case, the intake and exhaust ports are equal. The minimum passage
area for each port as a function of the shaft angle is plotted in figure 6.5. Ports timing
are the following

1

2 3

Figure 6.4: Model of port design 1.



6.2 Engine performance characteristics using 0D/1D models 109

• IPO: 595◦.

• IPC: 170◦.

• EPO: 430◦.

• EPC: 5◦.
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Figure 6.5: Gas-passage minimum area for intake and exhaust ports (design 1).

Figure 6.6 shows some results during a cycle at 4000 rpm, after reaching the stationary
state. The pressure in a chamber, and in the intake and exhaust ports is plotted in sub-
figures 6.6(a) and 6.6(b). The variation of mass air, fuel and burnt gases into the chamber
is shown in figure 6.6(c). As could be noted, this port design allows good scavenge of the
chamber. The mass flow rate through ports is presented in figure 6.6(d), where positive
values represent inflow for the intake port and outflow for the exhaust port.

Performance curves are presented in section §6.2.3.

6.2.2 Port design 2

In this design, the ports are placed in the side housing. Figure 6.7 shows a sketch of the
geometry. The gas-passage area for intake and exhaust ports as a function of the shaft
angle is plotted in figure 6.8.

For the case tested, ports timing are

• IPO: 20◦.

• IPC: 170◦.

• EPO: 430◦.

• EPC: 590◦.
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Figure 6.6: State in chamber, in intake port, in exhaust port, and mass flow rate through
ports during a cycle at 4000 rpm for port design 1.

intake port

exhaust port

Figure 6.7: Model of port design 2.

Note that there is no possibility to overlap the final part of the exhaust process with the
beginning of intake process. This fact could difficult the scavenging of the chamber. In
addition, the gas passage area is limited by ports timing.

Figures 6.9(a) to 6.9(d) show the pressure in chamber and in intake and exhaust ports
during a cycle, a close-up of these pressure curves, the mass into the chamber during a
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Figure 6.8: Gas-passage area for intake and exhaust ports (design 2).

cycle, and the mass flow rate through intake and exhaust ports respectively. These figures
correspond to an engine velocity of 4000 rpm. In figure 6.9(c), a relatively high amount of
residual gases remain into the chamber at EPO, which decreases the volumetric efficiency.
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Figure 6.9: State in chamber, in intake port, in exhaust port, and mass flow rate through
ports during a cycle at 4000 rpm for port design 2.
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6.2.3 Comparison of port designs

In this section, the port designs presented above are compared via the performance char-
acteristics. Indicated power and torque are plotted as a function of the engine velocity
in figure 6.10. As could be noted, there are no significant difference between the two
port designs. The reason of this may be that the negative effects introduced in the per-
formance by the deficiencies of each design are approximately equal, tending to equalize
their own outputs. Then, it is concluded that the best performance could be achieved
using simultaneously the two designs in a proper way.
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Figure 6.10: Performance characteristics for a MRCVC with two port designs.

6.3 Numerical simulation of fluid flow in the

MRCVC engine

The fluid flow problem is solved using a two-dimensional approximation of the three-
dimensional chamber. Due to the cylindrical shape of the chamber in the output shaft
axis direction, this approximation could give a good representation of the flow in the
middle plane of the chamber. The geometric data of the MRCVC considered are the
same of the engine used in the simulation whose results were presented in section §6.2.

In the following sections results of the CMD and CFD problems are presented and
discussed.

6.3.1 Computational mesh dynamic problem

As noted in chapter 2, the numerical simulation of in-cylinder flows in internal combustion
engines has the advantage that the CMD problem could be solved a priori, i.e. before to
solve the fluid problem. The displacement of solid walls is imposed and their movement
is not affected by the flow field. In addition, the periodicity of the movement allows to
compute the mesh only for one cycle. In the particular case of the MRCVC engine, the
mesh could be generated for a ‘stroke’ and, then, to flip it around vertical and horizontal
symmetry axis.

As it is shown in figure 6.3, the flow domain changes either their topology or their
boundary definition four times during a ‘stroke’. Then, at least five remeshing stages
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must be introduced per ‘stroke’. More remeshing stages could be necessary in order to
keep a good mesh quality.

The meshes generated have triangular elements with h = 0.2 mm on the boundaries
and h = 0.5 mm in the interior region of the domain. Two sequences of meshes were
generated in order to compare the mesh quality obtained. In the first sequence, a mesh
were generated for each region (sub-interval) at the angle representing the middle of the
interval where the region is valid. In the second sequence, the intervals 2, 3 and 4 were sub-
divided into two sub-intervals with the same length. In both cases, the mesh movement
was computed using prescribed displacements of the boundary nodes. Table 6.2 contains
the number of elements and nodes in each mesh generated for both sequences.

First sequence Second sequence
Elements Nodes Elements Nodes

Interval 1 111980 58156 111980 58156

Interval 2 94496 48711
103215 53567
80880 41986

Interval 3 47054 24358
58014 30174
36645 19145

Interval 4 17047 9056
21662 11422
14205 7575

Interval 5 13083 6888 13083 6888

Table 6.2: Data of meshes generated.
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Figure 6.11: Mesh quality as a function of the rotation angle.

Figure 6.11 shows (in logarithmic scale) the mesh quality as a function of the rotation
angle of the output shaft. The element quality is measured using the expression (2.11).
In the figure, the black solid line corresponds to the first sequence of meshes and the
blue dashed line to the second one. As expected, the mesh quality deteriorates sharply
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at the angles that limit two consecutive sub-intervals. This occur since some circular
arcs belonging to the domain boundary appear and/or disappear from an interval to the
following one. Then, the area of elements attached to these boundary arcs tends to zero
and, thus, the mesh quality goes to zero also.

In figures 6.12 to 6.16 the distribution of the element quality q over the whole mesh
at several crank angles is presented. Each figure contains the element quality field at
the initial and final angles of the intervals in which the ‘stroke’ is sub-divided. These
distributions correspond to the second sequence of meshes generated.

(a) θ = 0 (b) θ =
n− 2
2n

π − φ

Figure 6.12: Element quality field at the initial and final angles of interval 1.

(a) θ =
n− 2
2n

π − φ (b) θ =
n− 2
2n

π + φ

Figure 6.13: Element quality field at the initial and final angles of interval 2.

6.3.2 Computational fluid dynamic problem

In order to avoid the geometric difficulties associated with the port design 1 presented in
section §6.2 and since the port design 2 can not be simulated in a 2D model, the intake and
exhaust ports were placed in the internal region of the stator as sketched in figure 6.17.
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(a) θ =
n− 2
2n

π + φ (b) θ =
n+ 2
2n

π + φ− 2ψ

Figure 6.14: Element quality field at the initial and final angles of interval 3.

(a) θ =
n+ 2
2n

π + φ− 2ψ (b) θ =
n+ 2
2n

π − φ

Figure 6.15: Element quality field at the initial and final angles of interval 4.

(a) θ =
n+ 2
2n

π − φ (b) θ =
n+ 2
2n

π

Figure 6.16: Element quality field at the initial and final angles of interval 5.
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The size and position of ports are determined from the port design 2 used in section §6.2.
Cold conditions (without combustion) are assumed for the computation.

intake port

exhaust port

Figure 6.17: Intake and exhaust port geometries for the two-dimensional model.

The local preconditioning strategy presented in chapter 3 is applied to solve the
problem. No-slip boundary condition is imposed on the solid walls, which are as-
sumed to be insulated. Intake and exhaust ports are modeled using the combina-
tion of wall and absorbing boundary conditions presented in section §1.2.3 with re-
strictions imposed via Lagrange multipliers. Reference states for absorbing boundary
conditions are assumed constant in time. For the intake port, this reference state
is Ui

ref = [1.3937 kg/m3, 0 m/s, 0 m/s, 120 kPa]T , and for the exhaust port is Ue
ref =

[0.5575 kg/m3, 0 m/s, 0 m/s, 80 kPa]T . Initially, the fluid is at rest with constant pressure
(100 kPa) and temperature (300 K). The gas has constant properties along the whole
cycle with the following values: R = 287 J/kg K, µ = 1 × 10−5 Pa·s, κ = 0.01415 W/m
K, and γ = 1.4. The rotation speed of the engine shaft is 3000 rpm and the time step is
calculated with a target CFLu number of 10. The minimum ∆θ permitted is 0.25 CAD
and the maximum is 3 CAD.

At each remeshing stage, the solution is projected from the ‘old’ mesh to the new
one by using the interpolation functions of the FEM method. This projection is non-
conservative, nevertheless it was used because that subject is out from the scope of this
thesis and will be improved in the future.

The problem is solved until the solution is approximately stationary (cyclic), which is
reached in three cycles. The results obtained from the last cycle simulated are presented
in the following figures. Figures 6.18 to 6.23 show the magnitude of the flow velocity.
Although only a chamber was simulated (the ‘reference’ chamber), the remaining four
chambers are represented in the figures by repetition via a rotation transformation of an
integral multiple of 2π/n.

Due to the large difference of the pressure along the whole cycle, the pressure field
is presented in non-dimensional form and with a logarithmic scale. Figures 6.24 to 6.29
present the quantity log(p/pref), were pref = 100 kPa was adopted.
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Figure 6.18: Magnitude of the flow velocity ([m/s]) in the chambers of the MRCVC with
reference chamber at θ = 0◦.

Figure 6.19: Magnitude of the flow velocity ([m/s]) in the chambers of the MRCVC with
the reference chamber at θ = 20◦.
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Figure 6.20: Magnitude of the flow velocity ([m/s]) in the chambers of the MRCVC with
the reference chamber at θ = 40◦.

Figure 6.21: Magnitude of the flow velocity ([m/s]) in the chambers of the MRCVC with
the reference chamber at θ = 60◦.
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Figure 6.22: Magnitude of the flow velocity ([m/s]) in the chambers of the MRCVC with
the reference chamber at θ = 80◦.

Figure 6.23: Magnitude of the flow velocity ([m/s]) in the chambers of the MRCVC with
the reference chamber at θ = 100◦.
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Figure 6.24: Non-dimensional logarithmic pressure field in the chambers of the MRCVC
with the reference chamber at θ = 0◦.

Figure 6.25: Non-dimensional logarithmic pressure field in the chambers of the MRCVC
with the reference chamber at θ = 20◦.
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Figure 6.26: Non-dimensional logarithmic pressure field in the chambers of the MRCVC
with the reference chamber at θ = 40◦.

Figure 6.27: Non-dimensional logarithmic pressure field in the chambers of the MRCVC
with the reference chamber at θ = 60◦.
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Figure 6.28: Non-dimensional logarithmic pressure field in the chambers of the MRCVC
with the reference chamber at θ = 80◦.

Figure 6.29: Non-dimensional logarithmic pressure field in the chambers of the MRCVC
with the reference chamber at θ = 100◦.



Chapter 7

Conclusions and future work

Time of departure
From the depths of despair

I seek no paradise, though the end draws near.
It is an endless overture of my own reconstructions

I seek no paradise, just desire the salvation
Limbonic Art

The main goal of this thesis was the proposition, description and testing of some
computational tools to solve in-chamber flows in IC engines. This type of problems involve
several aspects to be solved, from which were addressed the mesh dynamics problem,
the resolution of compressible flows at the low-Mach number limit, and the coupling
between models with different level of approximation, particularly 1D/multi-D coupling
for compressible flow.

Regarding the mesh dynamic problem, an optimization-based simultaneous mesh un-
tangling and smoothing strategy was proposed. The functional adopted here, based on
a mesh quality indicator, showed to be very robust to follow severe boundary deforma-
tions including in IC engine problems. Generally, in FSI problems the time step size is
restricted by one of the two physical problems, the structural dynamic problem or the
fluid dynamic one. Being the mesh dynamic an auxiliary problem, it is expected that it
will not be more restrictive than any of the other two. However, in several applications
the refinement imposes the reduction of the time step size due to the mesh dynamics in
order to avoid the element inversion. The enhancement of the CMD with simultaneous
untangling and smoothing circumvents this drawback. A global solver is very attractive
to make this procedure less user-dependent. In addition, this proposed technique was
successfully applied to conformal mesh generation in 2D domains (see appendix B).

One of the most popular strategies to solve flow problems at the low-Mach number
limit, the preconditioning of the governing equations, was adopted in the thesis. Since
the Mach number of in-cylinder flows in IC engines could range from very low values
to transonic values, the method of preconditioning is the most appropriate. This tech-
nique was applied in conjunction with the dual time stepping strategy in order to solve
transient problems. The preconditioning matrix used was originally proposed by Choi
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and Merkle [16], and designed for steady compressible flows. Some ‘free’ parameters of
that matrix were redefined for transient flows analyzing the eigenvalues of the system.
A stabilized finite element formulation was derived from the original work formulated in
terms of a finite volume method. This formulation was tuned having into account the
modified wave propagation introduced by the preconditioned mass matrix for unsteady
problems. The resultant method was compared with solutions of Navier-Stokes equations
for incompressible flows with very good results. Furthermore, it was shown that, under
the same conditions (mesh element size, time step, etc.), the preconditioning strategy
gives better results than the non-preconditioned system. In addition, the strategy was
tested in IC engine problems under cold conditions.

A 1D/0D code for computational simulation of IC engines was developed. The math-
ematical models and the numerical methods used were described briefly. Some solution
strategies were reformulated to use an implicit scheme of integration in time. The code
was written in the language Python in order to take advantage of the object-oriented
programming and the possibility of integration with other languages.

Besides, two simple approaches were studied to solve the 1D/multi-D domain coupling
for compressible flows. One of such approaches consists in the use of absorbing boundary
conditions at the coupling interface. In the proposed method, the constraints were applied
via penalization. The technique is attractive from the theoretical point of view, but its
rate of convergence and robustness must be improved in order to be applied to practical
problems. The other coupling method proposed is based on constraints of the state at the
coupling interface. This method could be useful when an implicit time scheme is applied
and the problem is solved in a ‘monolithic’ way. In the 1D/1D case, the non-splitted
system is recovered. The method was successfully applied to solve 2D/1D and 3D/1D
coupling problems. The junction 3-to-1 of the exhaust manifold of a six-cylinder IC engine
was simulated using the 3D/1D coupling strategy. The solution was compared with the
results obtained from the 1D/0D code and a verification of the hypothesis in the pipe
junction 0D model proposed by Corberan was also carried out.

Furthermore, simulations of the rotative IC engine MRCVC were performed. Perfor-
mance characteristic curves were estimated for two different port designs applying 1D/0D
models. Also, a two dimensional CFD simulation in cold conditions was performed.

A great amount of work remains to be done on the improvement of the computational
tools for the simulation of IC engines. For instance, the effective coupling of the 1D/0D
code and the CFD-3D code is proposed as a future work.

The thermodynamic models of valve and pipe junction use the compatibility equations
along characteristic lines in order to close the system of equations. The integration along
these curves is done explicitly in the code developed. Thus, a full implicit model for such
devices should be proposed. On the other hand, CFD multi-D computations could be
used for verification and/or improvement of the hypothesis involved in the 0D models
applied in the description of IC engine operating characteristics.

In addition, the computational tools developed in this thesis should be massively ap-
plied to the simulation of in-cylinder flows in 3D geometries of IC engine, in particular the
MRCVC. These simulations should incorporate the modeling of the combustion process,
spray dynamics, mixture formation, more accurate boundary conditions (e.g. a law of the
wall for the temperature to take into account turbulent effects), etc.



Appendix A

A finite element method for
incompressible flows

A.1 Navier-Stokes equations for incompressible flows

Let Ωt ⊂ Rnd the spatial domain and (0, tf) the temporal domain, and let Γt denote the
boundary of Ωt.

The Navier-Stokes equations governing an incompressible flow using an ALE descrip-
tion are

∇ · u = 0 on Ωt × (0, tf)

ρ

[
∂u

∂t
+ (u−w) ·∇u

]
−∇ · σ = 0 on Ωt × (0, tf)

(A.1)

with σ the stress tensor, given by

σ = −pI + 2µeffε(u)

ε(u) =
1

2
((∇u) + (∇u)T )

(A.2)

where µeff = ρνeff is the effective dynamic viscosity proportional to the effective kinematic
viscosity (νeff) defined below and ε is the strain rate tensor. The effective kinematic
viscosity is computed as the sum of the molecular (ν) and the turbulent (νt) kinematic
viscosities: νeff = ν + νt. In order to compute the turbulent kinematic viscosity, the eddy
viscosity model of Smagorinsky [69] for the LES strategy is used

νt = (Csh)
2∆

√
2ε(u) : ε(u) (A.3)

A.1.1 Boundary conditions

The continuum formulation is completed by the initial and boundary conditions. Relative
to the boundary conditions the whole boundary may be split in parts, imposing on each
part a Dirichlet condition, a Neumann condition or a near wall boundary condition. For
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the velocity field these boundary conditions are

u = g on Γg
t

n · σ = h on Γh
t

n · σ = hwall(u∗(u)) on Γwall
t

(A.4)

where

Γt = Γg
t ∪ Γh

t ∪ Γwall
t

Γg
t ∩ Γh

t ∩ Γwall
t = ∅

(A.5)

If Γh
t = ∅ and Γwall

t = ∅, the pressure should be fixed at a reference value in at least
one node in order to remove the corresponding rigid mode in the numerical computation.

A.2 Finite element formulation

The functional spaces for the weight and interpolation functions are defined as follows

S h
u = {uh|uh ∈ (H1h)nd , uh = gh on Γg

t}
V h

u = {Wh|Wh ∈ (H1h)nd , Wh = 0 on Γg
t}

S h
p = {qh|qh ∈ H1h}

V h
p = {ph|ph ∈ H1h}

(A.6)

The SUPG-PSPG formulation of equations (A.1) is written as [78]
Find uh ∈ S h

u and ph ∈ S h
p such that ∀Wh ∈ V h

u , ∀qh ∈ V h
p∫

Ωt

Wh · ρ
(∂uh

∂t
+ (uh −wh) ·∇uh

)
+

∫
Ωt

ε(Wh) : σhdΩ +

+

nel∑
e=1

∫
Ωt

δh ·
[
ρ

(
∂uh

∂t
+ (uh −wh) ·∇uh

)
−∇ · σh

]
dΩ +

+

nel∑
e=1

∫
Ωt

εh ·
[
ρ

(
∂uh

∂t
+ (uh −wh) ·∇uh

)
−∇ · σh

]
dΩ +

+

nel∑
e=1

∫
Ωt

νLSIC∇ ·Whρ∇ · uhdΩ +

∫
Ωt

qh∇ · uhdΩ =

∫
Γh

t

Wh · hhdΓ

(A.7)

The stabilization parameters are defined as

δh = τSUPG((uh −wh) ·∇)Nh

εh = τPSPG
1

ρ
∇qh

τSUPG =
h

2‖uh −wh‖
z(Reu)

τPSPG = τSUPG

νLSIC =
h

2
‖uh −wh‖z(Reu)

(A.8)
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where Reu is the Reynolds number based on the element parameters, i.e.

Reu =
‖uh −wh‖h

2ν
(A.9)

The element length h is computed by using equation (1.32).

z(Re) =

{
Re/3 0 ≤ Re < 3,

1 3 ≤ Re
(A.10)



Appendix B

Mesh generation using a CMD
technique

The CMD method proposed in chapter 2 can be useful for mesh generation. In this
case, the topology could be generated in an auxiliary domain where the mesh may be
structured. Then, the boundary nodes in that mesh are relocated in the real boundary.
This sharp movement of the boundary nodes is similar to the situation faced in mesh
dynamics. Therefore, using the mesh untangling and smoothing technique presented, a
valid mesh is generated. The generation of orthogonal meshes of quadrangles is perhaps
the most interesting application from the practical point of view. In the next sections
several examples of orthogonal mesh generation are presented and compared their results
with analytical mappings.

B.1 Generation of orthogonal meshes

The minimum internal angle of elements is often used as a criterion for the quality of
meshes. In this sense orthogonal meshes are optimal, since all the internal angles are right
ones or almost. Methods like conformal mapping let to generate orthogonal meshes around
moderately simple geometries. However, a general practical method for the generation of
orthogonal meshes is still a subject of research.

As the CMD technique proposed in chapter 2 generates meshes through minimization
of a functional related with the distortion of the elements, it may be possible that under
certain conditions the method returns optimal meshes that are obtained through other
analytical methods like conformal mapping, for instance.

The following list summarizes the interest in the generation of orthogonal meshes

• Orthogonal meshes are optimal according to the minimal internal angle criterion.
• Some numerical methods are simplified (and possibly faster) in orthogonal meshes.
• Some numerical methods require orthogonal meshes.

B.1.1 Transformation for the reentrant corner at right angle

Conformal mapping is a technique based on representing the 2D space as a complex plane.
As transformations between complex planes that are derived from analytical functions
preserve angles, orthogonal meshes can be obtained through mapping the actual domain
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to a rectangle, generating an orthogonal (Cartesian) mesh in this rectangle, and mapping
back the node positions to the actual domain. The mesh created is almost orthogonal,
i.e. the angles at the intersections converge to π/2 under mesh refinement.

One of such a mesh is shown in figure B.1. It is obtained by mapping the complex
plane ζ = ξ + iη, onto z = x + iy with the transformation z = ζ

3/2. This transformation
is often used to generate orthogonal meshes for the reentrant corner flow problem with a
right angle. The mesh shown in the figure was obtained by applying the transformation
to a homogeneous square mesh of 30× 30 elements in the unit square in 0 ≤ ξ, η ≤ 1.

Figure B.1: Orthogonal mesh for the reentrant corner problem generated with the z = ζ
3/2

mapping.

This mesh can be obtained with the proposed method by deforming the square mesh
while imposing displacements to nodes at the sides DB and BA, and leaving free the
nodes on sides AE and ED. However it is crucial to let the nodes on the DB and BA
sides to slide freely along the wall, imposing a linear restriction on the displacements.
If both displacements are imposed at this walls, then the mesh spacing along them will
remain constant and the mesh will not be orthogonal. This is hard to achieve for curved
boundaries, where the nodes must be leaved to slide freely representing a nonlinear re-
striction on the displacements. Furthermore, the nodes must be able to slide across the
corners, as if they had a large but finite curvature. This restriction makes the use of this
technique rather impractical for generating conformal meshes. However some examples
are shown here only for the sake of demonstrating the feature.
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In this particular case, the problem is ill-posed because for a given set of node positions
{xj}n

j=1 a scalar multiple {αxj}n
j=1 has the same functional value. In order to solve this

problem, the functional is regularized by adding a term proportional to the volume of the
element (Cv 6= 0 in definition (2.8)).

The mesh obtained with the proposed method is shown in figure B.3. Each quadrangu-
lar element has been split in four triangles (see equation (2.11)), so that each quadrangle
appears plotted along with its diagonals. In order to assess quantitatively the error be-
tween the analytical mapping and the numerical one, the position of the nodes in the
x = Re {z} axis (i.e. the relation x = x(ξ)) are superimposed in figure B.2. There is no
appreciable error in the numerical result.

Figure B.2: Comparison of nodes position along the x-axis.

In order to check quantitatively the error in the orthogonality of the mesh, the angles
at the corners of the quadrangular elements are computed and the maximum deviation
from a right angle for all the elements converging to a node is computed. This is plotted
for all the nodes of the mesh versus the radial distance to the origin B in figure B.4. Of
course, there is a large error of 45

◦
for the node at the origin B that is fixed and can not

be improved. The orthogonality deviation quickly diminishes with the distance to the
origin, and for r = 0.1 it is lower than 2.5

◦
. Another criterion is the deviation of the angle

between the diagonals at the point of intersection with respect to 90
◦
. This is shown in

the same figure and is much lower than the deviation at the nodes. This is always smaller
than 1.5

◦
and for r > 0.1 it is lower than 0.1

◦
.

B.1.2 Transformation of a square into a rhombus

Another example where a analytical solution can be achieved is the transformation of a
square into a rhombus (see figure B.5). In this case the nodes are left to slide freely along
each side. Note that, by symmetry, the number and distribution of nodes will be the
same at each side, so that the nodes will not slide across corners from one side to another.
Any other quadrangle would have the nodes required to slide across the corners, from one
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Figure B.3: Orthogonal mesh obtained with the proposed method for the reentrant corner.
Quadrangle elements along with their diagonals are shown.

Figure B.4: Maximum deviation angle at the nodes and deviation angles at the center of
the elements for the reentrant corner.

side to another and then requires special treatment for imposing this kind of boundary
condition, which is no longer a linear restriction.
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In figure B.5 the numerically obtained transformation is shown for a mesh of homoge-
neously spaced 30×30 quadrangular elements, and a tilt angle of 54

◦
. Note the growth of

the elements near the corners A and C, where the angle is reduced from the right angle,
and the contraction of the elements at corners B and D. Again, the deviation of the
angle between the diagonals respect to 90 degree has been computed and it is shown in
figure B.6. The deviation angles have been sorted and plotted against the element index.
It can be seen that, at a tilt angle of 54

◦
there are 855 elements (95%) with a deviation

angle under 0.35
◦
. Furthermore, the deviation angles for finer meshes of 60 × 60 and

120× 120 quadrangles are computed in order to check the convergence of the mesh to an
orthogonal, conformal one. In figure B.7 the distribution of deviation angles for the three
meshes is shown, in logarithmic plot. It is observed that while the reduction in deviation
angles is roughly by a factor of 5 from the 30× 30 to the 60 × 60 meshes, the reduction
from the 60× 60 to the 120× 120 is by a factor of more than 100.

The conformal mapping from the square to the rhombus can be found analytically
through means of two Schwartz-Christoffel transformation (SCT). The SCT allows the
computation of the transformation between a half plane and an arbitrary region enclosed
by a polyhedron. However, some free parameters of the SCT (the position of the trans-
formed vertexes in the half plane boundary) must be computed numerically. This requires
solving nonlinear equations whose residual functions involve singular integrals, and then
is not straightforward. In this case two SCT’s can be computed so that the first maps a
half plane into the square and the second maps the half plane into the rhombus. Then,
the transformation from the square into the rhombus is obtained composing the second
with the inverse of the first.

Figure B.5: Orthogonal mesh obtained with the proposed method for the transformation
of a square into a rhombus. Quadrangle elements along with their diagonals are shown.

B.1.3 Ellipse

A half plane can be transformed in the exterior of an ellipse by composing the transfor-
mation v = ew that maps the half plane Re {w} ≥ 0 in the exterior of a circle |v| > 1
with a Joukowski transformation

z = (1 + a2)−1

(
w +

a2

w

)
(B.1)

The value of a is adjusted with the eccentricity of the ellipse. In figure B.8 a mesh of
50× 50 elements around an ellipse of eccentricity ε = 0.932 (this corresponds to a minor
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Figure B.6: Deviation angle for the intersection of quadrangle diagonals for the mesh of
30× 30 elements.

Figure B.7: Deviation angle for the intersection of quadrangle diagonals for the mesh of
30× 30, 60× 60 and 120× 120 elements.

to major axis ratio of b/a = 0.361, eccentricity is defined ε =
√

1− b2/a2). The nodes at
the BC and AD sides are left to slide freely along the horizontal and vertical directions
respectively, and the nodes at the outer boundary BD are left free. At the ellipse skin
AB the nodes are allowed to slide freely along the curved boundary. Due to the curvature
of the boundary, this is as a nonlinear restriction on the displacements of those nodes.
These restrictions are imposed using penalization. The solution was obtained through
continuation in the ellipse eccentricity and on the penalization parameter.
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In figure B.9 it could be seen the element distribution of deviation from orthogonality.
The maximum deviation is 0.002

◦
and 95% of the elements have deviation under 8×10−4

degrees.

Figure B.8: Orthogonal mesh obtained with the proposed CMD method for the region
outside an ellipse of eccentricity ε = 0.932 (b/a = 0.361).

Figure B.9: Orthogonality deviation (at the diagonal intersection) for the mesh around
an ellipse.



Appendix C

Description of MRCVC engine
geometry

C.1 Volume and wall area of the chamber

The area calculated (A) corresponds to the total surface area of the side walls of the
chamber, without including the upper and lower lids. Each of these can be calculated as
the volume of the chamber (V ) divided by the chamber height (h).

In the formulas developed in this appendix, the following radii and angles (specified
in figure C.1) are used repeatedly

Ri =
√
R2 − r2

Re =
√
R2 + 3r2

φ = arcsin
( r
R

)
δ =

π

n
− φ

β =
π

n
+ φ− arctan

(
2r

Ri

)
(C.1)

C.1.1 Interval 1

This interval extends from the initial position of reference to the position in which the
outside apex of the leading vane touches the vertex of the rotor and, simultaneously, the
interior apex of the vane touches the top apex of the internal region of the housing. The
interval angular validity is

0 ≤ θ <
n− 2

2n
π − φ (C.2)

The area and volume are calculated according to the following equations

A = 2h
[
2
(
φR + φr +

π

n
R

)
+ δRi + βRe

]
(C.3)

V = h

[
4Rr sin

(π
n

)
cos θ +Ri (2r − 3φRi)−

4πr2

n
+R2

e arccos

(
R2 + r2

RRe

)]
(C.4)
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φ

Figure C.1: Basic geometry of the MRCVC engine.

C.1.2 Interval 2

The second interval extends from the position of contact of the rotor with the apex of
the leading vane, up when this vane is located in the middle of the region in which the
volume of chamber remains constant. The angle of rotation of the output shaft is in the
range

n− 2

2n
π − φ ≤ θ <

n− 2

2n
π (C.5)

with the area and volume of the chamber given by the expressions

A = h

[ (
n− 2

2n
π + 3φ− θ

)
(R + r) + 2

(
n+ 2

2n
π − φ− θ

)
R

+ 2δRi −
(
φ+ θ − 2β − n− 2

2n
π

)
Re

] (C.6)

V = h

{
2r

[
Ri +R sin

(π
n
− θ

)]
+

1

2
R2

e arctan

(
2r

Ri

)
− 2r2

(
n+ 2

2n
π − θ

)
+

1

2

[
R2

e arccos

(
R2 + r2

RRe

)
− 3φR2

i

]
+

√
b(b− l1)(b− l2)(b− l3)

+
1

2

[
r2(γ2 − sin γ2)−R2(γ1 − sin γ1)−R2

i (γ3 − sin γ3)
]

−R2
i

[
εi −

sin(2εi)

2

]
−R2

[
εr −

sin(2εr)

2

]}
(C.7)
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where b = (l1 + l2 + l3)/2, l1 = 2R sin(γ1/2), l2 = 2r sin(γ2/2), l3 = 2Ri sin(γ3/2),
γ1 = (n− 2)π/2n+φ− θ− 2εr, γ2 = (n− 2)π/2n+φ− θ, γ3 = (n− 2)π/2n+φ− θ− 2εi,
being

εi = arcsin

[√
4R2a2 − (a2 + r2)2

2Ria

]

εr = arcsin

[√
4R2a2 − (a2 + r2)2

2Ra

]

a =

√
2R

[
R +Ri cos

(
n− 2

2n
π − θ

)]
− r2

C.1.3 Interval 3

The upper limit of validity of the interval 3 corresponds to the position in which the leading
vane leaves the contact with the rotor, starting again the contact with the housing. This
interval is given by

n− 2

2n
π ≤ θ <

n− 2

2n
π + φ (C.8)

The following are the expressions for the calculation of the area and volume of the
chamber

A = h

[ (
n− 2

2n
π + 3φ− θ

)
(R + r) + 2

(
n+ 2

2n
π − φ− θ

)
R +

2δRi −
(
φ+ θ − 2β − n− 2

2n
π

)
Re

] (C.9)

V = h

{
2r

[
Ri +R sin

(π
n
− θ

)]
+

1

2
R2

e arctan

(
2r

Ri

)
− 2r2

(
n+ 2

2n
π − θ

)
+

1

2

[
R2

e arccos

(
R2 + r2

RRe

)
− 3φR2

i

]
+

√
c(c− l1)(c− l2)(c− l3)−

R2
i (γ − sin γ)

} (C.10)

where c = (l1 + l2 + l3)/2, l1 = 2R sin(γ/2), l2 = 2r sin(γ/2), l3 = 2Ri sin(γ/2), γ =
(n− 2)π/2n+ φ− θ.

C.1.4 Interval 4

This interval extends to

n− 2

2n
π + φ ≤ θ <

n+ 2

2n
π − φ (C.11)
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establishing its upper limit for the position in which the apex of the vane encounters the
internal part of the housing, and where the volume of the chamber reaches its minimum.
The expressions for the area and volume for this region are given according to

A = h

[
2φ(R + r) +

(
n+ 2

2n
π − φ− θ

)
(2R +Ri)−(

φ+ θ − 2β − n− 2

2n
π

)
Re

] (C.12)

V = h

{
2r

[
Ri +R sin

(π
n
− θ

)]
+

1

2
R2

e arctan

(
2r

Ri

)
− 2r2

(
n+ 2

2n
π − θ

)
+

1

2

[
R2

e arccos

(
R2 + r2

RRe

)
− 3φR2

i

]} (C.13)

C.1.5 Interval 5

This last interval covers a half of the period in which the volume of the chamber remains
constant. The angle of rotation is in

n+ 2

2n
π − φ ≤ θ <

n+ 2

2n
π (C.14)

Both the volume and area remain constant and can be calculated using the following
expressions

A = h
[
2φ(R + r) +

(
β − π

n

)
Re

]
(C.15)

V = h

{
2r

[
Ri −R sin

(π
2
− φ

)]
+

1

2
R2

e arctan

(
2r

Ri

)
− 2r2φ+

1

2

[
R2

e arccos

(
R2 + r2

RRe

)
− 3φR2

i

]} (C.16)



Appendix D

Resumen extendido en castellano

T́ıtulo: Metodoloǵıas para la simulación
numérica del flujo de fluidos en motores de

combustión interna

En esta tesis se propone realizar el desarrollo teórico y la implementación computa-
cional de un conjunto de nuevas herramientas o metodoloǵıas que permitan la resolución de
problemas de la Mecánica de Fluidos Computacional en dominios con fronteras móviles. El
desarrollo se plantea pricipalmente enfocado hacia la realización de flujometŕıas dinámicas
virtuales en motores de Combustión Interna, en particular el novedoso Motor Rotativo
de Combustión a Volumen Constante [80] (MRCVC).

Entre las diversas caracteŕısticas que posee el flujo dentro de las cámaras de un motor
de combustión interna, se listan a continuación las de mayor importancia [65]:

1. Flujo turbulento, viscoso y compresible.

2. Dominios 3D móviles y geometŕıas complejas.

3. Bajo número de Mach en gran parte del ciclo.

4. Flujo reactivo.

5. Inyección de combustible.

6. Las condiciones de contorno del problema son dinámicas y desconocidas a priori.

Los objetivos de esta tesis se centran en los ı́tems 2, 3 y 6 de la lista precedente.

D.1 Ecuaciones de gobierno

El modelo básico para un flujo viscoso compresible lo constituye el sistema de ecuaciones
de Navier-Stokes. Aplicando una formulación ALE [22] (Arbitrary Lagrangian Eulerian)
es posible resolver las citadas ecuaciones en dominios móviles. Se asume que el fluido es
newtoniano y para el cual se verifican la hipótesis de Stokes y la ley de Fourier para el
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flujo de calor. La ecuación de estado adoptada es la de un gas perfecto con constante R,
relación de calores espećıficos γ = cp/cv, viscosidad dinámica µ y conductividad térmica
κ. Bajo estas hipótesis y empleando la técnica ALE, el sistema de ecuaciones que gobierna
el problema se escribe, en su forma cuasi-lineal, del siguiente modo [33]

∂U

∂t
+ (Ai − wiI)

∂U

∂xi

=
∂

∂xi

(
Kij

∂U

∂xj

)
+ S en Ωt × (0, tf) (D.1)

donde U = [ρ, ρu, ρE]T es el vector de variables conservativas, ρ es la densidad, u el vector
velocidad, E es la enerǵıa total por unidad de masa, w = [w1, w2, w3]

T es la velocidad del
sistema de referencia, Ai y Kij son, respectivamente, las matrices jacobianas advectivas y
difusivas [33], I es el tensor identidad de segundo orden y S = [0, ρfe, ρfe ·u]T es el vector
que contiene los términos fuente.

El modelado de la turbulencia se realiza mediante el modelo LES (Large Eddy Simula-
tion) con la viscosidad turbulenta (µt) calculada mediante el modelo de Smagorinsky [69].

D.1.1 Formulación mediante elementos finitos

La discretización espacial del sistema de ecuaciones (D.1) se realiza aplicando el Método de
Elementos Finitos estabilizado mediante la estrategia Streamline Upwind/Petrov-Galerkin
(SUPG) y con la adición de un operador de shock capturing. Considerando nula la veloci-
dad de la grilla (sistema de referencia), esta formulación se escribe como:
Hallar Uh ∈ S h tal que ∀Wh ∈ V h∫

Ω

Wh ·
(
∂Uh

∂t
+ Ah

i

∂Uh

∂xi

)
dΩ +

∫
Ω

∂Wh

∂xi

·Kh
ij

∂Uh

∂xj

dΩ

+

nel∑
e=1

∫
Ωe

τ (Ah
k)

T ∂W
h

∂xk

·
[
∂Uh

∂t
+ Ah

i

∂Uh

∂xi

− ∂

∂xi

(
Kh

ij

∂Uh

∂xj

)
− S

]
dΩe

+

nel∑
e=1

∫
Ωe

δsc
∂Wh

∂xi

· ∂U
h

∂xi

dΩe =

∫
Ω

Wh · SdΩ +

∫
Γ

Wh · fd∂Ω

(D.2)

donde

S h = {Uh|Uh ∈ [H1h(Ω)]ndof , Uh|Ωe ∈ [P 1(Ωe)]ndof , Uh = g sobre Γg}
V h = {Wh|Wh ∈ [H1h(Ω)]ndof , Wh|Ωe ∈ [P 1(Ωe)]ndof , Wh = 0 sobre Γg}

(D.3)

con f y g representando los vectores de condiciones de contorno naturales y Dirichlet,
respectivamente.

Los parámetros de estabilización son aquellos definidos por Aliabadi et al. [1]. La
discretización en el tiempo se realiza empleando el esquema en diferencias trapezoidal.

D.2 Dinámica de la malla

Para resolver la dinámica de la malla fue propuesta una técnica de suavizado basada en
un problema de optimización. En dicho problema el funcional representa la distorsión de
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la malla y el mismo es resuelto en forma global. Tal funcional fue definido del siguiente
modo [45]:

F (x) =
∑

e

Fe(x) =
∑

e

Cv

(
Ve

Vref

− 1

)m

+ Cqq
n
e (D.4)

donde Ve es el volumen del elemento, Vref es un volumen de referencia, qe algún indicador
de calidad elemental, y Cq y Cv son coeficientes que pesan la influencia del término de
volumen y de calidad en el funcional, respectivamente. El exponente m debe ser par y
n ∈ Z− a fin de poner el problema de optimización como uno de minimización.

En esta tesis se propone utilizar el siguiente indicador geométrico de calidad

q = C

[
N∑

i=1

(qS,i)
n

]1/n

(D.5)

donde C es una constante de normalización tal que 0 < q ≤ 1, N es el número total
de posibles subdivisiones del elemento en elementos śımplices, qS,i se calcula para cada
śımplice de la subdivisión y esta dado por

qS =
V

Se

(D.6)

con Se =
∑

j l
nd
j , siendo lj la longitud del lado j del śımplice y nd el número de dimensiones

espaciales.

D.2.1 Estrategia de untangling-smoothing simultáneos

El funcional (D.4) es continuo siempre que qe 6= 0 para todos los elementos de la malla,
debido a que n < 0. qe → 0 cuando para algún śımplice i de la subdivisión del elemento
Vi → 0, dado que

∑
j l

nd
i, j se encuentra acotado por debajo si el śımplice no tiende a

colapsar en un punto. Por lo tanto, la aplicación de la técnica se restringe a mallas
válidas (sin elementos ‘invertidos’) debido a que se forman ‘barreras’ infinitas cuando el
volumen de alguno de los elementos tiende a cero, impidiendo aśı la obtención de una
malla válida a partir de una inválida. Con el objetivo de evitar los problemas asociados
con las singularidades referidas, el funcional puede regularizarse reemplazando V en la
ecuación (D.6) por la función

h(V ) =
1

2
(V +

√
V 2 + 4δ2) (D.7)

Esta es una función del volumen positiva y estrictamente creciente. El parámetro δ
representa el valor de la función cuando el volumen es nulo. Entonces, para volúmenes
positivos, a medida que δ disminuye el funcional modificado se acerca cada vez más al
funcional original, al igual que sus respectivos óptimos. En el ĺımite cuando δ → 0,
F ∗(x) → F (x) punto a punto. Aśı, definiendo una sucesión decreciente para δ se obtiene
una estrategia de untangling-smoothing simultáneos de mallas. El k-ésimo elemento de
la sucesión adoptada, correspondiente al paso k en la iteración de Newton-Raphson, se
calcula aqúı como [44]

δk = max(δk−1 − α̃|∆δk|, β̃δk−1) (D.8)
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con α̃ y β̃ constantes menores que la unidad, y

∆δk = −
(
∂2F ∗

∂δ2

)−1

n,k−1

[(
∂F ∗

∂δ

)
n,k−1

+

(
∂2F ∗

∂δ∂x

)
n,k−1

(xn,k − xn,k−1)

]
(D.9)

D.3 Resolución de flujos compresibles a bajo número

de Mach

Las velocidades caracteŕısticas del flujo dentro de la cámara de un motor de combustión
interna son del orden de la velocidad de los órganos móviles en contacto con el gas (pistón
en un motor alternativo, rotor en un motor rotativo, etc.), excepto en los instantes de
apertura/cierre de válvulas o lumbreras de admisión y escape. Siendo en general bajas
las velocidades caracteŕısticas, el número de Mach del flujo permanece en valores relativa-
mente bajos, lo cual causa el mal condicionamiento de las ecuaciones y la posibilidad de
falta de convergencia y precisión de los métodos numéricos aplicados. Luego, la resolución
de flujos a bajos números de Mach suele acometerse utilizando alguna técnica que mejore
el número de condición del sistema de ecuaciones que gobiernan el flujo, con el objetivo
de obtener buenas soluciones numéricas.

D.3.1 Formulación del problema y análisis de autovalores

En esta tesis se propone utilizar la estrategia de precondicionamiento de las ecuaciones,
la cual consiste en premultiplicar la derivada respecto al tiempo por una matriz apro-
piadamente definida. El objetivo es modificar los autovalores del sistema de tal forma
que el número de condición se reduzca. La estrategia de precondicionamiento resulta útil
cuando el problema a resolver es estacionario, debido a que los sistemas precondicionado
y no precondicionado sólo comparten la misma solución estacionaria. Para aplicar el
método de precondicionamiento a problemas no estacionarios se ha propuesto la técnica
de ‘doble tiempo’ en la cual, para cada instante de tiempo (tiempo f́ısico, t), se avan-
zan las ecuaciones en el pseudo-tiempo (τ) hasta alcanzar un estado pseudo-estacionario
cuando τ → ∞. Introduciendo el término de la derivada pseudo-temporal afectada por
un precondicionador Γ, el sistema de ecuaciones para la estrategia de doble tiempo posee
la forma [83]

Γ
∂U

∂τ
+
∂U

∂t
+ Ai

∂U

∂xi

=
∂

∂xi

(
Kij

∂U

∂xj

)
+ S (D.10)

Se analizará el precondicionador propuesto por Choi y Merkle [16] para la resolución de
problemas estacionarios a bajo número de Mach, el cual fue aplicado en el contexto de
elementos finitos por Nigro et al. [58, 55, 56].

Realizando un análisis de dispersión de la ecuación (D.10) se obtienen los autovalores
del sistema los cuales, para el caso inv́ıscido, poseen la forma

λ1,2,3 = uk(1− ictCFL
−1
u )

λ4,5 =
uk

2
(1− ictCFL

−1
u )T±

(D.11)
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donde

T± = (1 +M2
r χ)±

√
(1−M2

r χ)2 − 4M2
r

[
1

(iM + ctCFL−1
c )2

+ 1− χ

]
(D.12)

D.3.2 Estrategias de precondicionamiento

La figura D.1 muestra el número de condición del sistema de ecuaciones de Euler en
función del número de Courant CFLc. El precondicionador para estado estacionario (SP,
por Steady Preconditioner) corresponde a la definición del número de Mach de referencia
(Mr) dada por Choi y Merkle [16]. Si el problema es no estacionario, Vigneron et al. [85]
sugieren tomar

Mr = min(1,max(
√
M2 + CFL−2

c ,Mε)) (D.13)

Esta definición es la denominada UP (Unsteady Preconditioner) en la figura D.1. Se
incluye además el número de condición para cuando no se utiliza ningún precondicionador
(NP), lo cual equivale a tomar Mr = χ−1/2 en la ecuación (D.12) cuando δ = 1 en la
definición de la matiz de precondicionamiento.
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Figure D.1: Número de condición en función de CFLc para M = 1× 10−3.

Como se observa en la figura, adoptando el precondicionamiento ‘no estacionario’ se
tiene un número de condición de orden 1 para todos los CFLc.

D.4 Acoplamiento de dominios para flujo compresi-

ble

Dada la alta complejidad geométrica de los motores y de los procesos f́ısicos que ocurren
dentro de ellos, sólo es posible resolver una parte de tales máquinas con un modelo 3D. De
este modo y por tratarse de un problema dinámico, una dificultad adicional la presentan
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las condiciones de borde a imponer a dicho modelo. Usualmente estos problemas son
abordados simulando el resto del motor mediante un simulador de motores 0D/1D, con
lo cual se logra, por un lado, modelar toda la máquina simultáneamente (aunque con un
nivel de detalle variable según el modelo) y, por otro, proveer de condiciones de contorno
apropiadas al código 3D. Aplicando la referida aproximación, surge la necesidad de acoplar
adecuadamente las soluciones obtenidas en los distintos dominios computacionales, las
cuales pueden incluso ser calculadas por distintos códigos.

D.4.1 Acoplamiento mediante condiciones de contorno ab-
sorbentes

Un enfoque para resolver el acoplamiento entre los dominios puede ser emplear condiciones
de contorno absorbentes en la interfaz.

Sea una grilla 1D con N elementos y N + 1 nodos numerados desde 1 a N + 1. Luego
de una discretización estandar de las ecuaciones de flujo mediante algún método numérico
(e.g. Elementos Finitos estabilizados mediante la técnica SUPG), se obtiene un sistema
de ecuaciones no lineales de la forma

P


E1(U1,U2) = 0

E2(U1,U2,U3) = 0

...

EN+1(UN ,UN+1) = 0

(D.14)

Se divide el sistema de ecuaciones en algún nodo interno i, de tal forma que el dominio
Ω = [x1, 1, x1, N+1] quede dividido en Ω1 = [x1, 1, x1, i] y Ω2 = [x1, i, x1, N+1]. De este modo,
el nodo i posee ahora estados i1 e i2 en los subdominios izquierdo y derecho, respecti-
vamente. Deben proveerse condiciones de contorno en el nodo i1 (i2) para Ω1 (Ω2) que
aseguren que el problema en cada subdominio esté bien planteado y que pueda ser resuelto
en forma independiente. Un esquema iterativo de resolución debe asegurar que la solución
en cada subproblema converja a la solución del sistema acoplado, es decir,

Uk
i1, U

k
i2 → Ui

Uk
j → Uj ∀j, j 6= i

(D.15)

para k →∞, con k denotando el número de iteración.
Se asume que la ecuación en el nodo i puede separarse en contribuciones de la izquierda

y derecha

Ei(Ui−1,Ui,Ui+1) = Ei1(Ui−1,Ui) + Ei2(Ui,Ui+1) = 0 (D.16)
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Algoritmo basado en caracteŕısticas

Para un sistema general, los problemas a ambos lados de la interfaz se escriben del si-
guiente modo:

P1



E1(U
k+1
1 ,Uk+1

2 ) = 0

E2(U
k+1
1 ,Uk+1

2 ,Uk+1
3 ) = 0

...

Ei1(U
k+1
i−1 ,U

k+1
i1 ) + Π+

U1R
k + Π−

U1R
k+1 = 0

Π−
U1(U

k+1
i1 −Uk

i2) = 0

P2



Ei2(U
k+1
i2 ,Uk+1

i+1 )−Π+
U2R

k −Π−
U2R

k+1 = 0

Π−
U2(U

k
i1 −Uk+1

i2 ) = 0

Ei+1(U
k+1
i2 ,Uk+1

i+1 ,U
k+1
i+2 ) = 0

...

EN+1(U
k+1
N ,Uk+1

N+1) = 0

(D.17)

donde Π±
Uj = Π±

Uj(Uij), j = 1, 2 son las matrices de proyección sobre las caracteŕısticas
que viajan a derecha/izquierda [72]. Luego de cada iteración, P1 provee la parte de las
reacciones que viaja a izquierda (Π−

URk+1), mientras que P2 proporciona la parte que
viaja a derecha.

D.4.2 Acoplamiento para esquemas impĺıcitos resueltos
‘moĺıticamente’

La estrategia de acoplamiento presentada en la sección anterior puede ser útil cuando las
ecuaciones de gobierno en cada dominio son resueltas por códigos distintos. Empleando
un esquema impĺıcito en el tiempo y asumiendo que la resolución puede realizarse como
un sistema ‘monoĺıtico’, la estrategia de acoplamiento se reduce a una restricción entre
los estados en los nodos de la interface.

D.5 Simulación numérica del motor rotativo

MRCVC

Resultados de la simulación CFD bidimensional del MRCVC son presentados en la
figura D.2, en la cual se muestra el módulo de la velocidad del flujo.

La figura D.3 muestra las curvas caracteŕısticas estimadas empleando modelos 1D/0D
para un MRCVC de tres aspas, 500 cm3 de cilindrada unitaria y relación geométrica de
compresión de 9:1.
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(a) θ = 0◦ (b) θ = 20◦

(c) θ = 40◦ (d) θ = 60◦

(e) θ = 80◦ (f) θ = 100◦

Figure D.2: Módulo de la velocidad ([m/s]) en las cámaras del MRCVC.
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Figure D.3: Performance del motor rotativo MRCVC.

D.6 Conclusiones

El principal objetivo de esta tesis fue la propuesta, descripción y validación de algunas
herramientas computacionales útiles para la resolución del flujo de fluidos en el interior
de motores de combustión interna. Este tipo de problemas involucra varios aspectos a
ser resueltos, de los cuales fueron abordados la dinámica de la malla, la resolución de
flujos compresibles en ĺımite de bajo número de Mach y el acoplamiento entre mode-
los dimensionalmente heterogéneos, en particular acoplamientos 1D/multi-D para flujos
compresibles.

Las herramientas desarrolladas fueron aplicadas a la simulación del motor rotativo
MRCVC. Se estimaron curvas caracteŕısticas de este motor para dos tipo de diseño de
puertos de admisión y escape. Además, fue realizada una simulación CFD bidimensional
de las cámaras asumiento condiciones de motor arrastrado.
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