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What are the boundary layer equations?

outer (inviscid) region

¢ (time-like)

Inner (viscous) region

Figure 1: (File: outer)

For exterior high Reynolds number flows, the flow can be
decomposed in an exterior inviscid region and an interior
viscous region. A natural way to solve this is to solve the
inviscid equations (potential, Euler) in the exterior region and
Parabolizad Navier-Stokes Equations in the inner region.
Parabolized Navier-Stokes Equations amounts essentially to
neglect diffusive terms in the longitudinal direction. This
allows to solve the equations as if the longitudinal coordinate
were time-like. Thus, computational resources (CPU-time, core
memory) are highly reduced.

Boundary layer problems are the paradigm of singular pertur-
bation problems. Other problems that can be solved with this
formulation are:

> WKB theory for wave like problems (Helmholtz equations)
in the limit of short wave-lengths (optical limit)
> Rounded leading edges
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Typical inviscid/boundary layer calculation

e Compute the inviscid field with slip condition at the wall.

e Solve the boundary layer problem with the inviscid values at the
wall as input data.

e Compute the displacement thickness.

e Solve again the inviscid problem with a geometry enlarged by
the displacement thickness. This can be done by modifying the
geometry or simulated by injecting fluxes at the wall.

e Repeat the process until convergence.

This process converges, unless very strong separation is present
in the flow field.

W

LE

not strongly separated flow

strongly separated flow

Figure 2: (File: separat)

Why to solve the boundary layer equations?

Even if nowadays the solution of NS equations on full config-
urations is possible on workstations or networks of workstations,
very cheap solvers as inviscid /boundary layer solutions are wanted
specially when many, many solutions (iteration) of the problem are
needed. For instance:

e Shape optimization

e Free surface problems with very different time scales

e Computation of flows for a full family of parameters (Froude
number in ship hydrodynamics.)
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Nowadays b.l. eqs. are solved mainly with..

e Integral methods. (Non-convergent. Mainly in the aeronautical
design).

e Finite differences.

e Finite elements (less used. See Schetz, Hytopoulos & M.
Gunzburger FED-vol 123, Advances in Finite Element Analysis
in Fluid Dynamics, ASME (1991)

e Spectral methods for high precission computations. Hydrody-
namical stability of the boundary layer. (Pruett & Streett, In-
ternational Journal for Numerical Methods in Fluids , 13, pp.
713-737 (1991))

Contributions of this work

e Automatic scaling of the normal coordinate

e Spectral discretization in the normal coordinate and mesh-less
discretization in the surface coordinates (3D).

e New mapping for the normal coordinate (avoids unnecessary
refinement at the outer edge).

e Tensorial form of the b.l. egs.
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Automatic scaling of the normal coordinate

The incompressible laminar 2D boundary layer equations are:

Ul + VUy = VUyy + UextUext,z (L.a,b)
Ug+vy =0

The boundary layer thickness 6 may greatly vary. It grows like /z for
flat velocity profiles, and gets very thin for highly accelerated flows,
like in the region near the suction peak of aero foils. For accuracy
reasons it is highly desirable to keep the width of the computational
domain (roughly) close to the b.l. thickness.
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Figure 3: (rite: bigrow)

Introducing an arbitrary normal scaling length d¢..; we get the
transformed equations:

UUg + VU = —— Uy + Uest Usste
5scal
1 (2.a,b)

< (5scalU),£ +Vy=0
5scal

Automatic scaling means to choose d¢ca1 = 6* and solving the result-
ing DAE system (Differential Algebraic Equations) appropriately.
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Automatic scaling of the normal coordinate (continued...)

If we have an a priori estimate to the b.l. thickness ¢* then we
can use it for scaling purposes, for instance

scal X Uext_l(/ Uext(T) dw)1/2 (Levy-Lees transf.) (3)

s
1
Oscal = OThwaites X (U—6 / fot daz) (Thwaites method) 4)

ext

These give correct behavior dgc) ¢ 'R(=m) for wedge flows (Uexy
z™).

However, large discrepancies exist in the location of the
separation point.

After semi-discretization in the normal coordinate (by spectral
methods or whatever) we get a system of ODE’s of the form

F(aa 5sca17 éa 5scala "I:) =0 (5)

where a is the vector of unknowns defining the b.l. profile.

w(@,1) = Uexi () (Z ak(x)¢(77)> (6)
k

Imposing exactly dsca1 = 0* amounts to a further linear restriction
on the ay’s.

Uext5* — / (Uext - u) dy (7)
0

1:/00(1—u/Uext) dn:Zﬂkak (8)
0 k=0

Auto-scaling amounts to solve (5) together with restriction (8).
These represents a DAE’s (Differential Algebraic Equations) system.
Two possibilities arise

e Eliminate d¢.5 and obtain a ODE’s system.
e Use a special purpose package for DAE’s like DASSL (Brenan),
LIMEX (Nowak & Zugck).
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Spectral discretization

e Spectral methods are based on approximation by non-local
functions, and (under certain conditions) give very high
convergence rates (fast than any finite power of the number of
unknowns). This is known as spectral convergence.

e The simplest example is Fourier series for problems with periodic
conditions.

e For finite intervals (say 0 < z < 1) one can transform the
problem to a in periodic by mapping z = 5(1 — cos#). This is
equivalent to Tchebyschev polynomial expansion.

-3 -2 -1 0 1 2 9/7'(' 3

Fjgure 4.' (File: gmap)
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Spectral discretization (continued...)

e For semi-infinite intervals (as is the case for the b.l. equations)
it’s usual to truncate the domain, say 0 < 17 < Nmax and then
apply the Tchebyschev expansion. This results in an undesired
refinement near the outer boundary.
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Fjgure d: (File: etares)

e To correct this we propose the following mapping, which gives a

uniformly decreasing resolution from the wall to the outer edge
of the b.l.

tanh( il ) = [14(1 — cos 8)]? 9)

Nscal

Uext

-
Ay Ay n

Ay

M,

Figure 6: (File: etarestanh)



o1d. Diayod<.lex,vV L./ 1JIO/VO/ 40 LI .14 IMSLOrtl LXp o

1. Tensorial form of the b.l. egs.

It is obvious that some kind of intrinsic curvilinear coordinates
(€,m) = (z1, z2) are needed on the surface. Let ( = 23 = n/d(z1, z2)
be the normal coordinate to it. Navier-Stokes equations in a general
3D curvilinear system are written in the following form:

i, 0 — . d ji,
uu,i—uu,ii—l—g D,i

(10)

i
u; =0

Zl

Figure 7: intrinsic coordinates on a surfaceiie: ../EPS/intri)

e Upper (lower) subscripts denote “contravariant” (“covariant”)

components of the vectors or tensors.
o () ; denotes the “covariant derivative”, where the 3-index term

in braces is the Christoffel symbol:

L +{ : }uk (11)

’J:&cj jk
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Boundary layers in tensorial form (continued...)

The following “beasts” arise in the context of tensorial calculus:

e Christoftel symbols of second kind:

{]k} — ¢ [jk, ) (12)

e Christoffel symbols of first kind:

ik, q] = O%yP  OyP
JE A= Oz ;0z* Ox9
(13)
1/ agqj 89qk _ agjk
2 (9:15’c Oxi  Ox?
e Contravariant metric tensor:
g =(g.)7" (14)
e (Covariant metric tensor;
(ds)? = gjx dz’ dzF (15)
e Compact form of the continuity equation:
T T 1
u,i - 91/2 ort (g u ) (16)
2. Boundary layers in tensorial form
Letting 6 — 0:
ouP Op v 0%ub
bl ﬂ Ba -
wae P 9 5 E T 5 e
? (17)
ow 1 0

53 Yo g —
0C+5sa1/23:c°‘( a®u®) =0

This eqs. are invariant under change in intrinsic coordinates

(z!,2?) — (w!,w?) and in transversal scaling: d5(x!, z?) is arbitrary.
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3. Advantages of writing the b.l. eqs. in tensorial form

e It’s easier to detect errors.
Example: Steady heat conduction equation in a hollow shell

(tg* Tp)a =Q

0 o 1y OT 1
8?(759 B o' 6:1:5) =a”Q

e Conservative equations remain conservative:

(18)

fiz':Q

’

/Fi dS; = /Q dQ (19)

e It’s easier to change from one coordinate system to another.

e Surface equations are essentially different to space
equations: Space is Euclidean, surfaces are (in general)
not.

e Arbitrary scaling of the transverse coordinate is included.

10
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Numerical results. Wedge flow (Hartree profiles)
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Figure 8: (File: wedgeprof)
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Figure 9: Spectra of coefficients in the Fourier series for similar
ﬁOWS.(File: spectra) k

e Good convergence (< 1%) is obtained even with 4 terms
(equivalent to the von Kdrman and Pohlhausen method).
e Spectral decay of the coefficients means “spectral convergence”.

11
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Numerical solutions. Convergent channel
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Figure 10: Flow in a convergent channel Ueyy o |z|71, (z <

0) (File: convchan)
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Figure 11: Maximum error versus number of terms for the
convergent channel flow (Ueyy oc —|z|™1, for £ < 0). (rite: convers)

e Wedge flows have an exact solution for m = —1
e The velocity profile obtained with 4 terms is compared here with

the exact solution.

12
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Howarth decelerated flow
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Figure 12: Displacement thickness and wall friction for
Howarth’s flow Uext (ZB) = Uo — QX (File: howdelta)
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Figure 13: Longitudinal velocity profiles for Howarth’s flow.(rite:

howprof)

e This is also referred as “linearly retarded flow”.
e Flow separates at * = 0.01195 which is in very good coincidence
with both the value of x* = 0.0119863 reported by Wippermann.

13



o1d. Diayod<.lex,vV L./ 1JIO/VO/ 40 LI .14 IMSLOrtl LXp o

Ellipses
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Figure 16: Displacement thickness for low around ellipses of
various slenderness.(rie: elipsed)
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Figure 17: Wall friction or flow around ellipses of various
slenderness(rite: taueti)

e Displacement thicknesses and wall friction are shown for several
aspect ratios.

e The separation point moves to the trailing edge as the aspect
ratio a/b — oo.

e Results converge to the flat plate for a/b — oc.

14
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Mesh-less discretization of the 3D problem

Spectral discretization in the normal coordinate of the tensor
form of the 3D equations gives a ODE system of the form

Oou Ou

F(a_é-a 8_77’11’

6) =0, (20)

The data dependency domain for a given point is (locally) the cone
including the projection of the locus of vector velocities at the point.
If we advance the computation by layers, then arrangements {A4;}
and {B;} are admissible but the {C;} are not. The constraint
becomes stronger as the aperture angle of the hodograph becomes
wider.

Aito
—Aip

Bt

Figure 19: Data dependency domain(rii: ../EPs/datadepend)

15
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Mesh less discretization of the 3D problem (continued...)

In the neighborhood of the separation point the cone becomes
180° wide and the advancing front has to reach the separation line
perfectly tangential to it. Otherwise, instabilities occur.

singular
separation
point

Figure 20: behavior of the data dependency domain near the
separation line.(rile: ../EPS/bubble)

16
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Mesh less discretization of the 3D problem (continued...)

Figure 21: Stencil and data dependency domain for the
oundary layer eqs.(rite: ../EPS/meshless)

Compute coefficients for approximations to the first order
derivatives by least-squares approximation,

06~ &
. (21)
0p X
S~ e
Then solve
N N
F|Y ¢u) cjujué | =0 (22)

for u;.

17
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3D Numerical results. Yawed circular cylinder

This case corresponds to a yawed cylinder such that the non-
perturbed flow impinges at 45° to its axis (see figures 22 and 23). As
indicates the theory, the velocity component normal to the axis of
the cylinder is the same as for the non-yawed cylinder. However the
limit streamlines, i.e. the streamlines for the fluid immediately over
the wall) tend to curve near the separation point and to align with
the separation streamline, which for cylinders is always an x =cnst
curve. Here, the computations have been obtained with the potential
velocity (u = 2sin(¢)) and separation occurs at the same point as
for the non-yawed cylinder, i.e. at 104.45° which is in very good
agreement with computations reported in the literature.

Figure 22: Inviscid streamlines. rite: ../EPS/cylindi)

separation streamline

Figure 23: Computed viscous streamlines. riie: ../ps/cylind)

18
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3D Numerical results. Sphere

This is an axisymmetric flow without lateral (azimuthal)
component of velocity. Using the velocity distribution given by
the potential flow U = 1.5sin(¢) we obtain the separation point
at ¢ = 105.45° which is in very good agreement with the value

recommended by White as being between 104° and 106°.
Sphere (actual velocity distribution)

The actual velocity distribution can be approximated with very
good precision as

UE = 1.5(x/a) —0.4371 (z/a)® +0.1481 (x/a)® — 0.0423 (z/a)” (23)
0

With this velocity distribution the code predicts separation at ¢ =
81.6° which is again in very good agreement with other computations

and with the experimental value of 83° reported by Fage.
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Figure 24: Results for the sphere with velocity distribution given
y potential flow.(rile: ../EPS/spherep)
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3D Numerical results. Rotating sphere

In this case take the the actual distribution of velocity (23) but
the sphere is rotating with an angular velocity wR/U,, = 1, about
an axis parallel to the free stream velocity. Whereas the inviscid
streamlines are simply meridians, the limit viscous streamlines have
a tendency to rotate with the sphere, until they align with the
separation streamline that is a parallel at 84.2° with respect to
the pole facing the fluid. Note that rotation tends to stabilize the
boundary layer against separation, resulting in a delay of almost 3
degrees. This is due to the centrifugal force that can be assimilated
to a pressure gradient directed to the equator. Since the separation
for the sphere happens before the equator this is equivalent to a
favorable pressure gradient. This has a significant incidence in the
drag also.
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Figure 25: Limit streamlines for the rotating sphere.rite:
../EPS/rotsphere)
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Conclusions

A spectrally accurate algorithm for the solution of the boundary
layer equations with automatic scaling of the normal coordinate
is presented. The scaling amounts to assume the scaling length
as a further unknown and adding the corresponding restriction
as a constraint. The resulting system of Differential-Algebraic
Equations (DAE) is solved by eliminating one parameter in the
expansion and solving the resulting system of ODE’s. The spectral
approximation is based on a direct mapping from the semi-infinite
domain to a periodic problem and using a Fourier expansion, instead
of truncating the semi-infinite domain and mapping to a bounded
interval and using a Tchebyschev expansion. Several numerical
results are presented, and spectral convergence is demonstrated by
analysis of the decay rate of the coefficients in the expansion for
similar flows, and by straightforward computation of the maximum
error in the longitudinal velocity profile for the special case of flow
towards a sink, for which an analytic expression is available. Also,
the accuracy of the method when very few parameters are used
was analyzed, by comparison with von Karman and Pohlhausen’s
method.
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