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Abstract. In this note we combine the dyadic families introduced by M.
Christ in [4] and the discrete partitions introduced by J. M. Wu in [12] in order
to get approximation of a compact space of homogeneous type by a uniform
sequence of finite spaces of homogeneous type. The convergence holds in the
sense of a metric built on the Hausdorff distance between sets and on the
Kantorovich-Rubinshtein metric between measures.

Introduction

In order to introduce the problem considered in this paper, let us start by two
very classical examples.

If for each n ∈ N we define on the Borel sets of the real numbers the normalize
counting measure supported on Sn = {i/n : i = 0, 1, 2, . . . , n}, given by µn(A) =

1
n+1 card ({i : 0 ≤ i ≤ n and i/n ∈ A}), we have that

Sn
dH−−→ [0, 1] and µn

w∗−−→ m,

where the dH -convergence is the Hausdorff convergence of compact sets, the w∗-
convergence is the weak star converge of measures, and m is the Lebesgue measure
on the closed interval [0, 1]. In other words, perhaps the most elementary prob-
abilistic space of homogeneous type ([0, 1], | · |,m) can be approximated in the
Hausdorff-Kantorovich sense by a sequence of finite spaces. Moreover, the spaces
(Sn, | · |, µn) are themselves spaces of homogeneous type with doubling constants
bounded above by a fixed number independent of n ∈ N. In fact given n ∈ N,
x ∈ Sn and 0 < r ≤ 1, choosing j ∈ Z such that j/n < r ≤ (j + 1)/n we have

(n + 1)µn(B(x, 2r)) ≤ 2(2j + 1) + 1
< 4(j + 1)
≤ 4(n + 1)µn(B(x, r)),

where B(x, r) = {y : |x− y| < r}.

Most interesting is the case of the Cantor set C. Let F be the Cantor function
extended to R as a continuous function by defining F (x) = 1 for x ≥ 1 and F (x) = 0
for x ≤ 0. Let µ the unique probabilistic Borel measure on R such that µF ((a, b]) =
F (b)−F (a) for every a < b. It is well know (see [10] and [13]), realizing the Cantor
set as the attractor of an iterated function system, that (C, | · |, µ) is a space of
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homogeneous type en even normal. Let us write

C =
∞⋂

n=1

Cn, Cn =
2n⋃

j=1

Ij
n, Ij

n = [aj
n, bj

n] ,

where Cn is the set obtained as the n-th step in the construction of the Cantor set.
For each n ∈ N, let Ln = {aj

n : j = 1, 2, . . . , 2n}, in other words, Ln is the collection
of all the left points of each interval in Cn. Notice that for each n we have that
dH(Ln, C) ≤ 2/3n. Then Ln

dH−−→ C when n →∞. Let µn be the discrete measure
defined on Ln by µn({x}) = 2−n for each x ∈ Ln. Then µn

w∗−−→ µ. In fact, for
ϕ ∈ C([0, 1]) we have

∫

[0,1]

ϕ(x) dµn(x) =
1
2n

2n∑

j=1

ϕ(aj
n) .

On the other hand, for fixed n,the partition of [0, 1] given by

Pn = {x` = `/3n : ` = 0, 1, 2, . . . , 3n}
contains Ln. From the construction of F as a limit of the continuous and piecewise
linear functions Fk, one easily see that Fk(x`) = Fn(x`) for every ` = 0, 1, . . . , 3n

and every k ≥ n. Then F (x`) = Fn(x`) and every ` = 0, 1, . . . , 3n, so that

3n−1∑

`=0

ϕ(x`)[F (x`+1)− F (x`)] =
3n−1∑

`=0

ϕ(x`)[Fn(x`+1)− Fn(x`)]

=
1
2n

2n∑

j=1

ϕ(aj
n) .

The last inequality follows from the fact that Fn(x`+1)− Fn(x`) = 2−n if x` ∈ Ln

and it vanishes elsewhere. Hence
∫

[0,1]

ϕ(x) dµn(x) =
3n−1∑

`=0

ϕ(x`)[F (x`+1)− F (x`)] −−−−→
n→∞

∫

[0,1]

ϕ(x) dF (x) ,

so that µn
w∗−−→ µ.

Let us next prove that there exist A ≥ 1 such that (Ln, | · |, µn) is space of
homogeneous type with doubling constant bounded by A, for every n. Let us
notice that Ln can be obtained by dividing by 3n all the non-negative integers
whose expansion in basis 3 do not contain the digit 1 and having at most n digits.
So that each point x ∈ Ln can be identified with an n-tuple (x1, x2, . . . , xn) where
each xi is zero or two. With this notation, following [2], define dn : Ln ×Ln → R+

0

by

dn(x, y) =
{

0, if x = y,
3−j , if xi = yi for every i < j and xj 6= yj .

It is easy to see that dn is a distance on Ln. Let us first show that (Ln, dn, µn) is
a uniform family of spaces of homogeneous type, in the sense that there exists a
constant A such that the inequalities

(1) 0 < µn (Bdn(x, 2r)) ≤ Aµn (Bdn(x, r)) < ∞
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hold for each x ∈ Ln, r > 0 and n ∈ N, where Bdn(x, r) = {y ∈ Ln : dn(x, y) < r}.
Notice that for x ∈ Ln and j ∈ N we have

Bdn

(
x, 3−j

)
= {y ∈ Ln : yi = xi, i = 1, 2, . . . , j} ,

hence

card
(
Bdn

(
x, 3−j

))
=

{
2n−j , j ≤ n,
1, j ≥ n.

So that

µn

(
Bdn

(
x, 3−j

))
=

{
2−j , j ≤ n,
2−n, j ≥ n.

From this estimate, for a given 0 < r < 1, choosing j ∈ N such that 3−j < r ≤ 31−j

we have (1) with A = 4. Observe that given n ∈ N and x, y ∈ Ln, x 6= y, with
dn(x, y) = 3−j , we necessarily have that

x− y =
n∑

i=j

3−i(xi − yi),

from which we obtain the inequalities

dn(x, y) ≤ |x− y| ≤ 3dn(x, y),

for every n ∈ N and every x, y ∈ Ln. Hence also (Ln, | · |, µn) is a uniform sequence
of spaces of homogeneous type. In fact, for n ∈ N, x ∈ Ln and r > 0 we have

µn (B(x, 2r)) ≤ µn (Bdn(x, 2r))
≤ 43µn (Bdn(x, r/3))
≤ 43µn (B(x, r)) .

The aim of this paper is to show that the situation of the above examples is
general. More precisely, we shall prove that each probabilistic compact space of
homogeneous type can be approximated in the Hausdorff-Kantorovich sense by a
sequence of finite spaces of homogeneous type with a uniform bound for the doubling
constant.

To prove our result we use the techniques introduced by J. M. Wu in [12] to pro-
duce partitions on the discrete approximation, and those introduced by M. Christ
in [4] to built dyadic type families on spaces of homogeneous type.

In Section 1 we introduce the Hausdorff-Kantorovich distance, and in Section 2
we prove a completeness type property for the families of spaces of homogeneous
type with bounded doubling constant. The main result, providing the discrete
approximation of a given space of homogeneous type, is contained in Section 3.

1. The Hausdorff-Kantorovich quasi-metric

Let X be a given set. A function ρ : X × X → R+ ∪ {0} is called a quasi-
distance if ρ is symmetric, ρ vanishes on the diagonal of X × X, ρ is faithful,
i.e. ρ(x, y) = 0 implies x = y, and there exists a constant Λ ≥ 1 such that the
inequality ρ(x, y) ≤ Λ(ρ(x, z) + ρ(z, y)) holds for every x, y, z ∈ X. The family Nx

of subsets E of X for which, for some r > 0, Bρ(x, r) := {y ∈ X : ρ(x, y) < r} ⊆ E
is a neighborhood system for a topology τ on X. The sets B(x, r) are called the
ρ-balls or simply the balls in X. The basic result concerning quasi-metric spaces
is a theorem due to Maćıas and Segovia [9] which actually proves that for each
quasi-distance ρ on X there exist a distance d on X and a number ξ ≥ 1 depending
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only on Λ such that ρ ' dξ. In other words, there exist constants c1 and c2 which
depend only on Λ such that the inequalities

(2) c1ρ(x, y) ≤ dξ(x, y) ≤ c2ρ(x, y),

hold for every x, y ∈ X. In particular the topology τ introduced through the
neighborhood system Nx given by the ρ-balls, is the metric topology induced on X
by d. Hence each topologic concept introduced further can be regarded as a metric
one.

Throughout this paper (X, ρ) shall be a compact quasi-metric space. With d we
shall always denote a distance for which there exist ξ, c1 and c2 constants for which
(2) holds. For any closed subset Y of X, the quasi-metric space (Y, ρ) is a compact
subspace of (X, ρ).

To accomplish our aims we start by introducing a quasi-metric structure on the
closed probabilistic subspaces of homogeneous type (Y, ρ, µ) of (X, ρ) with uniform
upper bounds for the doubling constants. This topology involves the Hausdorff con-
vergence of compact sets and the Kantorovich weak ∗ convergence of probabilities.

Let K = {K ⊆ X : K 6= ∅, K compact}. With [A]ε we shall denote the ε-
enlargement of the set A ⊂ X; i.e. [A]ε =

⋃
x∈A Bρ(x, ε) = {y ∈ X : ρ(y,A) < ε}.

Here ρ(x,A) = inf{ρ(x, y) : y ∈ A}. Given A and B two sets in K the Hausdorff
quasi-distance from A to B is given by

δH(A,B) = inf{ε > 0 : A ⊆ [B]ε and B ⊆ [A]ε}.
Of course δH is the usual Hausdorff distance when ρ itself is a metric. The next

result is a corollary of the completeness of the Hausdorff distance (see [7]) and of
the above mentioned theorem of Maćıas and Segovia.

Proposition 1.1. (K, δH) is a complete quasi-metric space.

Proof. Set dH to denote the usual Hausdorff distance on K associated to d. In
other words if [A]ε,d = {x ∈ X : d(x, A) < ε} denotes the ε-neighborhood of A with
respect to d, then dH(A, B) = inf{ε > 0 : A ⊆ [B]ε,d and B ⊆ [A]ε,d}, for A,B ∈ K.
Since for every ε > 0 we have that

[A](ε/c1)
1/ξ, d ⊆ [A]ε ⊆ [A](c2ε)1/ξ, d

we have that

δH(A,B) ≥ inf{ε > 0 : A ⊆ [B](c2ε)1/ξ, d and B ⊆ [A](c2ε)1/ξ, d}

=
1
c2

[
inf{(c2ε)1/ξ : A ⊆ [B](c2ε)1/ξ, d and B ⊆ [A](c2ε)1/ξ, d}

]ξ

=
1
c2

dξ
H(A,B),

for every A and B in K. With a similar argument we can show that δH(A,B) ≤
dξ

H(A,B)/c1. Hence δH ' dξ
H , with the same constants c1 and c2 in (2). Since

(K, dH) is a complete metric space, we have that that δH is a quasi distance on K
and (K, δH) is a complete quasi-metric space. ¤

Let us now introduce the Kantorovich-Rubinshtein distance (known also as the
Hutchinson distance, see [1], [8]) on the set of all Borel regular probability measures
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on the quasi-metric space (X, ρ). Let

P(X) = {µ : µ is a positive Borel measure on X and µ(X) = 1},
and let C(X) be the space of continuous real valued functions on X. Since the Borel
σ-algebra induced by the quasi-distance ρ is the same as the one induced by d, we
have that every measure µ in P(X) is regular (see [3]). For c > 0, let us denote by
Lipc the space of all d-Lipschitz continuous functions defined on X with Lipschitz
constant equal to one, i.e. f ∈ Lipc if and only if |f(x)− f(y)| ≤ cd(x, y) for every
x and y ∈ X.

Since (X, ρ) is compact, δK (µ, ν) = sup
{∣∣∫ f dµ− ∫

f dν
∣∣ : f ∈ Lip1

}
gives a

distance on P(X) such that the δK-convergence of a sequence is equivalent to its
weak ∗ convergence to the same limit. Hence, in our situation, the metric space
(P(X), δK) becomes complete.

Even when the results stated in the above paragraph are well known, specially
for subsets of the Euclidean space, for the sake of completeness, we shall briefly
sketch their proofs.

Let us remind that µn
w∗−−→ µ if and only if

∫
ϕdµn →

∫
ϕdµ for every ϕ ∈ C(X).

Notice that weak star convergence depends only on the topology of X, not on the
specific metric or quasi-metric that generates it. Since X is compact, P(X) is
sequentially compact by Prohorov’s Theorem (see for example [3]), that is, for every
sequence {µn} in P(X) there exist a subsequence {µni} and a measure µ ∈ P(X)
such that µni

w∗−−→ µ. This fact implies that P(X) is complete with the weak star
topology.

Lemma 1.2. Let µ1, µ2 . . . and µ be measures in P(X). Then µn
w∗−−→ µ if and

only if δK(µn, µ) → 0 when n →∞.

The proof follows the lines of Lemma 1.10 in [6], actually the fact that the weak
star convergence implies that δK(µn, µ) → 0 is valid with no changes.

For the converse suppose that δK(µn, µ) → 0. Notice that since X is compact,
then the class A =

⋃
c>0 Lipc is a subalgebra of C(X). Also A separate points;

that is, given two distinct points x and y in X, we can find an f in A such that
f(x) 6= f(y). In fact, given x, y ∈ X with x 6= y, it is enough to take f(z) = d(x, z),
which belongs to Lip1. Since A contains the constant functions, then from the
Stone-Weierstrass theorem for compact metric spaces (see [11]) we have that A is
dense in C(X). Then given ϕ ∈ C(X) and ε > 0, there exists f ∈ Lipc for some
c > 0 such that |ϕ(x) − f(x)| < ε/3 for all x ∈ X. Let n0 = n0(ε) be such that if
n ≥ n0 then δK(µn, µ) < ε/(3c). Then if n ≥ n0 we have

∣∣∣∣
∫

ϕ dµn −
∫

ϕdµ

∣∣∣∣ ≤
∫
|ϕ− f | dµn +

∣∣∣∣
∫

f dµn −
∫

f dµ

∣∣∣∣ +
∫
|ϕ− f | dµ

< 2ε/3 + cδK(µn, µ) < ε.

Hence µn
w∗−−→ µ.

We are now in position to describe the basic quasi-metric space whose structure
and convergence properties are of our interest. Let X be the set of all couples
(Y, µ) such that Y is a closed, and hence compact, subset of X, and µ is a regular
Borel probability measure on X. In other words, X = K×P. Given two elements
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(Yi, µi) of X , i = 1, 2, define

δ ((Y1, µ1), (Y2, µ2)) = δH(Y1, Y2) + δK(µ1, µ2) ,

so that (X , δ) becomes a complete quasi-metric space. Let E be the set of all
(Y, µ) ∈ X such that the support of µ is contained in Y , in other words

E = {(Y, µ) ∈ X : suppµ ⊆ Y },
were suppµ is the complementary of the largest open set G in X for which

∫
ϕdµ = 0

for every ϕ ∈ C(X) with suppϕ ⊆ G.

Theorem 1.3. The set E is closed. Hence (E , δ) is a complete quasi-metric subspace
of (X , δ).

Proof. Let {(Yn, µn) : n ∈ N} be a sequence in E with (Yn, µn) δ−→ (Y, µ). Let us
start by proving that suppµ ⊆ Y . Let us show that

∫
ϕdµ = 0 for every ϕ ∈ C(X)

with suppϕ ∩ Y = ∅. Take ε = ρ(suppϕ, Y ) > 0 and notice that suppϕ ∩ [Y ]ε = ∅.
Since, on the other hand, Yn

δH−−→ Y , for the same value of ε, there must exist
N = N(ε) such that Yn ⊆ [Y ]ε whenever n ≥ N . Hence suppϕ ∩ Yn = ∅ for every
n ≥ N , so that ∫

ϕdµ = lim
n→∞

∫
ϕdµn = 0.

¤

2. Subspaces of E: the doubling property

Let (X, ρ) and d as in Section 1. Even when in most applications of spaces of
homogeneous type as models for analytic problems the ρ-balls are open sets, or
even when after the above mentioned theorem of Maćıas and Segovia every quasi-
metric is equivalent to another, dξ, for which the balls are open and hence Borel
sets, it is not difficult to construct a translation invariant quasi-distance ρ(x, y) on
R generating the usual topology and equivalent to |x− y| for which the ρ-balls are
not even Lebesgue measurable sets. Hence for a Borel measure µ on (X, ρ) it could
happen that the expression µ(Bρ(x, r)) is not well defined. To avoid this difficulty
we shall keep assuming that every ρ-ball is a Borel set.

Let A be a given real number with A ≥ 1. Let D(A) be the set of all couples
(Y, µ) in E such that the inequalities

(3) 0 < µ(Bρ(y, 2r)) ≤ Aµ(Bρ(y, r))

hold for every y ∈ Y and every r > 0. Such a couple (Y, µ) is usually called a space
of homogeneous type if we understand that the quasi-metric is the one inherited
from the environment X.

Theorem 2.1. Let {(Yn, µn)} be a sequence in E such that (Yn, µn) δ−→ (Y, µ). If
there exists A ≥ 1 such that (Yn, µn) ∈ D(A) for every n, then there exists A′

depending only on A and Λ such that (Y, µ) ∈ D(A′).

Proof. Let ϕ be the continuous function defined on the non-negative real numbers
as ϕ ≡ 1 on [0, 1], ϕ ≡ 0 on [2,∞) which is linear in the interval [1, 2]. Take y ∈ Y

and r > 0. Since Yn
δH−−→ Y , let us take yn ∈ Yn such that d(yn, y) → 0 as n →∞.

Then, since X[0,1] ≤ ϕ, the following inequality follows easily

µ(Bd(y, 2r)) ≤
∫

ϕ

(
d(x, y)

2r

)
dµ(x).
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Also, for y and r fixed, ϕ
(

d(x,y)
2r

)
is a continuous function of x ∈ X, and since

µn
w∗−−→ µ we have

µ(Bd(y, 2r)) ≤ lim
n→∞

∫
ϕ

(
d(x, y)

2r

)
dµn(x).

Now, since yn → y and ϕ ≤ X[0,2] we have the inequalities

µ(Bd(y, 2r)) ≤ lim inf
n→∞

µn (Bd (y, 4r))

≤ lim inf
n→∞

µn (Bd (yn, 5r))

≤ lim inf
n→∞

A4µn

(
Bd

(
yn,

5r

16

))

≤ A4 lim inf
n→∞

µn

(
Bd

(
y,

r

2

))

≤ A4 lim
n→∞

∫
ϕ

(
2d(x, y)

r

)
dµn(x)

= A4

∫
ϕ

(
2d(x, y)

r

)
dµ(x)

≤ A4µ(Bd(y, r)).

Since for every s > 0 we have Bρ(y, 2s) ⊆ Bd(y, (2c2)1/ξs1/ξ) and Bρ(y, s) ⊇
Bd(y, c1/ξs1/ξ), applying k times the above inequality we obtain

µ(Bρ(y, 2s)) ≤ µ
(
Bd

(
y, (2c2)1/ξs1/ξ

))

≤ A4kµ
(
Bd

(
y, c

1/ξ
1 s1/ξ

))

≤ A4kµ(Bρ(y, s)),

where 2k ≥
(

2c2
c1

)1/ξ

providing a k which only depends on Λ. ¤

Notice that, since (E , δ) is complete, given a Cauchy sequence {(Yn, µn)} in D(A),
we have a limit couple (Y, µ) ∈ E for that sequence. The above theorem shows that
(Y, µ) ∈ D(A4) which is a kind of completeness of the doubling classes. Let us also
remark that the class

⋃
A≥1D(A) ⊆ E is not complete. In fact, consider X = [0, 1]

with ρ the usual distance. Take Yn = [0, 1] for each n and µn the measure with
density fn(t) = n − 1 + 1/n on [0, 1/n] and fn(t) = 1/n on (1/n, 1]. It is easy to
see that µn

δK→ δ0, and that each (Yn, µn) ∈ D(An), with An = 2n(n − 1 + 1/n)
as a possible doubling constant. Actually it is also easy to show that An can not
be bounded above, since by taking the balls B(x, r) = B(2/n, 1/n) we see that
An ≥ n2−n+4

2 . Since in each space of homogeneous type atoms are isolated (see
[9]), the space ([0, 1], | · |, δ0) can not be a space of homogeneous type.

Let us finally observe that the well know doubling property for the Hausdorff
measure of order log 2/ log 3 on the Cantor set is a consequence of the uniform
estimates obtained in the introduction and of Theorem 2.1.
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3. Density of finite spaces in D(A)

Let us denote by F the family of all couples (Y, µ) in E for which Y is finite. In
other words

F = {(Y, µ) : card(Y ) < ∞}.
Let us observe that each (Y, µ) ∈ F for which µ({y}) > 0 for every y ∈ Y , we
have that (Y, µ) belongs to D(A) for some A. The main result of this paper, which
is contained in the next statement, shows that every space (Y, µ) ∈ D(A) can be
approximated in the metric δ by a sequence in F with uniform doubling constant.

Theorem 3.1. Let (X, ρ) be a compact quasi-metric space for which the ρ-balls
are Borel sets. Then, given A ≥ 1, there exists A′ ≥ 1 depending only on A and
on the triangular constant Λ for ρ, such that for every (Y, µ) ∈ D(A) there exists a
sequence (Yn, µn) ∈ F ∩ D(A′), n ∈ N, for which

(Yn, µn) δ−→ (Y, µ)

as n →∞.

Before starting with the proof of the theorem we shall state a basic properties
of spaces of homogeneous type which is actually contained in the first systematic
treatment of spaces of homogeneous type due to R. Coiffman and G. Weiss [5], and
reflects the fact that spaces of homogeneous type have finite uniform metric (or
Assouad) dimension.

Lemma 3.2. For each spaces of homogeneous type there exists a geometric constant
N such that every r-disperse subset E has at most Nm points in each ball of radius
2mr, m ∈ N.

Here r-disperse means that the distance between two different points of E is
larger than or equal to r.

Proof of Theorem 3.1. It is easy to see that from the above mentioned theorem of
Maćıas and Segovia, we only have to prove the theorem for metric spaces (X, d)
checking that, in this particular case, A′ only depends on A.

Let d be any one of the metrics provided by the theorem of Maćıas and Segovia
associated to ρ. Since (X, ρ) is compact, we can normalize the distance d in such a
way that the d-diameter of X is less that one.

Let A ≥ 1 be a given constant and take (Y, d, µ) ∈ E such that

0 < µ(Bd(y, 2r)) ≤ Aµ(Bd(y, r))

hold for every y ∈ Y and every r > 0.
We shall combine the idea used by J. M. Wu in [12] and the construction of

dyadic sets given by M. Christ in [4] in order to define the approximating sets and
the approximating measures.

For each n ∈ N∪{0}, let Sn = {xn,k : 1 ≤ k ≤ Jn} be a 10−n-net (10−n maximal
disperse) in Y with

S0 ⊆ S1 ⊆ · · · ⊆ Sn ⊆ Sn+1 ⊆ · · ·
Notice that since diam(Y ) < 1, the net S0 contains only one point x0,1.

For each n ∈ N∪{0}, set Pn = {Tn,k : 1 ≤ k ≤ Jn} to denote a partition of Sn+1

satisfying

Sn+1 ∩Bd(xn,k, 10−n/2) ⊆ Tn,k ⊆ Sn+1 ∩Bd(xn,k, 10−n).
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Let us observe that card(Sn) < ∞ for every n ∈ N.

Set A = {(n, k) : n ∈ N ∪ {0}, 1 ≤ k ≤ Jn}, and let us define a partial order ¹
on A by extending by transitivity the following basic relations

• (n, k) ¹ (n, k) for every (n, k) ∈ A;
• (n + 1, q) ¹ (n, k) if and only if xn+1,q ∈ Tn,k.

Let us notice that this order satisfies the following tree properties

(a) (n1, k1) ¹ (n2, k2) implies n2 ≤ n1;
(b) for every (n1, k1) ∈ A and every n2 ≤ j1, there exists a unique 1 ≤ k2 ≤ Jn2

such that (n1, k1) ¹ (n2, k2);
(c) if (n, k) ¹ (n− 1, `), then d(xn,k, xn−1,`) < 10−n+1;
(d) if d(xn,k, xn−1,`) < 10−n+1

2 , then (n, k) ¹ (n− 1, `).

Starting from that order and following M. Christ, define

Qn
k =

⋃

(i,`)¹(n,k)

Bd(xi,`, 10−i−1).

In [4] M. Christ showed the following properties

(a) Qn
k is an open set for every (n, k) ∈ A;

(b) Bd(xn,k, 10−n−1) ⊆ Qn
k for every (n, k) ∈ A;

(c) Qn
k ⊆ Bd(xn,k, 10−n+1/9) for every (n, k) ∈ A;

(d) for each n ∈ N0, Qn
k ∩Qn

` 6= ∅ implies k = `;
(e) for every (n, k) ∈ A and every i < n there exists a unique 1 ≤ ` ≤ Jn such

that Qn
k ⊆ Qi

`;
(f) if n ≥ i, for every 1 ≤ k ≤ Jn, 1 ≤ ` ≤ Ji we have that Qn

k ⊆ Qi
` or

Qn
k ∩Qi

` = ∅;
(g) µ

(
Y \⋃

1≤k≤Jn
Qn

k

)
= 0, for every n ∈ N0;

(h) µ(Qn
k ) =

∑
i:(`,i)¹(n,k) µ(Q`

i), for every n ∈ N ∪ {0}, ` ≥ n + 1, and
1 ≤ k ≤ Jn.

The next step is the construction of measures µn on Y with total mass on Sn.
Let us define

µn({xn,k}) = µ(Qn
k ),

for every n ∈ N ∪ {0} and 1 ≤ k ≤ Jn. Notice that µn(Sn) = 1 for every n. Let us
check that µn

w∗−−→ µ. Take a continuous function ϕ on Y , and let ε > 0 be given.
Since Y is compact, ϕ es uniformly continuous, hence there exists η > 0 such that
|ϕ(x)− ϕ(y)| < ε, for every x, y ∈ Y tales que d(x, y) < η. Let us observe that

∫

Y

ϕ dµn =
Jn∑

k=1

ϕ(xn,k)µ(Qn
k ),

and on the other hand
∫

Y

ϕ dµ =
Jn∑

k=1

∫

Qn
k

ϕ dµ.
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Thus
∣∣∣∣
∫

Y

ϕ dµn −
∫

Y

ϕ dµ

∣∣∣∣ ≤
Jn∑

k=1

∫

Qn
k

|ϕ(xn,k)− ϕ(x)| dµ(x) < ε,

choosing n large enough to get 10−n+1/9 < η.

Since δH(Sn, Y ) ≤ 10−n, we have that Sn
δH−−→ Y . So that (Sn, µn) δ−→ (Y, µ).

It only remains to prove that (Sn, d, µn) is a uniform family os spaces of homo-
geneous type. The proof will be based on the following three properties.

First: If we define for ` ≥ n + 1

T `
n,k = {x`,i : (`, i) ¹ (n, k)},

from (h) we have,

µ`(T `
n,k) =

∑

i:x`,i∈T `
n,k

µ`({x`,i}) =
∑

i:(`,i)¹(n,k)

µ(Q`
i) = µn({xn,k}).(4)

for every n ∈ N ∪ {0}, 1 ≤ k ≤ Jn and ` ≥ n + 1.

Second: For xn,k ∈ Sn and xn+1,` with (n+1, `) ¹ (n, k) we have d(xn,k, xn+1,`) <
10−n. Then Qn

k ⊆ Bd(xn+1,`, 19 10−n/9). So that

µn({xn,k}) = µ(Qn
k )

≤ µ(Bd(xn+1,`, 19 10−n/9))

≤ A8µ(Bd(xn+1,`, 10−n−2))

≤ A8µ(Qn+1
` )

= A8µn+1({xn+1,`}).(5)

Third: If xn,k and xn,i are points in Sn such that d(xn,k, xn,i) < 2 10−k+2, then

(6) µn({xn,k)} ≤ A11µn({xn,i}).
Let us prove that (Sn, d, µn) is a uniform family of spaces of homogeneous type.

For n = 0 we have µ0 (Bd(x0,1, 2r)) = µ0 (Bd(x0,1, r)) = µ0({x0,1}) = 1 for every
r > 0, and the result is trivial. Let us take n ≥ 1 fixed, x = xn,j ∈ Sn and r > 0.
We shall divide our analysis according to the relation between r and n:

i. 0 < r ≤ 10−n/2;
ii. 10−n/2 < r ≤ 3 10−n+1;
iii. r > 3 10−n+1.

Case i: 0 < r ≤ 10−n/2. Since Sn is 10−n-disperse, we have Bd(x, 2r) ∩ Sn =
Bd(x, r) ∩ Sn = {x}, and again the result is trivial.

Case ii: 10−n/2 < r ≤ 3 10−n+1. Let I be the set defined as

I = {q : xn−1,q ∈ Bd(x, 23r)} .
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Applying Lemma 3.2 we have

card(I) = card (Sn−1 ∩Bd(x, 23r))
≤ card

(
Sn−1 ∩Bd(x, 69 10−n+1)

)

≤ card
(
Sn−1 ∩Bd(x, 2710−n+1)

)

≤ N7.(7)

Claim 3.3.
Sn ∩Bd(x, 3r) ⊆

⋃

q∈I
Tn−1,q.

Poof of Claim 3.3. Take xn,i ∈ Bd(x, 3r), and let q be the unique index such that
xn,i ∈ Tn−1,q. Let us prove that q ∈ I. In fact, since

Tn−1,q ⊆ Sn ∩Bd(xn−1,q, 10−n+1),

we have

d(xn−1,q, x) ≤ d(xn−1,q, xn,i) + d(xn,i, x)

< 10−n+1 + 3r

< 20r + 3r

< 23r,

which proves the claim.

Let p be such that x ∈ Tn−1,p. If q ∈ I, then

d(xn−1,q, xn−1,p) ≤ d(xn−1,q, x) + d(x, xn−1,p)

< 23r + 10−n+1

< 69 10−n+1 + 10−n+1

< 2 10−n+3,

and we can apply (6) to get

µn−1 ({xn−1,q}) ≤ A11µn−1 ({xn−1,p}) , for every q ∈ I.

Then, from (4), (7) and (5) we have

µn(Bd(x, 3r)) ≤
∑

q∈I
µn (Tn−1,q)

=
∑

q∈I
µn−1({xn−1,q})

≤
∑

q∈I
A11µn−1({xn−1,p})

≤ N7A11µn−1({xn−1,p})
≤ N7A19µn({x})
≤ N7A19µn(Bd(x, r)).

Hence for every 10−n/2 < r ≤ 3 10−n+1 we have

µn(Bd(x, 2r)) ≤ µn(Bd(x, 3r)) ≤ N7A19µn(Bd(x, r)).
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Case iii: r > 3 10−n+1. Since we can assume r ≤ 1, this case is only possible
if n ≥ 2. Let 0 < ` ≤ n − 1 such that 10−` < r/3 ≤ 10−`+1, and define the set
J = {j : x`,j ∈ S` ∩Bd(x, 3r)}. Then

Sn ∩Bd(x, 2r) ⊆
⋃

j∈J
Tn

`,j .

In fact, take xn,i ∈ Bd(x, 2r) and x`,j such that xn,i ∈ Tn
`,j . Then

d(x`,j , x) ≤ d(x`,j , xn,i) + d(xn,i, x)

<
10−`+1

9
+ 2r

<
10
27

r + 2r

< 3r,

and thus j ∈ J . Hence we have

(8) µn(Bd(x, 2r)) ≤
∑

j∈J
µn

(
Tn

`,j

)
=

∑

j∈J
µ`({x`,j}) = µ`(Bd(x, 3r)).

On the other hand ⋃

x`,i∈Bd(x,r/2)

Tn
`,i ⊆ Sn ∩Bd(x, r).

In fact, if x`,i ∈ Bd(x, r/2) and xn,p ∈ Tn
`,i, then

d(x, xn,p) ≤ d(x, x`,i) + d(x`,i, xn,p)

<
r

2
+

10−`+1

9

<
r

2
+

10
27

r

< r.

By the above inclusion we obtain

(9) µn(Bd(x, r)) ≥
∑

x`,i∈Br/2

µn

(
Tn

`,i

)
=

∑

x`,i∈Br/2

µ`({x`,i}) = µ`(Br/2),

where Br/2 = Bd(x, r/2).

Claim 3.4. µ`(Bd(x, 3r)) ≤ A19N8µ`(Bd(x, r/2)).

Proof of Claim 3.4. If we define

I = {q : x`,q ∈ Bd(x, 19r/3)},
J = {j : x`−1,j ∈ Bd(x, 19r/3)},

we have

card(I) ≤ card
(
S` ∩Bd(x, 19 10−`+1)

)

≤ card
(
S` ∩Bd(x, 256 10−`)

)

≤ N8.
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Notice that
S` ∩Bd(x, 3r) ⊆

⋃

j∈J
T`−1,j .

In order to prove the above inclusion, take x`,i ∈ Bd(x, 3r) and x`−1,j such that
x`,i ∈ T`−1,j . Then

d(x`−1,j , x) ≤ d(x`−1,j , x`,i) + d(x`,i, x)

< 10−`+1 + 3r

< 10r/3 + 3r

= 19r/3.

Hence j ∈ J .

On the other hand, if x ∈ Tn
`,p and q ∈ I we have

d(x`,p, x`,q) ≤ d(x`,p, x) + d(x, x`,q)

<
10−`+1

9
+

19
3

r

<
10−`+1

9
+ 19 10−`+1

=
172
9

10−`+1

< 2 10−`+2,

and by applying (6) we obtain

µ`({x`,q}) ≤ A11µ`({x`,p}), for every q ∈ I.

Finally, if we define

A = {i : there exists j ∈ J satisfying x`,i = x`−1,j} .

from the considerations above we have

µ`(Bd(x, 3r)) ≤
∑

j∈J
µ` (T`−1,j)

=
∑

j∈J
µ`−1 ({x`−1,j})

≤ A8
∑

i∈A
µ`({x`,i})

≤ A8
∑

i∈I
µ`({x`,i})

≤ A19
∑

i∈I
µ`({x`,p})

≤ A19N8µ`({x`,p})
≤ A19N8µ` (Bd(x, r/2)) ,

where the last inequality holds since

d(x`,p, x) <
10−`+1

9
<

10
27

r <
r

2
because x ∈ Tn

`,p. This proves the claim.
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Then, from (8), Claim 3.4 and (9), we can conclude that

µn(Bd(x, 2r)) ≤ µ`(Bd(x, 3r))
≤ A19N8 µ`(Bd(x, r/2))
≤ A19N8 µn(Bd(x, r)),

for every x ∈ Sn and every r > 3 10−n+1.

So that we get the desired inequality for every x ∈ Sn, every r > 0 and every
n ∈ N ∪ {0} with A′ = A19N8. ¤
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9. Roberto A. Maćıas and Carlos Segovia, Lipschitz functions on spaces of homogeneous type,
Adv. in Math. 33 (1979), no. 3, 257–270. MR MR546295 (81c:32017a)

10. Umberto Mosco, Variational fractals, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997),
no. 3-4, 683–712 (1998), Dedicated to Ennio De Giorgi. MR MR1655537 (99m:28023)

11. H. L. Royden, Real analysis, The Macmillan Co., New York, 1963. MR MR0151555 (27
#1540)

12. Jang-Mei Wu, Hausdorff dimension and doubling measures on metric spaces, Proc. Amer.
Math. Soc. 126 (1998), no. 5, 1453–1459. MR 99h:28016

13. Po-Lam Yung, Doubling properties of self-similar measures, Indiana Univ. Math. J. 56 (2007),
no. 2, 965–990. MR MR2317553


