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Abstract— An h-adaptive unstructured
mesh refinement strategy to solve unsteady
problems by the finite element method is
presented. The maximum level of refinement
for the mesh is prescribed beforehand. The
core operation of the strategy, namely the
elements refinement, is described in detail.
It is shown through numerical tests that one
of the advantages of the chosen refinement
procedure is to keep bounded the decrease of
the mesh’s quality. The type of element is not
changed and no transition templates are used,
therefore hanging nodes appear in the adapted
mesh. The 1-irregular nodes refinement con-
straint is applied and the refinement process
driven by this criterion is recursive. Both
the strength and weakness of the adaptivity
algorithm are mentioned, based on clock time
measures and implementation issues. To show
the proper working of the strategy, an ax-
isymmetric, compressible non-viscous starting
flow in a bell-shaped nozzle is solved over an
unstructured mesh of hexaedra.
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I. INTRODUCTION

The benefits of having some kind of mesh adaptivity
tool to solve problems by the finite element method are
well recognized by the computational fluid dynamics
community. Amongst them, h-adaptive or mesh en-
richment procedures have the advantage that they do
not need to modify the fluid dynamic solver to be used.

The development of an h-adaptive element-based
unstructured mesh strategy to solve unsteady prob-
lems by the finite element method is described in this
work. It can be applied both to two- and three-
dimensional unstructured linear finite element meshes.
The adaptivity algorithm is designed considering the
element refinement stage as the core of the strat-
egy. This allows to extend the algorithm from 2-D
meshes to 3-D ones with little extra effort. The re-
finement algorithm has been succesfully tested, solv-

ing steady fluid dynamic problems on meshes made
up of triangles, quadrangles and tetrahedra (Ŕıos Ro-
driguez et al., 2005). Special care has been taken to
keep bounded the quality decrease of the mesh. Edge
midpoints or regular 1:4 and 1:8 refinement seems to
be the best choice in this sense, for two- and three-
dimensional elements correspondingly. It is also shown
based on numerical tests that the best choice (from the
quality standpoint) to regularly refine a tetrahedron
in 8 sub-tetrahedra is to choose the shortest diagonal
of the inner octaedron that arises in the partitioning
process. Hanging nodes have to be managed since no
transition elements are used to match zones of differ-
ent refinement levels. To ensure a smooth transition
in element size between zones with different levels of
refinement, the 1-irregular node constraint amongst
neighbouring elements is considered. Consequently,
the refinement process is recursively designed and the
solution must be constrained on these hanging nodes.
The selection method of the elements to be refined
is shortly described as well. In this work, the strat-
egy is used to solve the unsteady starting flow in a
bell-shaped rocket nozzle over an unstructured mesh
of hexaedra. While the adaptivity stage runs on a sin-
gle PC, the fluid dynamic problem solver developed
by Storti et al. (1999-2007) runs in parallel on a Be-
owulf cluster of PC. To show the algorithm efficiency,
clock time is measured using a uniformly refined mesh
equivalent to the adapted one. Finally, the advantages
as well as the disadvantages of the strategy are high-
lighted.

II. Element refinement

It is considered that the main issue in the design of the
refinement algorithm is to minimize the quality drop
of the adapted mesh, since high quality meshes are
often desired for numerical reasons. Computational
cost and programming simplicity are also taken into
account in the process design. If a regular 1:8 tetrahe-
dron’s refinement is applied, four similar subtetrahe-
dra are obtained at the corners of the parent element
and an inside octahedron results. By adding an edge,
the octahedron can be splitted into four tetrahedra, as
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Figure 1: Regular 1:8 tetrahedron’s refinement se-
quence.

Fig.1 shows.
One of the three possible diagonals must be chosen

(this diagonals are marked as doted lines in the figure).
It is usual to do this randomly but, is there a better
choice from the quality standpoint? To answer this
question numerical tests are performed.

A. Quality Tests

Several element’s shape measures exist in the litera-
ture. Some of them are based on geometrical prop-
erties of the element while others are related to alge-
braic properties of the Jacobian matrix and the ma-
trices thereof derived. Knupp (2000) developed the
concept of algebraic mesh quality metrics and derives
a complete list of them. Here, it is considered that
the quality of the mesh is equal to that of the most
poorly-shaped element. The tetrahedron’s quality is
measured using the following algebraic quality metric
introduced by Liu and Joe (1994)

η(T ) = 3 3
√

λ1λ2λ3/(λ1 + λ2 + λ3) (1)

where λ1, λ2, λ3 are the eigenvalues of the metric
tensor which transforms the original tetrahedron T to
the regular tetrahedron R which has the same volume
as T . They show in the same work that this is equiv-
alent to

η(T ) =
12(3v)2/3∑

i=1...6 l2i
(2)

where v is the volume of the tetrahedron and li are
the lengths of the edges. Also η(T ) = 1 for the regular
tetrahedron and η(T ) → 0 when the element is poorly-
shaped (such as a wedge, a needle or a sliver).

Two quality tests are carried out. The first refine-
ment test starts with tetrahedra of three different qual-
ities, namely a regular, a right and a poorly-shaped.
For all refinement iterations, either the longest or the
shortest diagonal of the inner octahedron is chosen
for its partitioning, and the worst quality element ob-
tained from applying the regular 1:8 subdivision is al-
ways refined. No conformity of the mesh is considered.

Refinement iterations
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Figure 2: Quality metric vs. refinement iterations for
the first quality test

Figure 2 depicts the mesh quality behaviour as a func-
tion of refinement iterations.

It is seen that the quality decrease produced by suc-
cessive refinement is minimized if the shortest diagonal
of the inner octahedron is always chosen. In that case,
the quality of the mesh diminishes only at the first
refinement iteration and then keeps constant. Oth-
erwise, the quality of the mesh diminishes with each
refinement iteration, until elements with negative vol-
umen appear.
In the second test, a sensitivity analysis to the initial
tetrahedron’s shape is performed. Only one refine-
ment iteration is done, always choosing the shortest
diagonal for refining. The starting tetrahedra are ob-
tained moving the apex of the regular tetrahedron on
a plane parallel to its supporting face, as Fig.3 de-
picts. A non-linear dependency of the quality’s drop
on the shape of the initial element is observed in Fig.4.
The sensitivity is shown as a contour map of the ra-
tio min(η(T 1))/η(T 0), where the superscripts indicate
the number of refinement iteration. This figure shows
that for some initial tetrahedra the quality does not
dimish if the shortest diagonal is always chosen.
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Figure 3: Starting tetrahedron.
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Figure 4: Shape measure ratio η(T 1)/η(T 0) contours
for first refinement iteration - Shortest diagonal.

B. Refinement Algorithm

Adaptivity algorithms for unsteady problems must be
computationally inexpensive, since refinement / coars-
ening operations are applied many times until the fi-
nal instant. To this end, it is decided both not to use
transition elements to match zones with different levels
of refinement and to use only one subdivision pattern
for each type of element. As a consequence: a) the
adapted mesh is non-conformal or has hanging nodes
b) the 1-irregular node refinement constraint must be
applied to ensure a gradual transition in the elements’
size, c) no quality decrease is introduced due to poorly-
shaped transition templates usage, d) there is no need
to use compatiblity rules for refinement / coarsening,
and finally, e) the solution must be constrained on the
hanging nodes. Figure 5 shows an example regarding
to the 1-irregular node constraint if the shaded element
is the one to be refined. Hanging nodes are marked
with dots in the same figure. The 1-irregular node con-
straint says that no more than 1 hanging node should
be shared amongst neighbouring elements through the
common edge (2D and 3D) or face (3D) to which the
node belongs. These kind of mesh refinemement was
first proposed by Babuska and Rheinboldt (1978) for
2-D elements. In this work it is extended to the 3-D
case. Some issues concerning to this kind of refinement
are important: a) the problem solver has to be able to
manage the constraint of the solution on the hanging
nodes, b) the zone to be refined will be “wider” than
the zone of interest in the solution field due to this
solution constraint and c) some difficulties arise to vi-
sualize results over meshes with irregular nodes, since
contours are usually drawn element-wise for unstruc-
tured finite elements grids (Hannoun and Alexiades,
2007) and discontinuous contours appear.

To describe the refinement algorithm the following
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Figure 5: 1-irregular node refinement constraint in 2-
D.

concepts about elements, faces and edges are intro-
duced. It is said that an edge is active if not all
the elements that share it are refined, otherwise it is
inactive. The parent of an edge is the edge from which
it derives by inserting a midpoint on the parent edge.
The parent of a face is the face from which it derives
by joining with edges the midpoints (and centre point
in quads) that appear on the parent face. All the faces
and edges that appear inside refined elements have
no parents. Refined elements are always deactivated.
Finally, every edge has two childs, every face has four
childs and every element can have either 4 (2-D) or 8
(3-D) childs. These geometrical entities are organized
in a hierarchical manner, so we say that an entity
belongs to a low level of refinement if it has a higher
hierarchy, and conversely.

Given a list of elements to be refined eles2ref, cre-
ated either at the error estimate stage or prescribed
by the user, the following algorithm is implemented:

1. Find the edges that belong to eles2ref.
These edges are called edges2reftmp.

2. Find the edges in the set edges2reftmp

that have not been refined yet and call
them edges2ref.

3. Search the parent edges of the
edges2ref. If some of them are
still active, put them in a list
ParentEdges2ref.

4. Find the elements to which these
ParentEdges2ref belong and build a list
eles2refNEW.

The same steps are taken for the faces. As a re-
sult, a new list of elements that should be refined at a
lower refinement level is built within the actual itera-
tion. Now, the refinement function is called with this
list as argument. The recursivity ends when the list
eles2refNEW in the actual iteration is empty. Then,
the elements added to satisfy the 1-irregular criterion
are refined from lower to higher levels until the original
list of elements to be refined can be treated.



III. Adaptivity strategy

The unsteady strategy was developed based on the
following concept: the adapted mesh is updated ev-
ery n-time steps using a starting or base mesh, as the
diagram on Fig.6 depicts. For each one of these adap-
tivity steps (except for the first), some elements are
marked to be refined, based on the error estimate cho-
sen for the problem and the final solution computed
at the previous adaptivity step. The elements to be
refined are always selected at the maximum level of
refinement. Since no higher level of refinement than
the prescribed by the user is desired, a parents search
algorithm should be used: if elements which do not be-
long to level 0 of refinement are selected, it is required
to search for the parents of these elements in the data
structure corresponding to this adaptivity step. The
elements selected for refining are replaced by their par-
ents and the process is repeated recursively until none
of the elements in the list have parents (level 0). In
this way, preliminary lists of elements to build each
refinement level at the next adaptivity step are ob-
tained. This process is represented by dashed lines in
the diagram. Then, the next adaptivity step begins to
be built.
Since the elements numbering scheme of the adapted
meshes at the same refinement level changes from one
adaptivity step to the next, the numbering of the el-
ements in the preliminary list requiered to build that
level needs to be updated. Once the list is updated,
the corresponding level can be created. The updat-
ing and refinement processes are represented on the
diagram by continuous and dotted lines, correspond-
ingly. Finally, the problem solver is restarted using the
most refined mesh. Only for the first adaptivity step,
the problem solver is run a few time steps on the base
mesh. Then, elements are marked and refined as many
times as it is needed, based on the magnitude of the
error estimates. The strategy does not consider coars-
ening of the base mesh and the adaptivity frequency
is also constant through the whole run.
An initial state to restart the equation’s solver is com-
puted as the linear interpolation of the solution on the
last adapted mesh, at the nodes of the base mesh. The
boundary conditions are also updated at every adap-
tivity step. To this end, geometrical entities of the
mesh have a property flag attached to it. This flag is
associated with a special property, such as a fixation,
a periodic or a slip constraint, a geometrical or an
element’s property or maybe an allowed combination
of them. The properties are inherited from parents
to childs at the refinement stage by inheritance of the
flag, and updated lists of geometrical entities with that
properties are built in a post-refinement stage within
the adaptivity step.

IV. Error Indication

Since the exact solution of the problem is not known
a priori, error estimates should be used to find which
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Figure 6: Adaptivity strategy for unsteady problems.

are the zones of the mesh that have to be refined. A
great number of error estimate methods have been de-
vised, most of them for elliptic problems. Mavriplis
(1995) says that the choice of the right error indica-
tor depends on multiple factors, such as the relative
cost to compute the error estimate in regards to that
of the rest of the adaptivity process, the affordable
error estimate precision and the mathematical char-
acter of the equations. Heuristic gradient-based meth-
ods are frecuently used in hyperbolic problems because
they are computationally chipper, they let the zones
to be refined be properly identified and because a more
rigurous theory needs to be developed for hyperbolic
equations. But success in using these kind of methods
depends on the user’s experience to choose the right
combination of flow variables that better suit. For
compressible flows, the gradient of the density and/or
pressure fields are often used. An element is marked
to be refined when the element-wise computed gradi-
ent multiplied by a measure of its size is greater than
a prescribed tolerance value ε∗ for the error, that is

ε ≥ ε∗ (3)

where

ε ' ∂ū

∂x
· h = ∆ū (4)

V. Test case

To check the proper working of the unsteady strat-
egy, the transient non-viscous supersonic flow at the
starting of a bell-shaped rocket nozzle is solved. Also,
to find out if there is a true efficiency gain, the same
problem is solved over a fixed mesh finer than the base
mesh used for the adaptive process and the clock time
required by both runs is compared.



Figure 7: Problem setup for the rocket nozzle.

A. Problem Setup

While the axisymmetric flow equations are solved over
an unstructured mesh of hexahedra, the adaptivity
strategy is applied over the 2-D grid on the X-Z plane.
Once the adapted mesh of quads is obtained, it is pro-
jected using the rotation matrix R(φ). Figure 7 dis-
plays the problem setup. Only one layer of hexahedra
is used in the circumferential direction φ. Hexahedra’s
nodes along the axis of simmetry are collased so that
these elements turn into wedges.

Because of the axial symmetry of the flow, the fol-
lowing boundary conditions are considered

• Slip condition ~V ·~n = 0 at the wall D̄C and along
the axis of simmetry ĀB.

• Dynamic boundary conditions developed by
Storti et al. (2008) are imposed at the exhaust
section B̄C.

• Pressure and density are constants at the throat
section ĀD. They linearly increase with time
from the surrounding up to the stagnation val-
ues (ρ0 = 0.47541kg/m3, p0 = 0.6MPa, T0 =
4170K). Transient time for this condition is as-
sumed to be t = 5µsec.

• Axial flow at the throat section (VxAD = 0).

• There is no flux in the circumferential direction
(Vφ = 0).

• Circumferential periodicity at every point of the
domain. This means that scalar fields are the
same at points F and F’ while vector fields, such
as velocity, are constrained to have the values at
point F, “rotated” by the same matrix R that
transforms the coordinates from point F to point
F’.

On the other hand, the initial conditions
in the whole domain take the following values
(ρini = 0.0018kg/m3, uini = 0m/s, pini = 143Pa,
Tini = 262K). The gas is considered to be air, and the
isentropic coefficient value is γ = 1.17.
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Figure 8: Element size distribution for the base mesh
on the X − Z plane.

B. Solving the Problem

The 3-D Euler equations are solved using the
Advection-Diffusion module of the PETSc-FEM
multi-physics FEM solver developed by Storti et al.
(1999-2007), using 10 nodes of the Beowulf PC
Pentium IV cluster.

The Courant number for both the adaptive and non-
adaptive simulations is Cou = 2, except for the first
time steps corresponding to the transient time at the
throat conditions, when Cou = 0.2. Selection of the
elements to be refined is based on the magnitude of the
element-wise computed velocity gradient ∇~U(T ). Ve-
locity gradient is chosen because its scale range makes
easier to apply the following criterion for selecting the
elements to be refined

c1 ·max
T

(|∇~U |) ≤ |∇~U | ≤ c2 ·max
T

(|∇~U |) (5)

where constants c1 and c2 are adjusted beforehand
for the whole run. Besides, the velocity gradient allows
to capture the desired flow features with the mesh re-
finement.
One level of refinement is prescribed for the whole run
and the adaptivity frequency is 5 time steps. This
means that every 5 time steps the mesh is re-adapted
to the last computed solution. It is considered that the
problem has reached its stationary state for tf = 8.4e-
4sec, so this is the final time for the simulation. The
base mesh for the adaptive simulation has 9330 ele-
ments and 9672 nodes while the fixed mesh has 11430
elements and 11842 nodes. Both of them have smaller
size elements at the throat section. Figure 8 shows
the size distribution of the elements for the base mesh,
which is computed as the radius of the circumscircle
of the quadrilateral elements on the X − Z plane.

C. Results

The adaptive simulation requieres a few more time
steps to reach the final time than the non-adaptive
one, namely 2219 time steps for the latter and 2280
time steps for the former. The time steps number dif-
ference is due to the fact that, although the base mesh
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adaptive run.

has fewer elements than the fixed, both the smaller
size of the elements at the adapted zones and the CFL
condition makes the time step be reduced. Figure 9
shows that the number of elements for the adaptive
simulation was never higher than the corresponding
for the non-adaptive run. The strange behaviour in the
number of elementes is due to the fact that the value
maxT (|∇~U(T )| changes with time. Although this dif-
ference in the number of time steps in favour of the
non-adaptive simulation, the adaptive one is faster.

The axial velocity profiles are measured along the
axis of simmetry at different time instants. They are
shown at Fig.10, where it can be seen that better res-
olution profiles correspond to the adaptive solution.
The velocity increases behind the shock fronts which
are travelling to the exit section of the nozzle. The
local velocity shoot up immediately behind the sec-
ondary shock that appears in the non-adaptive profile
at t = 5e-4sec. and t = 6e-4sec. does not almost exists
in the adaptive solution. It is worth to mention that
all the variables of the flow were scaled due to numer-
ical reasons. Therefore the velocity scale should be
multiplied by Vref = 1215.16m/sec to get the actual
velocity values in the figures.
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Figure 10: Comparison of axial velocity profiles along
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Velocity contours are compared for the same time
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Figure 11: Velocity contours comparison at t = 6e-
4sec.

instant at Fig.11. Better resolution of the shock fronts
is apparent for the adaptive solution. Although along
the axis of simmetry the velocity contours are rather
similar, evident differences exists close to the nozzle’s
wall. Finally, details of the adapted meshes at the
shock fronts are presented for two time instants in
Fig.12. It can be seen that at t = 3.5e-4sec the ve-
locity gradient was not still big enough as to trigger
the refinement of the mesh at the secondary shock lo-
cation.

VI. CONCLUSIONS

A strategy to adaptively solve unsteady problems
over unstructured finite element meshes has been pre-
sented. The numerical quality tests show that there
exists a partition procedure for tetrahedral elements
which keeps bounded the decrease of the mesh’s qual-
ity. The refinement algorithm to apply this procedure
has been described. It is noticed that efficiency and
low computational costs are its main advantages while
the managment of the hanging nodes may cause some
problems for visualising the results. The first test case
over an unstructured mesh of hexaedra proves that
better use of computational resources can be achieved
using the adaptive solver. Both a better resolution and
a shorter simulation time give support to this conclu-
sion. The capability of the adaptive code to handle
different type of boundary conditions has been also
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proved. Future work includes testing the unsteady
strategy over unstructured meshes of tetrahedra.
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