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Abstract. The resolution of Computational Fluid Dynamics (CFD) problems on Graphic Processing
Units (GPU’s) requires of specialized algorithms due to the particular hardware architecture of these
devices. Algorithms that fall in the category of cellular automata (CA) are the best fitted, for instance
explicit Finite Volume or Finite Element methods. But in the case of incompressible flow it is not possible
to develop a pure explicit algorithm, due to the essentially non-local character of the incompressibility
condition. In this case the algorithms that are closer to an explicit approach, are segregated algorithms,
like the Fractional Step Method. In these algorithms the more time consuming stage is (asymptotically
for large problems) the solution of the Poisson’s equation for pressure. A common choice for it’s solution
is the IOP (Iterated Orthogonal Projection) method, which requires a series of solutions on the complete
mesh. In this work a variant of the IOP, called Accelerated Global Preconditioning (AGP), is proposed.
It is based on using a Preconditioned Conjugate Gradient (which is an accelerated iterative method, in
contrast with the stationary scheme used in IOP ) for the pressure on the fluid, and preconditioning with
the solution on the global domain (fluid and solid). Of course, solving the problem on the global domain
represents more computational work than solving the problem only in the fluid, but this can be faster
in a structured mesh if a fast solvers as Multigrid or Fast Fourier Transform (FFT) is used. The main
advantage of AGP over IOP is that it is an accelerated solver, whereas the IOP is stationary. In addition
AGP iterates only on pressure, whereas IOP iterates on both pressure and velocity.
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1 INTRODUCTION

GPU ’s (for Graphics Processing Units) are video boards of common use today in desktop
PC’s and graphical stations. They are computer processors specially oriented to reduce the
load on the CPU from the renderization of complex graphics. With time they have evolved to
complex systems and today they may contain many multiprocessors and a high amount of RAM
on the board. They have a large nominal computing power (in the order of Teraflops) based on
a massively parallel architecture and the paradigm of SIMD (Single Instruction Multiple Data),
i.e. the programmer writes kernel functions that perform a series of simple instructions over a
large set of similar data (Molemaker et al., 2008; Bell and Garland, 2009).

Recently scientists and engineers have started to explore the possibility of using GPU’s for
HPC (High Performance Computing) (Molemaker et al., 2008; Ryoo et al., 2008; Mullen et al.,
2009; Elsen et al., 2008; Goddeke et al., 2008; Lastra et al., 2009; Corrigan et al., 2010; Thibault
and Senocak, 2009; Adams et al., 2007). This tendency has motivated that GPU manufacturers
like Nvidia or ATI have begin to produce General Purpose GPU’s (GPGPU’s), like the Nvidia
Tesla, for instance, that are specially oriented to HPC.

On the other hand the renderization codes used in video games and special effects have in-
creased constantly its complexity and today it is not uncommon to find physical engines (i.e.
libraries that allow the programmer to simulate physical objects and its interaction with the envi-
ronment) that solve PDE’s (for Partial Differential Equations) as, for instance, the Navier-Stokes
equations, in order to obtain visualizations more realistic (Elcott et al., 2008; Irving et al., 2006;
Crane et al., 2008; P.Rinaldi et al., 2008; Wu et al., 2004). These codes are usually very fast,
as compared with the codes used for engineering purposes, in part due to the use of GPU’s, but
also because they sacrifice precision for speed. For instance it is very common the employment
of embedded structured meshes of constant step size. In this kind of scheme curved boundaries
are represented by staircase (also known as Lego) surfaces. This is acceptable for visualization
purposes, but the order of convergence of the scheme for heat or momentum transfer from such
a surface may be greatly impaired, or even may be not convergent at all, which is invalidating
for the application in an engineering code. Another point is the stopping criteria employed for
the convergence of the iterative algorithms. The tolerances used in visualization codes are very
lax compared to the needs for engineering codes. At the end this is not simply a change in a
parameter in the computer code run, but it may change the whole algorithm. For instance IOP
(for Iterated Orthogonal Projection) iterates fastly and is used frequently with very low iteration
number (1 to 3 iterations typically) which results in poorly converged solutions. A new algo-
rithm that has accelerated convergence and can be used practically to much lower tolerances is
proposed in this article.

2 THE ITERATED ORTHOGONAL PROJECTION (IOP) SOLVER

The Navier-Stokes governing equations are

∂ui

∂t
+
∂(ujui)

∂xj

= −1
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+ ν∆ui,

∂uj

∂xj
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(1)

where ui are the components of velocity, ρ density, p is pressure, ∆ is the Laplace operator, xj

are the spatial coordinates, and t is time.
The numerical scheme is based on a Fractional Step-like solver, using the QUICK (for



Quadratic Upstream Interpolation for Convection Kinematics, see Leonard (1979)) on a stag-
gered grid. QUICK is an advection scheme with very low numerical dissipation and is well
suited for structured finite difference schemes.

j

j+1

j+2

i+1 i+2

(ih,jh)

CVu

CVv

Vij

PijUij

CVp

x

y

i

Figure 1: Staggered scheme (2D). Continuity cells (CVp, in red) are centered at the pressure nodes x = (i, j, k)h.
x-momentum cells (CVu, in blue) are centered at the u nodes x = (i, j + 1/2, k + 1/2)h.

A rectangular box 0 ≤ x/Lx, y/Ly, x/Lz ≤ 1 is discretized with Nx ×Ny ×Nz continuity
cells. The mesh size h = Lj/Nj is assumed to be the same for all the spatial directions (see
figure 1). The mesh is staggered, so that cells for the discrete balance of continuity and each
of the momentum equations do not coincide. The continuity cells are centered around x =
(i+ 1/2, j+ 1/2, k+ 1/2)h positions, and pressure values are assumed to be positioned at the center
of these cells. The cells for x-momentum are shifted h/2 in the x direction, i.e. they are centered
at x = (i, j + 1/2, k + 1/2)h, and similarly, mutatis mutandis, for the other directions. Periodic
boundary conditions on the external boundaries will be assumed for simplicity. Internal solid
bodies will be treated as embedded and the details will be discussed later.

2.1 The predictor step. QUICK scheme

In the first stage, the velocity field un is advanced to an intermediate state un+1,p

un+1,p(x)− un(x)

∆t
= (un · ∇)un + g. (2)

where the supraindex p stands for predictor. This predicted field may be not divergence free,
so that it is corrected via a Poisson stage (or IOP, which is similar) to be explained later. The
QUICK implementation of the predictor stage is discussed in this section.

Let’s consider the x component of the balance equation. For the discretization of the x-
momentum balance the corresponding x-momentum cell is used, which is shifted h/2 in the x
direction, as described before. The discrete equation is obtained by a Finite Volume Method



(FVM) approach, i.e. by performing a momentum balance on the cell as

Ω

(
un+1,p(x)− un(x)

∆t

)
(i,j+1/2,k+1/2)

= Mn
x,(i,j+1/2,k+1/2)

+ Ω g(i,j+1/2,k+1/2). (3)

where Ω is the cell volume. Note that all terms are evaluated at the center of the x-momentum
cells. The temporal and external force field terms are straightforward. The nonlinear convection
term is evaluated as

Mx,(i,j+1/2,k+1/2) = Sx

[
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]
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(4)

where the superscripts c and Q stand for centered and QUICK respectively, and the supraindex
n has been dropped since all quantities are evaluated in tn. The rationale behind this is that each
of the terms represent the flux of momentum through a cell face. Each contribution involves the
product of the velocity normal to the surface (which is approximated centered ) with the velocity
component which is being advected (which is approximated QUICK -upwinded). In Eq. (4) the
advected component is always u (since the x-momentum is considered) whereas the normal
velocity may be u, v, or w, depending on the face of the cell to be considered. Note that in the
first term, different approximations (centered or QUICK ) are used for the same component u
depending on whether it is used as a normal velocity or an advected component.

The centered approximations are
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(5)

whereas the QUICK upwinded approximations are
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The coefficients cj are c0 = 3/8, c1 = 6/8, c1 = −1/8. They are the basis of QUICK and guarantee
that the upwinded approximations are precise to third order.

2.2 The projection step in FSM

Once the predicted field un+1,p(x) is computed, it may not satisfy the divergence condition,
neither the boundary conditions

(un+1,p − ubdy) · n̂ = 0, at Γbdy, (7)



where ubdy is the velocity of the body Γbdy and n̂ its normal. In the standard Fractional Step
method this conditions are enforced by computing a Poisson stage

un+1 = un+1,p −∇P, (8)

where P = (∆t/ρ)p and p is pressure. P is computed through the following Poisson equation

∆P = ∇ · un+1,p,

∂p

∂n

∣∣∣∣
Γbdy

= (ubdy − un+1,p) · n̂. (9)

An alternative form to enforce these conditions is the Iterated Orthogonal Projection (IOP)
method. Instead of computing and intermediate pressure field in order to enforce the divergence
conditions, IOP directly iterates on the velocity field, i.e. it constructs a sequence wk such that
w0 = un+1,p and w∞ = un+1. The sequence is generated via the consecutive application of the
affine orthogonal projection operators Πdiv and Πbdy,

wk+1 = ΠbdyΠdivw
k. (10)

The projection operators are defined by

u′ = Πdiv(u) =⇒

{
u′ = u−∇P,

∆P = ∇ · u,

u′′ = Πbdy(u′) =⇒

{
u′′ = ubdy, in Ωbdy,

u′′ = u′, in Ωfluid.

(11)

2.3 Convergence of IOP iteration

One problem with IOP iteration is that the rate of convergence is linear, because it is a
stationary method. For instance Figures 2 and 3 show the convergence of IOP iteration for a
16x16x16 and 64x64x64 meshes on a computational domain which is a cube of unit side L.
The body domain is a circle of radius 0.3, i.e. Ωbdy = {||x|| ≤ R = 0.3}.

However note that the rates of convergence are independent of mesh refinement. The con-
vergence for both meshes start at a high convergence rate of less than 3 iter/OM (order of
magnitude), and then it switches to a slower convergence of less than 15 iter/OM. The conver-
gence rates are very close for the fine and coarse mesh, i.e. they are almost independent of mesh
refinement.

3 THE ACCELERATED GLOBAL PRECONDITIONING

The proposed method is a preconditioning for embedded problems that is based on solving
the problem in the complete mesh. It is similar to IOP in the sense that the whole strategy is
based on the fact that there is a very efficient solution on the global domain, i.e. including the
solid bodies; it can be either a multigrid or FFT solution.

Consider a situation like in figure 4, with a solid body described by the boundary Γbdy. This
is embedded in a structured grid of constant mesh size h. In a Fractional Step Method a Poisson
problem is solved outside the body, so that this is done by assembling the matrices of those
cells that are in the fluid region. To do that the center of the cells are computed and it is checked
whether the cell falls inside or outside the body. In this way the body is approximated by a
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Figure 2: Convergence of IOP loop for a sphere of R = 0.3 in a cube of L = 1, with a coarse mesh of 16x16x16
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Figure 3: Convergence of IOP loop for a sphere of R = 0.3 in a cube of L = 1, with a coarse mesh of 64x64x64

staircase geometry as is shown in gray in the figure. In a FEM context the imposition of the
homogeneous Neumann condition is done by simply assembling only those elements that are
in the fluid part (filled in gray in the figure). The other elements that are not in gray are ghost
elements and are not assembled for the solution of the Poisson problem. Only the pressure in
the nodes connected to some element that is assembled are relevant, i.e. those that are marked
in blue and red. Those that are marked in green are ghost and are not computed. From those



that are computed, the set that are surrounded completely by computed elements (and then are
not connected to ghost elements) are classified as interior to the fluid, (subindex F ) and the rest
are classified as boundary (subindex B, filled in red in the figure). So the Poisson problem is

Ax = b, (12)

and the splitting of nodes induces a matricial splitting like this[
AFF AFB

ABF ABB

] [
xF

xB

]
=

[
bF

bB

]
(13)

assembled elements

fluid node
boundary node

ghost node

solid body

fluid a

b

Figure 4: Description of nodes and elements used in the AGP

Now the preconditioning operator P will be described. First consider the whole matrix
for the Laplace operator, i.e. assembling over fluid and ghost cells for F , B, and G nodes.
A different symbol P̃ will be used for this matrix since it is assembled on a different set of
element/cells. The preconditioning is then defined formally as yFB = PxFB, where yFB is the
solution of  P̃FF P̃FB P̃FG

P̃BF P̃BB P̃BG

P̃GF P̃GB P̃GG

[ xFB

xG

]
=

[
yFB

0G

]
. (14)

However it can be seen that

• P̃FF = AFF since the F nodes are those for which all elements are assembled in the
Poisson problem.
• P̃FB = AFB, and P̃BF = ABF since for instance, such a coefficient would link nodes

as a and b in the figure. This coefficient comes from the assembly of all the elements that
are connected to a and b, but since a is an F node, it means that all elements connected
to a are assembled.
• P̃FG = P̃GF = 0 since F nodes are only connected to fluid elements and G are only

connected to ghost elements, so that they can not share an element.

So  AFF AFB 0

ABF P̃BB P̃BG

0 P̃GB P̃GG

[ xFB

xG

]
=

[
yFB

0G

]
. (15)



xG can be eliminated from the bottom line, and then the following equations is obtained[
AFF AFB

ABF P̃BB − P̃BGP̃−1
BBP̃GB

]
xFB = yFB. (16)

This allows to obtain an explicit expression for the preconditioning matrix

P =

[
AFF AFB

ABF P̃BB − P̃BGP̃−1
BBP̃GB

]
. (17)

A first consequence of this expression is that a lot of eigenvalues of the preconditioned matrix
will be 1. Consider the space of all vectors x such that the boundary component B is null, i.e.
the non null entries are only on F nodes, then

Ax = Px,

P−1Ax = x,
(18)

so that x is an eigenvector with eigenvalue 1.
The proposed technique is named Accelerated Global Preconditioning (AGP) because the

solution of (14) is done on an infinite mesh with periodic boundary conditions so that it can
be solved via FFT transform, which is very efficient, but the whole analysis doesn’t depend on
how the solution of this system is done; i.e. it may be obtained by multigrid iteration as well.

3.1 Numerical experiment computing condition numbers

The condition number of matrices for the Poisson problem have been computed with and
without preconditioning (see figure 5).

• In the experiments the number of cells Nx along x ranges from 8 to 64.
• The Poisson problem is computed selecting the quadrangles whose center fall outside the

body problem.
• In all cases the domain is the unit square with periodic boundary conditions.
• The bodies considered are: cylinder of radius 0.2, a vertical strip of width 0.5, and a

square of side 0.5.
• The condition numbers are computed with Octave cond() function.

Note that in all cases the non preconditioned matrix condition number grows as O(N2
x),

whereas with the preconditioning it remains constant.

3.2 The thin wall case

Note that the AGP preconditioning is based on the inclusion of the solid domain in the
computation of the pressure Poisson equation. It is then clear that the weakness of such a
method will be for geometries where the solid domain is, for instance, a thin layer, such that the
fictitious cells added in the solid region allow the pressure gradients to be propagated through
the fictitious solid domain. In other words, this preconditioning will be comparatively less
efficient for geometries where the solid has a large aspect ratio. Off course the same argument
is valid for IOP.

Consider the case where the fluid occupies the interior of a square

Ωfluid = {(x, y) / max(|x− L/2|, |y − L/2|) < L/2− w} (19)
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Figure 6: Condition number for Poisson problem on a square, with and without AGP preconditioning.

where w is the width of the wall (see figure 6). Due to the periodic boundary conditions this is
equivalent to an infinite set of squares of sideL−2w filled with fluid and separated by solid walls
of width 2w. The condition number for the Poisson problem with and without preconditioning
is shown in the figure.

The case where the width of the wall varies is considered so as to have always one element
(in fact two elements due to the periodic b.c.’s) separating the squares. On the other hand if



a fixed value w = 0.05 is taken then the condition number of the preconditioned case is kept
bounded, jumping each time that a new element layer is included in the wall. Note that the
amount of element layers in the wall is the maximum n such that (n − 1/2)h < w so that the
values of Nx for which a new element is added in the wall are

Nx =
(n− 1/2)L

w
, (20)

where n is an integer number. For w = 0.05 this gives Nx = 10, 30, 50, 70... and effectively it
can be seen in the figure that the condition number of the preconditioned case jumps at those
values of Nx.

3.3 Computation of the condition number in terms of the eigenvalues of the Steklov op-
erators

The eigenvalues of the Steklov operators can be computed in closed form for the case of a
cylinder in an infinite flow. Recall that the convergence of the AGP scheme is controlled by the
condition number of the preconditioned operator

cond(P−1A) =
max| eig(P−1A)|
min| eig(P−1A)|

(21)

As all are positive and definite operators, the eigenvalues λ are real and positive, and 0 ≤ λ ≤ 1.
Also there are a lot of eigenvalues that are unity λ = 1, they correspond to the space of functions
that satisfy the boundary condition (∂φ/∂n) = 0 at Γ. However, the Krylov methods iterate only
on the space perpendicular to it, and it can be shown the condition number of the preconditioned
Steklov operator

S̃ = (SF + SS)−1SF . (22)

has to be computed.

κ(S̃) =
max[eig(S̃)]

min[eig(S̃)]
(23)

For simple geometries like a semi-infinite plane, a strip and a cylinder the eigenvalues of SF ,
SS can be computed. In addition, it turns out that the eigenfunctions are the same, so that the
spectral decomposition of the sum SF + SS and the preconditioned operator are available.

Recall if VΓ = {real valued functions on Γ} then the SF : VΓ → VΓ operator is defined as
follows. w = SF (v) if w = (∂φ/∂n)|Γ, where φ satisfies{

∆φ = 0, in ΩF

φΓ = v,
(24)

where n̂ is the normal to Γ exterior to ΩF . The same definition, mutatis mutandis, applies to
SS .

3.3.1 The semiplane

The geometry consists on a semiplane

ΩF = {x = (x, y) / x < 0}
ΩS = {x = (x, y) / x > 0}

Γ = {x = (x, y) / x = 0}
(25)



By symmetry of translation in the y direction the eigenfunctions must be plane waves of the
form v = eiky with k real. The solution to the Laplace problem on the fluid and solid are

φ = eikye−|k|x, x ∈ ΩS,

φ = eikye|k|x, x ∈ ΩF ,
(26)

and then
eig{SF (v)} = eig{SS(v)} = |k|, (27)

so that all the eigenvalues of S̃ are λn = 1/2, and κ(S̃) = 1.

3.3.2 The cylinder

In this case
ΩS = {||x|| < R},
ΩF = {||x|| > R},

Γ = {||x|| = R},
(28)

By rotational symmetry the eigenfunctions are

vn,+ = cos(nθ), n ≥ 0

vn,− = sin(nθ), n > 1
(29)

where r, θ are polar coordinates at the center of the cylinder. The solution at both domains are

φn,±,F = r−n

{
cos(nθ)

sin(nθ)

}
,

φn,±,S = rn

{
cos(nθ)

sin(nθ)

}
,

(30)

so that the eigenvalues and eigenfunctions of both operators are the same

λ(n,±, F/S) =
n

R
(31)

and again λn,S̃ = 1/2, κ(S̃) = 1.

Comparison with numerical values. There seems to be a discrepancy between the values of
for the cylinder as computed numerically and reported in figure 5 and the theoretical predic-
tion given before. The difference is due to the fact that in the discrete case with the technique
of embedding of the solid in a homogeneous constant step mesh (see the gray mesh in fig-
ure 4), the staircase boundary of the mesh generates spurious eigenvalues that cause the smaller
eigenvalues (smoother eigenfunctions) not to converge to the theoretically predicted spectrum.
However, if a FEM boundary fitted mesh is used (see figures 7) then the theoretical result of
λn,F = λn,S = n/R is much better satisfied (see Table 1). Note that the eigenvalues for the
solid domain λn,S are much more closer to the theoretical prediction. This is caused by the fact
that for the fluid there is also the problem of interference with the external boundary condition,
i.e. the fluid domain is enclosed in an artificial boundary of side L = 1, and this introduces an
error, which will disappear as R/L→ 0.
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Eigenvalue index n λn,F λn,S λn,S̃ (num.) λn,S/F (analytic)

1 9.38 10.00 0.4840 10
2 20.19 20.01 0.5022 20
3 30.88 30.46 0.5034 30
4 41.74 40.98 0.5046 40
5 53.72 52.49 0.5058 50

Table 1: Comparison of theoretical and numerical values for the SS/F operators for the cylinder with diameter
R = 0.1 and a boundary fitted FEM mesh of 64x64 elements. Note that the values for λn,S̃ are much closer to 0.5
than for the staircase geometry.

3.3.3 The infinite strip

The solid domain is ΩS = {|x| ≤ w/2} where w is the width of the strip. The space VΓ are
pairs of functions on both sides of the strips. By translation invariance in the y direction the
eigenfunctions must satisfy have

v =

{
a eiky, for x = −w/2
b eiky, for x = +w/2

(32)

it can be shown by symmetry x → −x that the eigenfunctions are the symmetric (a = b) and
antisymmetric (a = −b) combinations, so that

vk,± =

{
±eiky, for x = −w/2,
eiky, for x = +w/2.

(33)

The corresponding solution for the symmetric modes at ΩF,S are

φk,+ =

eiky+|k|(w/2−x), for |x| ≥ w/2,
cosh(kx)

cosh(kw/2)
eiky, for |x| ≤ w/2,

(34)

and the corresponding eigenvalues

λ(k,+, F ) = |k|,
λ(k,+, S) = k tanh(kw/2).

(35)



And for the antisymmetric eigenfunctions,

φk,− =

sign(x)eiky+|k|(w/2−x), for |x| ≥ w/2,
sinh(kx)

sinh(kw/2)
eiky, for |x| ≤ w/2,

(36)

and the corresponding eigenvalues

λ(k,−, F ) = |k|,
λ(k,−, S) = k coth(kw/2).

(37)
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Figure 8: Eigenvalues of Steklov operators for the solid strip case.

Both the symmetric and antisymmetric eigenvalues van be seen in figure 8. Note that the
eigenvalues of the fluid operator λ(k,±) are the same for the symmetric and antisymmetric
case and independent of the strip width w, since the fluid domain is completely decoupled by
the strip, and then the eigenvalues of the Steklov operator SF are the same as those of each
semiplane x > w/2 and x < w/2.

On the other hand, with respect to the eigenvalues of the Steklov operator of the strip (solid
domain) SS , both symmetric and antisymmetric eigenvalues behave like ∼ |k| for kw → ∞.
This is because for kw large means that the wavelength of the eigenfunction is much smaller
than the width of the strip and then again, the behavior of the eigenvalues is the same as for a
infinite semiplane.

However, when kw is small the behavior of the symmetric and antisymmetric branches is
very different. Remember that, as per definition of the Steklov operator, given an eigenfunction
u it can be imposed as a Dirichlet boundary condition on the interface Γ, solve the Laplace
equation for the field φ in the corresponding domain and compute the flux v = (∂φ/∂n). As
u is an eigenfunction, v should be proportional to u and the proportionality constant is the
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Figure 9: Eigenvalues of preconditioned Steklov operator for the symmetric and antisymmetric branches.
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Figure 10: Explanation of the behavior of the Steklov eigenvalues for large wavelengths.

eigenvalue λ. First consider the symmetric branch. If a sinusoidal value on the left boundary
x = −w/2 is imposed (see figure 10) then for the symmetric mode there are exactly the same
Dirichlet boundary condition on the other boundary x = +w/2. As a result facing points inside
the strip like A,A′ or B,B′ have equal values of temperature φ imposed and then the heat
flow is very low, which means a small eigenvalue. On the other hand, for the antisymmetric
mode, opposing points have the same absolute temperature but of opposed sign, and the heat
flow is very high (the red arrows in the figure). This explains why for low wavenumber k the
eigenvalues of the symmetric mode are smaller, with a behavior λ ∝ k2 for k → 0. For the
antisymmetric mode for low wavenumber the eigenvalue is larger with a behavior λw → 2 for
kw → 0.

This last limit is simple to understand. Effectively, for very small wavenumber the conduc-



tion in the y direction can be neglected, and so for an eigenfunction u = ± cos ky at x = ±w/2
the solution is

φ =
2x

w
cos ky, (38)

so that
v = (∂φ/∂n)|x=w/2 =

2

w
cos ky =

2

w
u. (39)

So that, λw = 2.
The eigenvalues of the preconditioned Steklov operators are plot in figure 9. They are given

by the expressions

λ(k,+, S̃) =
|k|

|k|+ k tanh(kw/2)
,

λ(k,−, S̃) =
|k|

|k|+ k coth(kw/2)
.

(40)

Note that for both symmetric and antisymmetric mode the eigenvalues tend to 1/2 for kw →∞,
as for an infinite semiplane. On the other hand, for small kw the eigenvalues of the symmetric
mode are larger than 1/2, and those for the antisymmetric modes are smaller. So, if the eigen-
values for the symmetric modes are considered the condition of the preconditioned Steklov
operator is 2, whereas if the antisymmetric modes are considered the condition number tends to
∞ since the smallest eigenvalue tends to 0 for kw → 0.

This is expected, since the AGP preconditioning is based on solving the Laplace equation
on the global domain, fluid and solid, instead in solving only on the fluid. Thus, this precondi-
tioning is good whenever the fluxes in the solid domain are small. But this is exactly the case
for the symmetric modes, and the opposite happens for the antisymmetric modes.

3.3.4 Estimation of the condition number for thin walls

The analysis of the infinite strip shows that a situation where the AGP preconditioning is
deteriorated is when there are thin walls in the solid geometry, since in that case the modes that
are antisymmetric about the axis of the solid produce large heat fluxes in the solid, and this is an
indication of bad performance of the preconditioning. So for elongated solid geometries with,
say, a typical length of L and a typical width of w � L, an estimate of the condition number
of the preconditioned operator can be obtained by taking L as the maximal wavelength and the
estimate gives a condition number of

κ(S̃) ∼ |kmin|+ kmin coth(kminw/2)

|kmin|
(41)

where kmin = 2π/L. By algebraic manipulation this can be simplified to

κ(S̃) ∼ 1 + coth(
πw

L
) ∼ L

πw
, (42)

i.e. the condition number is proportional to the aspect ratio of the solid domain.

3.4 Compute times for AGP

The AGP method has been implemented with CUDA and several experiments have been run
on a Nvidia Tesla C1060 in double precision. Meshes running from 643 to 2563 have been tested



and the computing times per iteration and the number of iterations needed to reach a residual
convergence of 10−6 are reported on Table 2. In the table it is also reported the time needed to
compute two FFT’s. It is clear that in the limit the FFT’s is the most CPU time consuming stage
of the whole algorithm. As a reference the time for FFT’s was measured versus the number of
cells and is shown in Figure 11. The plot shows the computing rate in Gflops according to a
standard estimate of the operation count

r[Gflops] =
5N log2(N)

elapsed time[s]
(43)

where N is the total number of cells. The performance of the Tesla C1060 is in the range of
25 to 30 Gflops in the range of interest. It has been reported that the new Tesla C2050 (Fermi)
GPU has a performance of 80 Gflops for the FFT.

Mesh size iters Time/iter. [s] Rate [Mcells/iter/s] FFT time [s] (%)

64× 64× 64 7 0.00340 76.91 0.00174 (51.2%)
64× 128× 128 5 0.0107 97.97 0.00776 (72.5%)

128× 128× 128 7 0.0184 113.44 0.0163 (88.2%)
256× 256× 256 6 0.184 90.96 0.149 (80.8%)

Table 2: Computing times for the Poisson stage on a Nvidia Tesla C1060. The global (fluid+solid) problem is
solved with FFT. The number of iterations to attain a relative residual of 10−6 is also shown. The last columns is
time spent in performing the two FFT’s.
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Figure 11: Performance of the CUDA FFT library in Gflops according to Eq. (43)

4 CONVERGENCE RATE OF IOP

As the basis for IOP is the same as for AGP it is not surprising that its weakness is also for
solid domains with large aspect ratio. In fact the convergence for both methods depend on the
eigenvalue spectrum of the same operator. However recall that AGP is an accelerated method
(i.e. a Krylov space method) whereas IOP is an stationary one, and so the convergence of the
first is much faster. The rate of convergence for IOP will be discussed in this section.

It will be shown below that the amplification matrix for the IOP iteration scheme is

Q = (AF + AS)−1AS. (44)



The eigenvalues of Q are all 0 ≤ λ < 1, for convergence, and the rate of convergence is
max(eig(Q)). Note that Q = I − S̃, and then an eigenvalue close to one for Q means a slow
rate of convergence for IOP. But an eigenvalue close to one for Q implies an eigenvalue close
to zero for S̃, and then a bad condition number, and poor convergence for AGP.

In order to show (44), the iteration matrix will be computed explicitly for the 1D case. Recall
that the IOP iteration for solid bodies at rest is a fixed point iteration scheme that can be written
as

u′ = ΠdivΠF u, (45)

where ΠF is the projection matrix that makes a velocity field to satisfy the boundary condition,
i.e. it makes it null at the nodes in the solid. In the case of bodies at rest it is an homogeneous
projection operator that is simply a diagonal matrix with 0’s or 1’s depending on whether the
velocity node is in the fluid or solid domains (ΩF and ΩS). For moving bodies the projection
is affine, i.e. not homogeneous, because the velocity of the body is non null, but the treatment
given here can be extended to that case also. On the other hand Πdiv is defined as u′ = Πdivu
where u′ is computed by solving the following problem

Ap = GT u,

u′ = u−GP.
(46)

By eliminating p, a compact form for the projection operator is obtained

Πdiv = I−GA−1GT . (47)

Now, the iteration scheme can be written as

u′ = u−GA−1r, (48)

where
r = GΠF u. (49)

And it is clear that the scheme converges as r→ 0. Premultiplying (45) by GΠF

GT ΠF u′ = GT ΠF ΠF u−GT ΠF GA−1GT ΠF u,

r′ = r−GT ΠF GA−1r,

r′ = (I−GT ΠF GA−1)r.

(50)

So the rate of convergence of the scheme is governed by the largest eigenvalue of the step
amplification matrix

Q = I−GT ΠF GA−1. (51)

Now, note that in the continuum GT ΠF G is the Laplace operator acting only in the fluid do-
main. It can be shown that in the case of the staggered FVM scheme used in this work the
following holds true

GT ΠF G = AF , (52)

where AF is the Laplace operator assembled only on those edges whose center fall in the do-
main region. In terms of equation (14)

AF =

 P̃FF P̃FB 0

P̃BF P̃BB 0
0 0 0

 . (53)



For instance consider the 1D case. The domain [0, L] is discretized with N cells of constant
mesh step h = 1/N and with periodic boundary conditions. The pressure nodes are located at
xpj = (j + 1/2)h and the velocity nodes at xuj = jh, for j ∈ [0, N). Then the gradient operator
is

(∇p)j =
pj − pj−1

h
, (periodic) (54)

and the corresponding matrix is

G =
1

h


1 0 0 . . . −1
−1 1 0 . . . 0

...
0 0 0 . . . 1

 . (55)

With respect to the projection operator, assume that the solid domain occupies the central NS

velocity cells, preceded and followed byNF1 andNF2 fluid cells (see figure 12). The projection

fluid pressure node

fluid velocity node

boundary pressure node

solid velocity node

solid pressure node

fluid velocity cells

solid velocity cells

Figure 12: Staggered FVM 1D mesh.

operator is then

ΠF = diag{
NF1︷ ︸︸ ︷

1, 1, . . . , 1,

NS︷ ︸︸ ︷
0, . . . , 0,

NF2︷ ︸︸ ︷
1 . . . , 1}. (56)

and then it can be verified by direct computation that (52) is valid, if the fluid, solid, and bound-
ary nodes are considered as shown in figure 12. Then

AF p = GT ΠF Gp =

−pj+1 + 2pj − pj−1

h2
, for j < NF1 − 1 and j > NF1 +NS − 1, (fluid nodes, periodic),

pj − pj−1

h
, for j = NF1 − 1, (boundary node),

pj − pj+1

h
, for j = NF1 +Ns − 1, (boundary node),

0, for NF1 − 1 < j < NF1 +Ns − 1, (solid nodes).
(57)

Then replacing (52) in (51)

Q = I−GT ΠF GA−1

= I−AF A−1

= ASA−1

(58)



Again, it can be shown that in fact the rate of convergence is governed by iteration on the
boundary values, so that the rate of convergence is given by the

conv. rate(IOP) = max[eig(Q)],

Q = I−GT ΠF GA−1,

= I−AF A−1,

= ASA−1.

(59)

Convergence of IOP is controlled by the maximum eigenvalue from eig(ASA−1), which is
by a similarity transformation the same as eig(A−1AS) = 1 − eig(A−1AF ). As A,AF ,AS

are symmetric and positive definite matrices it results that the eigenvalues of eig(A−1AS) and
eig(A−1AF ) are in the range 0 ≤ λ ≤ 1.

4.1 Reduction of the global domain problem to the boundary problem

First, let us note that all vectors that have only a component in the fluid part have eigenvalue
one

x =

 xF

0
0

 ,
AF x =

 AFF xF

ABF xF

0

 = Ax,

(60)

whereas those that have only a component in the solid have eigenvalue 0

x =

 0
0
xS

 ,
AF x = 0,

A−1AF x = 0.

(61)

The rate of convergence is governed then by the maximum eigenvalue that are in the range 0 <
λ < 1, i.e. excluding these previous ones. As the matrices are symmetric, the eigenvectors must
be orthogonal with respect to A so that the remaining eigenvalues are obtained by imposing that
they must be orthogonal for both previous families or eigenvectors,[

yT
F 0 0

]
Ax, ∀yF ,

=⇒ AFF xF + AFBxB = 0,[
0 0 yS

]
Ax, ∀yS,

=⇒ ASBxB + ASSxS = 0,

(62)

from where
xF = −A−1

FF xB,

xS = −A−1
SSxB.

(63)

Replacing these expressions in the eigenvalue equation

AF x = λAx, (64)



and performing the block decomposition

AF =

 AFF AFB 0
ABF ABB,F 0

0 0 0

 ,
AS =

 0 0 0
0 ABB,S ABS

0 ASB ASS

 ,
A = AF + AS,

(65)

results in that the first and last rows of equations are satisfied automatically due to (62) and the
middle row results in

ABF xF + ABB,F xB = λ(ABF xF + ABBxB + ASSxS), (66)

i.e.
SF xB = λSxB, (67)

where
SF = ABB,F −ABF A−1

FF AFB,

SS = ABB,S −ABSA−1
SSASB,

SS = SF + SS.

(68)

So that the convergence of IOP is governed by the spectrum of the operator S−1SF . Note that
this is the discrete version of the continuum operator in (22) that controls the convergence of
the AGP method.

4.2 Variation of IOP based on pressure

A drawback of the IOP method is that it iterates over both the velocity and pressure vectors.
But the method can be slightly modified so as to only iterate on pressure, keeping the same
rate of convergence. However, the result can be proved to be equivalent to the standard IOP
algorithm in the continuum but in the discrete case it is the same only under certain conditions.

The pressure based variant of IOP (PB-IOP in what follows) is based on solving the Poisson
problem

AF p = b, (69)

by the following stationary method

pn+1 = pn −P−1(Apn − b). (70)

The amplification operator is the same as for the standard IOP A−1AF and so the convergence
rate is the same. However both convergence to the same solution if

GT ΠF G = AF . (71)

which is indeed true for the FVM approximation used in this work.



5 CONCLUSIONS

The Accelerated Global Preconditioning (AGP) algorithm for the solution of the Poisson
equation specially oriented to the solution of Navier-Stokes equations on GPU hardware was
presented. It shares some features with the well known IOP iteration scheme. As a summary of
the comparison between both methods, the following issues may be mentioned

• Both solvers are based on the fact that an efficient preconditioning that consists in solving
the Poisson problem on the global domain (fluid+solid). Of course, this represents more
computational work than solving the problem only in the fluid, but this can be faster in a
structured mesh with some fast solvers as Multigrid or FFT.
• Both solvers have their convergence governed by the spectrum of the S−1SF , however

– IOP is a stationary method and its limit rate of convergence is given by

‖rn+1‖ ≤ γIOP‖rn‖
γIOP = 1− λmin,

λmin = min(eig(S−1SF )).

(72)

In particular if there is no solid, then SF = S, S−1SF = I, λmin = 1, and γIOP = 0,
so that the scheme converges in one iteration.

– AGP is a preconditioned Krylov space method and its convergence is governed by
the condition number of S−1SF , i.e.

κ(A−1AF ) =
max(eig(A−1AF ))

min(eig(A−1AF ))
,

=
1

min(eig(A−1AF ))
,

=
1

min(eig(S−1SF ))
,

=
1

λmin

,

(73)

Again, when there is no fluid S−1SF = I, λmin = 1, and κ(A−1AF ) = 1, so that AGP
converges also in one iteration.
• It has been shown that λmin = O(1), i.e. it does not degrade with refinement, so that IOP

has a linear convergence with limit rate O(1).
• By the same reason, the condition number for AGP does not degrade with refinement.
• IOP iterates over both the velocity and pressure fields, whereas AGP iterates only on the

pressure vector (which is better for implementation on GPU’s).
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