

A FFT Preconditioning Technique for the Solution of Incompressible Flow

by M.Storti, S.Costarelli, R.Paz, L.Dalcin, S. Idelsohn

Centro Internacional de Métodos Computacionales en Ingeniería - CIMEC INTEC, (CONICET-UNL), Santa Fe, Argentina mario.storti@gmail.com http://www.cimec.org.ar/mstorti

Scientific computing on GPU's

- Graphics Processing Units (GPU's) are specialized hardware desgined to discharge computation from the CPU for intensive graphics applications.
- They have many cores (*thread processors*), currently the *Tesla GK110 K20* has *2496* cores at 745 Mhz.
- The *raw computing power* is in the order of *Teraflops* (3.5 Tflops in SP and 1.17 Tflops in DP for the GK110).

Scientific computing on GPU's (cont.)

- Initially scientific researchers developed *tricks and magic* in order to convert scientific computations in terms of graphics primitives (OpenGL).
- The companies producing GPU's (Nvidia and ATI) realized this and initiated a line of GPU's for *General Purpose (GPGPU's)*.
- Today scientific computing is done with tools like *CUDA (Nvidia)* or *OpenCL* (a standard that runs on Nvidia and ATI cards, as standard multi and many-core processors).
- Nvidia started also a line completely dedicated to scientific computing named *Tesla*.
- Tesla cards have *ECC memory*, whereas the others don't.
- Initially Tesla cards had a much better *DP/SP speed ratio* w.r.t. the standard cards (1:2 vs. 1:8). Today this difference has been reduced. Also they can have more memory (up to 6GB).
- GPU cards have their own RAM memory (aka *device memory*) with *high data transfers* between the processors and the device memory. *208 GB/s* for the K20. Even so data transfer between the processors and the device memory is often a bottleneck. Normally cards have 4-8 GB of RAM.

Scientific computing on GPU's (cont.)

- The difference between the GPU's architecture and standard multicore processors is that GPU's have much more computing units (*ALU's* (Arithmetic-Logic Unit) and *SFU's* (Special Function Unit), but few control units.
- The programming model is *SIMD* (Single Instruction Multiple Data).

Scientific computing on GPU's (cont.)

- GPU's compete with many-core processors (e.g. Intel's Larrabee, Knights-Corner, Xeon-Phi). They would have 50 cores or more.
- Prices are \sim USD 500 for the GTX-580, or US 1300 for a Tesla C2075, USD 3200 for a Tesla K20.
- *Much higher prices* are expected for the Intel many-core processors.
- Today mainstream cards (like the GTX-580) are *available everywhere*. Tesla cards are hard to find in Argentina.
- Companies as Microway sell tower servers with 4 GPU's.
- Many supercomputers have GPU's or Cell processors similar to those used in videogame consoles.

BUT WAIT... is GPU computing power REAL or a FAIRY TALE?

- Some HPC people are skeptical about the *efficient computing power* of GPU's for scientific applications.
- In many works *speedup* is referred to available CPU processors, which is not consistent.
- Delivered speedup w.r.t. mainstream x86 processors is often much lower than expected.
- Strict *data parallelism* is difficult to achieve on CFD applications.
- Unfortunately, this idea is reinforced by the fact that GPU's come from the videogame *special effects* industry, not with scientific computing.

Solution of incompressible Navier-Stokes flows on GPU

• GPU's are less efficient for algorithms that require access to the *card's (device) global memory*. Shared memory is much faster but usually *scarce*

(16K per thread block in the Tesla C1060)

- The best algorithms are those that make computations for one cell requiring only information on that cell and their neighbors. These algorithms are classified as *cellular automata (CA)*.
- Lattice-Boltzmann and explicit F*M (FDM/FVM/FEM) fall in this category.
- *Structured meshes* require less data to exchange between cells (e.g. neighbor indices are computed, no stored), and so, they require less shared memory. Also, very fast solvers like *FFT-based* (*Fast Fourier*

Transform) or *Geometric Multigrid* are available

INTEC

UNL

CONICET

Fractional Step Method on structured grids with QUICK

Proposed by *Molemaker et.al. SCA'08: 2008 ACM SIGGRAPH*, Low viscosity flow simulations for animation. ☑

- Fractional Step Method (a.k.a. pressure segregation)
- *u*, *v*, *w* and continuity cells are *staggered* (MAC=Marker And Cell).
- *QUICK* advection scheme is used in the predictor stage.
- Poisson system is solved with IOP (Iterated Orthogonal Projection) (to be described later), on top of Geometric MultiGrid

Quick advection scheme

1D Scalar advection diffusion: a= advection velocity, ϕ advected scalar.

(launch video khinstab), (launch video khinstab-zoom)

CIMEC-INTEC-CONICET-UNL ((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

Solution of the Poisson equation on embedded geometries

- Solution of the *Poisson equation* is, for large meshes, the more CPU consuming time stage in Fractional-Step like Navier-Stokes solvers.
- One approach for the solution is the *IOP (Iterated Orthogonal Projection)* algorithm.
- It is based on solving iteratively the Poisson eq. on the *whole domain* (*fluid+solid*). Solving in the whole domain is fast, because algorithms like Geometric Multigrid or FFT can be used. Also, they are very efficient

running on GPU's 🥮.

• However, if we solve in the whole domain, then we can't enforce the boundary condition $(\partial p/\partial n) = 0$ at the solid boundary which, then means the violation of the *condition of impenetrability at the solid*

boundary 🥰

The IOP (Iterated Orthogonal Projection) method

The method is based on succesively solve for the incompressibility condition (on the whole domain: solid+fluid), and impose the boundary condition.

Convergence of IOP

- Π_{bdy} , Π_{div} are orthogonal projection operators on $L_2 \implies$ the algorithm converges, with *linear rate of convergence*
- Rate of convergence is O(1), i.e. **NOT**

depending on refinement **.** For instance for an embedded sphere, the residual is reduced to a factor of 0.1 in 3 iterations. However, the rate of convergence *degrades when thin surfaces*

are present 🥝

 In videogame software, and special effects animation, 3 iterations are usually enough, but for engineering purposes this is insufficient and an algorithm with better convergence properties is needed.

Using IOP/AGP with the FFT transform

- When solving the projection problem $\mathbf{u}' = \mathbf{\Pi}_{\mathrm{div}}(\mathbf{u})$ for IOP or the preconditioning for AGP, we have to solve a *Poisson problem on the whole (fluid+solid) domain*. This is normally done with a *Geometric Multigrid* solver which has a complexity $O(N \log \epsilon)$ (N = nbr of grid cells, $\epsilon =$ tolerance). It is an *iterative solver*.
- On the other hand, FFT solves the same problem in $O(N \log N)$. It is a *direct solver*.

Accelerated Global Preconditioning (AGP)

- $\bullet\,$ The IOP algorithm iterates on the $\textit{velocity}\,u$ state.
- A method based on *pressure* would be more efficient, and in particular in

the GPGPU, due to a better use of the *shared memory*

• In addition, IOP is a stationary method (with linear rate of convergence)

🧭. We look for an *accelerated Krylov space* algorithm (CG) 📡

- The proposed *AGP algorithm* is to solve the fluid pressure problem with *PCG (Preconditioned Conjugate Gradient)* with the solution on the *whole (fluid+solid) domain*.
- It can be shown that the *condition number* of the preconditioned matrix is also O(1)
- It is an *accelerated method*, so convergence is much better than IOP; for the sphere with three iterations we have a reduction of 1e-3 in the residual

(while IOP gives a reduction of 0.1)

Conditioning degrades also for thin surfaces

Accelerated Global Preconditioning (AGP) (cont.)

To solve:

$$\begin{bmatrix} \mathbf{A}_{FF} & \mathbf{A}_{FB} \\ \mathbf{A}_{BF} & \mathbf{A}_{BB} \end{bmatrix} \begin{bmatrix} \mathbf{x}_F \\ \mathbf{x}_B \end{bmatrix} = \begin{bmatrix} \mathbf{b}_F \\ \mathbf{b}_B \end{bmatrix}$$

AGP Preconditioning:

$$\mathbf{P}_{AGP}\mathbf{x}_{FB} = \mathbf{y}_{FB}$$

defined by

$$\begin{bmatrix} \mathbf{A}_{FF} & \mathbf{A}_{FB} & \mathbf{0} \\ \mathbf{A}_{BF} & \tilde{\mathbf{A}}_{BB} & \mathbf{A}_{BG} \\ \mathbf{0} & \mathbf{A}_{GB} & \mathbf{A}_{GG} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{FB} \\ \mathbf{x}_{G} \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{FB} \\ \mathbf{0}_{G} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{F} \\ \mathbf{F} \end{bmatrix}$$

CIMEC-INTEC-CONICET-UNL ((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

Spectral decomposition of Stekhlov operators

Stekhlov operator \mathcal{S}_F for the fluid domain is defined by: $w = \mathcal{S}_F(v)$, if

$$\Delta \phi = 0, \text{ in } \Omega_F$$

$$\phi_{\Gamma} = v$$

then $w = \left(\partial \phi / \partial n \right) |_{\Gamma}$

In the same way the Stekhlov operator S_S for the fluid domain can be defined. It turns out to be that the preconditioned matrix corresponds to $\mathbf{P}^{-1}\mathbf{A} \to (\mathcal{S}_F + \mathcal{S}_S)^{-1}\mathcal{S}_F$.

INTEC

UNL

CONICET

FFT Solver

- $\bullet\,$ We have to solve a linear system Ax=b
- The Discrete Fourier Transform (DFT) is an orthogonal transformation $\tilde{\mathbf{x}} = \mathbf{O}\mathbf{x} = \mathrm{fft}(\mathbf{x}).$
- The inverse transformation $\mathbf{O}^{-1} = \mathbf{O}^T$ is the inverse Fourier Transform $\mathbf{x} = \mathbf{O}^T \tilde{\mathbf{x}} = \operatorname{ifft}(\tilde{\mathbf{x}}).$
- If the operator matrix A is *spatially invariant* (i.e. the stencil is the same at all grid points) and the b.c.'s are periodic, then it can be shown that O diagonalizes A, i.e. $OAO^{-1} = D$.
- So in the transformed basis the system of equations is diagonal

$$(\mathbf{OAO}^{-1})(\mathbf{Ox}) = (\mathbf{Ob}),$$

 $\mathbf{D\tilde{x}} = \tilde{\mathbf{b}},$ (1)

• For $N = 2^p$ the Fast Fourier Transform (FFT) is an algorithm that computes the DFT (and its inverse) in $O(N \log(N))$ operations.

FFT Solver (cont.)

- So the following algorithm computes the solution of the system in $O(N\log(N))$ ops.
 - $\triangleright \tilde{\mathbf{b}} = \mathrm{fft}(\mathbf{b})$, (transform r.h.s)
 - $\triangleright \tilde{\mathbf{x}} = \mathbf{D}^{-1}\tilde{\mathbf{b}}$, (solve diagonal system O(N))
 - $\triangleright \mathbf{x} = ifft(\tilde{\mathbf{x}})$, (anti-transform to get the sol. vector)
- Total cost: 2 FFT's, plus one element-by-element vector multiply (the reciprocals of the values of the diagonal of D are precomputed)
- In order to precompute the diagonal values of D,
 - $\triangleright\,$ We take any vector z and compute y=Az,
 - \triangleright then transform $\tilde{z} = \operatorname{fft}(z)$, $\tilde{y} = \operatorname{fft}(y)$,

$$\triangleright D_{jj} = \tilde{y}_j / \tilde{z}_j.$$

NSFVM Computing rates in CPU

- i7-3820@3.60Ghz (Sandy Bridge), 1 core (sequential): 1.7 Mcell/sec
- i7-950@3.07 (Nehalem), 1 core (sequential): 1.51 Mcell/sec
- Cellrates with nthreads>1, and W3690@3.47Ghz not available at this time.
- BUT, we expect at most 7 to 10 Mcell/secs, so there is speedup factor of 8 to 10, with respect to the GPGPU (GTX-580, DP).

NSFVM and "Real Time" computing

- For a 128x128x128 mesh (\approx 2Mcell), we have a computing time of 2 Mcell/(140 Mcell/sec) = 0.014 secs/time step.
- That means 70 steps/sec.
- A von Neumann stability analysis shows that the QUICK stabilization scheme is inconditionally stable if advanced in time with Forward Euler.
- With a second order Adams-Bashfort scheme the critical CFL is 0.588.
- For NS eqs. the critical CFL has been found to be somewhat lower (\approx 0.5).
- If L = 1, u = 1, h = 1/128, $\Delta t = 0.5h/u = 0.004$ [sec], so that we can compute in 1 sec, 0.28 secs of simulation time. We say ST/RT=0.28.

(launch video nsfvm-bodies-all), (launch video NSFVM-64-64-64-Simple), (launch video NSFVM-2-128-128-Simple).

NSFVM and "Real Time" computing (cont.)

Descripcion	video	Malla	Ncell	2D/3D?	Umax	CFL	Rate [Mcell/sec]	Tcomp/Tsim	Tvideo/Tsim	Tcomp/Tvideo
Cylinder moving randomly in a square cavity	vrtx3d- cylinder.avi	128×128	16K	2D	m	0.5	90	0.14	1.27	0.11
2-D Flow around a moving square body	vrtx3d-moving- square.avi	128×128	16K	2D	0.66	0.5	90	0.031	1.6	0.019
3-D Falling block off centered	falling-block- offcentered.avi	128×128×128	2M	3D	3	0.5	140	11.5	10	1.15
3-D Cube moving randomly in a 3-D cavity	moving- cube-random.avi	128x128x128	2M	3D	3.8	0.5	140	14.5	5	3
2-D Flow around a cylinder at Re=1000	cylinder-nsfvm- re1000.avi	256x1024	262K	2D	2	0.5	90	3	3.52	0.85

CIMEC-INTEC-CONICET-UNL

((version texstuff-1.2.0-118-g8afc74d Wed Nov 14 23:40:27 2012 -0300) (date Thu Nov 15 08:13:22 2012 -0300))

LBM and FVM

- This algorithm competes with the popular Lattice Boltzmann Method.
- Both are CA (Cellular Automata) algorithms
- Both are fast (measured in cellrates) on GPGPU's with structured meshes.
- LBM doesn't solve a Poisson equation, so it's partially compressible, and then there is a CFL penalization factor (CFL $\propto Mach_{art}$).
- Both can be nested refined near surfaces, or other interest zones.
- Higher order treatment of BC's on body surfaces may be better improved in FVM.

Current work

Current work is done in two main directions

- Improving performance by replacing the *QUICK* advection scheme by *MOC+BFECC* (which could be more GPU-friendly).
- Implementing a CPU-based *renormalization* algorithm for free surface (level-set) flows.
- Another important issue is improving the representation (accuracy) of the solid body surface by using an *immersed boundary* technique (see Peskin, Acta numerica 11.0 (2002): 479-517)

MOC+BFECC

- QUICK has a stencil that extends more than one cell in the upwind direction. This increases *shared memory* usage and data transfer. We seek for another low disipation scheme with a more compact stencil.
- The *Method Of Characteritics (MOC)* is a method that has a null disipation for a constant velocity field and integer CFL number.
- Disipation is non-null for non-integer CFL and maximum for semi-integer CFL.
- Combination of MOC with the BFECC reduces dissipation and gives a compact stencil.

MOC+BFECC (cont.)

- Assume we have a low order (dissipative) operator (may be SUPG, MOC, or any other) $\Phi^{t+\Delta t} = \mathcal{L}(\Phi^t, \Delta t)$.
- The *Back and Forth Error Compensation and Correction (BFECC)* is as follows:
 - ▷ Advance *forward* the state $\Phi^{t+\Delta t,*} = \mathcal{L}(\Phi^t, \Delta t)$.
 - \triangleright Advance *backwards* the state $\Phi^{t,*} = \mathcal{L}(\Phi^{t+\Delta t,*}, -\Delta t)$.
 - ▷ If \mathcal{L} introduces some dissipative error ϵ , then $\Phi^{t,*} \neq \Phi^t$, in fact $\Phi^{t,*} = \Phi^t + 2\epsilon$.
 - ▷ So that we can *compensate* for the error:

$$\Phi^{t+\Delta t} = \mathcal{L}(\Phi^t, \Delta t) - \epsilon,$$

= $\Phi^{t+\Delta t, *} - \frac{1}{2}(\Phi^{t, *} - \Phi^t)$ (2)

Zalezak's disk. Computing rates for the MOC-BFECC on a GPGPU Nvidia GTX580. CFL=4.9. Scalar advection.

Comparing computing rates with QUICK and MOC-BFECC:

- NSFVM+QUICK
 7 ms/Mcell
- Predictor step (QUICK): 3 ms/Mcell
- MOC-BFECC (Scalar) 5 ms/Mcell

BUT: NSFVM+QUICK advances at CFL=0.5, while MOC-BFECC could advance at CFL=4.9.

Renormalization

Even with a high precision, low dissipative algorithm for transporting the level set function Φ we have to *renormalize* $\Phi \to \Phi'$ with a certain frequency the level set function.

- Requirements on the renormalization algorithm are:
 - $\triangleright \ \Phi' \text{ must preserve as much as posible}$ the 0 level set function (interface) Γ .
 - $\triangleright \ \Phi'$ must be as regular as possible near the interface.
 - $\triangleright \Phi'$ must have a high slope near the interface.
 - ▷ Usually the signed distance function is used, i.e.
 (renormalized)

$$\Phi'(\mathbf{x}) = \operatorname{sign}(\Phi(\mathbf{x})) \min_{\mathbf{y} \in \Gamma} ||\mathbf{y} - \mathbf{x}||$$

expansion rar

Renormalization (cont.)

- Computing plainly the distance function is $O(NN_{\Gamma})$ where N_{Γ} is the number of points on the interface. This scales typically $\propto N^{1+(n_d-1)/n_d}$ ($N^{\frac{5}{3}}$ in 3D).
- Many variants are based in solving the Eikonal equation

$$|\nabla \Phi| = 1,$$

- As it is an hyperbolic equation it can be solved by a *marching* technique. The algorithm traverses the domain with an *advancing front* starting from the level set.
- However, it can develop *caustics* (*shocks*), and *rarefaction waves*. So, an *entropy condition* must be enforced.

caustic

Renormalization (cont.)

• The *Fast Marching* algorithm proposed by Sethian (Proc Nat Acad Sci 93(4):1591-1595 (1996)), is a *fast* (near optimal) algorithm based on *Dijkstra's algorithm* for computing minimum distances in graphs from a source set. (Note: the original Dijkstra's algorithm is $O(N^2)$, not fast. The fast version using a priority queue is due to Fredman and Tarjan (ACM Journal 24(3):596-615, 1987), and the complexity is $O(N \log(|Q|)) \sim O(N \log(N))).$

The Fast Marching algorithm

- We explain for the positive part $\Phi > 0$. Then the algorithm is reversed for $\Phi < 0$.
- All nodes are in either: Q=advancing front, F=far-away, I=frozen/inactive. The advancing front sweeps the domain starting at the level set and converts Fnodes to I.
- Initially $Q = \{\text{nodes that are in contact} with the level set}\}$. Their distance to the interface is computed for each cut-cell. The rest is in F = far-away.
- *loop*: Take the node X in Q closest to the interface. Move it from $Q \rightarrow I$.
- Update all distances from neighbors to X and move them from $F \to Q.$
- Go to *loop*.
- Algorithm ends when $Q = \emptyset$.

FastMarch: error and regularity of the distance function

- Numerical example shows regularity of computed distance function in a mesh of 100x100.
- We have a LS consisting of a circle R = 0.2 inside a square of L = 1.
- Φ is shown along the x = 0.6 cut of the geometry, also we show the first and second derivatives.
- Φ deviates less than 10^{-3} from the analytical distance.
- Small spikes are observed in the second derivative.
- The error $\Phi-\Phi_{ex}$ shows the discontinuity in the slope at the LS.

FastMarch: implementation details

- Complexity is $O(N)\times$ the cost of finding the node in Q closest to the level set.
- This can be implemented in a very efficient way with a *priority queue* implemented in top of a *heap*. In this way finding the closest node is $O(\log |Q|)$. So the total cost is

 $O(N \log |Q|) \le O(N \log(N^{(n_d - 1)_{n_d}})) = O(N \log N^{2/3})$ (in 3D).

- The standard C++ class priority_queue<> is not appropriate because don't give access to the elements in the queue.
- We implemented the heap structure on top of a *vector*<> and an *unordered_map*<> (hash-table based) that tracks the Q-nodes in the structure. The hash function used is very simple.

FastMarch renorm: Efficiency

- The *Fast Marching* algorithm is $O(N \log |Q|)$ where N is the number of cells and |Q| the size of the advancing front.
- Rates were evaluated in an Intel i7-950@3.07 (Nehalem).
- Computing rate is practically constant and even decreases with high N.
- Since the rate for the NS-FVM algorithm is >100 [Mcell/s], renormalization at a frequency greater than 1/200 steps would be too expensive.
- Cost of renormalization step is reduced with *band renormalization* and *parallelism (SMP)*.

FastMarch renorm: band renormalization

- The renormalization algorithm doesn't need to cover the whole domain. Only a band around the level set (interface) is needed.
- The algorithm is modified simply: set distance in far-away nodes to $d = d_{max}$.
- Cost is proportional to the volume of the band, i.e.:
 - $V_{\text{band}} = S_{\text{band}} \times 2d_{\text{max}} \propto d_{\text{max}}.$
- Low d_{\max} reduces cost, but increases the probability of forcing a new renormalization, and thus increasing the renormalization frequency.

FastMarch renorm: Parallelization

How to parallelize *FastMarch*? We can do *speculative parallelism* that is while processing a node X at the top of the heap, we can process in parallel the following node Y, speculating that most of the time node Y will be far from X and then can be processed independently. This can be checked afterwards, using *time-stamps* for instance.

FastMarch renorm: Parallelization (cont.)

- How much nodes can be processed concurrently? It turns out that the simultaneity (number of nodes that can be processed simultaneously) grows linearly with refinement.
- Average simultaneity is 16x16: 11.358 32x32: 20.507
- Percentage of times simultaneity is ≥4: 16x16: 93.0% 32x32: 98.0%

FastMarching: computational budget

- With *band renormalization* and *SMP parallelization* we expect a rate of 20 Mcell/s.
- That means that a 128^3 mesh (2 Mcell) can be done in 100 ms.
- This is 7x times the time required for one time step (14 ms).
- Renormalization will be amortized if the *renormalization frequency* is more than 1/20 time steps.
- Transfer of the data to and from the processor through the PCI Express 2.0 x 16 channel (~4 GB/s transfer rate) is in the order of 10 ms.
- BTW: note that transfers from the CPU to/from the card are amortized if they are performed each 1:10 steps or so. Such transfers can't be done all time steps.

Conclusions

The Accelerated Global Preconditioning (AGP) algorithm for the solution of the Poisson equation specially oriented to the solution of Navier-Stokes equations on GPU hardware was presented. It shares some features with the well known *IOP* iteration scheme. As a summary of the comparison between both methods, the following issues may be mentioned

- Both solvers are based on the fact that an efficient preconditioning that consists in solving the Poisson problem on the global domain (fluid+solid). Of course, this represents more computational work than solving the problem only in the fluid, but this can be faster in a structured mesh with some fast solvers as Multigrid or *FFT*.
- Both solvers have their convergence governed by the spectrum of the $\mathcal{S}^{-1}\mathcal{S}_F$, however

▷ *IOP* is a *stationary method* and its limit rate of convergence is given by

$$\|\mathbf{r}^{n+1}\| \leq \gamma_{\text{IOP}} \|\mathbf{r}^{n}\|$$

$$\gamma_{\text{IOP}} = 1 - \lambda_{\min},$$

$$\lambda_{\min} = \min(\text{eig}(\mathcal{S}^{-1}\mathcal{S}_{F})).$$
(3)

▷ *AGP* is a preconditioned *Krylov space method* and its convergence is governed by the condition number of $S^{-1}S_F$, i.e.

$$\kappa(\mathbf{A}^{-1}\mathbf{A}_F) = \frac{1}{\min(\operatorname{eig}(\mathcal{S}^{-1}\mathcal{S}_F))} = \frac{1}{\lambda_{\min}},$$
 (4)

- It has been shown that $\lambda_{\min} = O(1)$, i.e. it *does not degrade with refinement*, so that *IOP* has a linear convergence with limit rate O(1).
- By the same reason, the condition number for *AGP does not degrade with refinement*.
- *IOP* iterates over both the velocity and pressure fields, whereas *AGP* iterates only on the pressure vector (which is better for implementation on GPU's).
- The *MOC+BFECC* scheme is an efficient solver for the advection equation.

It gives high computing rates with large CFL numbers.

• The *Fast-Marching* renormalization technique is a good candidate for doing renormalization on the CPU and having times competitive with those of NS-FVM on the GPU.

Acknowledgments

This work has received financial support from

- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina, PIP 5271/05),
- Universidad Nacional del Litoral (UNL, Argentina, grant CAI+D 2009-65/334),
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina, grants PICT-1506/2006, PICT-1141/2007, PICT-0270/2008), and
- European Research Council (ERC) Advanced Grant, Real Time Computational Mechanics Techniques for Multi-Fluid Problems (REALTIME, Reference: ERC-2009-AdG, Dir: Dr. Sergio Idelsohn).

The authors made extensive use of Free Software as GNU/Linux OS, GCC/G++ compilers, Octave, and *Open Source* software as VTK among many others. In addition, many ideas from these packages have been inspiring to them.