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Abstract. When a Galerkin discretization of a boundary integral equation with a weakly singular kernel
is performed over triangles, a double surface integral must be evaluated for each pair of them. If these
pairs are not contiguous or not coincident the kernel is regular and a Gauss–Legendre quadrature can be
employed. When the pairs have a common edge or a common vertex, then edge and vertex weak singu-
larities appear. If the pairs have both facets coincident the whole integration domain is weakly singular.
D. J. Taylor (IEEE Trans. on Antennas and Propagation, 51(7):1630–1637 (2003)) proposed a systematic
evaluation based on a reordering and partitioning of the integration domain, together with a use of the
Duffy transformations in order to remove the singularities, in such a way that a Gauss–Legendre quadra-
ture was performed on three coordinates with an analytic integration in the fourth coordinate. Since
this scheme is a bit restrictive because it was designed for electromagnetic wave propagation kernels,
a full numerical quadrature on the four coordinates is proposed in order to handle kernels with a weak
singularity with a general framework. Numerical tests based on modifications of the one proposed by W.
Wang and N. Atalla (Comm. in Num. Meth. Eng., 13(11):885–890 (1997)) are included.
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1 INTRODUCTION

Integral boundary equations are usually solved with the Boundary Element Method (BEM),
e.g. see (Parı́s and Cañas, 1997; Hartmann, 1989). Typically, collocation techniques are em-
ployed, for instance, for modelling creeping (or Stokes) flows (Power and Wrobel, 1995; Kim
and Karrila, 1989) as in (Fachinotti et al., 2007) where fast integration is performed while self–
integrals, that contain singular kernels, are analytically computed over linear triangles. Also,
closed forms following a side local frame strategy can be employed (Medina and Liggett, 1988;
D’Elı́a et al., 2000a,b), where the surface integral over each panel is replaced by its closed con-
tour integration, and a side local frame is used for each side contribution. Another alternatives
are also possible like the so called Galerkin Boundary Element Method (GBEM) or Variational
Boundary Element Method (VBEM), e.g. (Paquay, 2002). When this procedure is made with
boundary elements (or panels) in the three dimensional Euclidean real space (3D or R3), it leads
to compute double surface integrals, i.e. quadruple integrals, that account for the pairwise in-
teraction among all the panels of the surface mesh, a task that is carried out through a double
nested loop p, q = 1, 2, ..., E, where E is the number of elements in the boundary mesh.
The generic pair of interacting triangles is the support of the double surface integral, and the
integral value gives the interaction coefficient between pairs of triangles, whose multiplicative
kernel is obtained as the product of both panel kernels. The interaction coefficient can be either
a real or a complex value as well as it can have a scalar or a tensorial character, according
to the nature of the Green function. Each panel kernel is related to the Green function of the
problem or its derivatives, e.g. as those in creeping flows in Micro-Electro-Mechanical Systems
(MEMS) (Wang, 2002; Méndez et al., 2008), acoustics (Schuhmacher, 2000), free surface flows
(D’Elı́a et al., 2000c, 2002a) or seakeeping (D’Elı́a et al., 2002b), among other computational
physics applications. The solutions obtained with VBEM can be also used for testing other
numerical formulations like those that solve the Navier–Stokes equations through distributed
computing (PETSc-FEM, 2008; Dalcı́n et al., 2007; Franck et al., 2007) in several contexts,
for instance, wave-resistance with absorbing boundary conditions (Storti et al., 1998a, 2008,
1998b), sloshing (Battaglia et al., 2006; Garibaldi et al., 2008), inertial waves (D’Elı́a et al.,
2006) and added mass computations (Storti and D’Elı́a, 2004).
In the case of kernels with a weak singularity, there are analytical expressions of the double sur-
face integrals in rather restricted cases, for instance, the “potential integrals” (and self–integrals)
in computational electromagnetics (Eibert and Hansen, 1995; Sievers et al., 2005), which are
designed for flat triangles but restricted to numerator kernels with a constant or linear layer
density.
If two interacting triangles are not contiguous or not coincident, then the multiplicative kernel
is regular and a Gauss–Legendre quadrature formula can be used. However, when these tri-
angles have a common edge or a common vertex, then there are edge and vertex singularities,
respectively. In the case of self–integrals, when both facets are coincident, the whole integration
domain is weakly singular. For these reasons, special methods for the numerical integration are
proposed in the literature, e.g. the edge singularity case in collocation techniques (Burghignoli
et al., 2004).
D. J. Taylor (Taylor, 2003a,b) developed a systematic way for handling double surface integrals
with flat triangular elements, based on a convenient reordering of the four iterate integrations
that moves the weak singularity to the origin of the four dimensional Euclidean real space (4D
or R4) and, then, uses systematically the Duffy transformation (Duffy, 1982), i.e. regularize
the integrand by using polar coordinates. Thus, Taylor chooses a Gauss–Legendre numerical
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Figure 1: Master triangle for the simplex coordinates.

quadrature on three coordinates and makes an analytic integration in the fourth one.
This Taylor scheme is a bit restrictive since it is specific for wave propagation kernels in com-
putational electromagnetics. A modification is proposed in this work, where a full numerical
quadrature on the four coordinates is chosen in order to handle kernels with a weak singulka-
rity with a general framework. Besides, some technical details missing in the work of Taylor
are clarified, as the integration extremes of the iterated integrals after the several coordinates
changes introduced to move the singularities to the origin of the integration domain in R4. For
the sake of simplicity only the scalar case is shown although the same procedure can be ap-
plied to Green functions of higher tensorial order without any changes. This procedure can be
also of interest in VBEM as used, for instance, in fluid-structure-interaction (Paquay, 2002) or
acoustics (Schuhmacher, 2000).

2 TRANSFORMATION TO SIMPLEX COORDINATES

The interaction integral Zpq between the p and q panels immersed in R3 is written as

Zpq =

∫
Ap

dApx

∫
Aq

dAqy f(x,y) , (1)

where Ap and Aq are their corresponding surfaces. This is a quadruple integral since it must be
evaluated on both panel surfaces, where the integration points x and y belong to the p and q
panels, respectively. The integrand contains the multiplicative kernel f = hg, with h = h(x,y)
being some regular function and g = g(r) is a Green function, where r = ‖x − y‖2 is the
Euclidean distance between the integration points x and y. It is assumed that the panels p and
q are flat triangles and the Green function has only a weak singularity, i.e. O(1/r).
On each panel of the quadruple integral given by Eq. (1), the Cartesian coordinates x,y ∈ R3

can be transformed into R2 simplex coordinates. For this aim, two simplex coordinate sets are
employed, the (ξ1, ξ2) coordinates over the p panel and the (η1, η2) ones over the q panel,

(ξ1, ξ2) : 0 ≤ ξ1 ≤ 1 ; 0 ≤ ξ2 ≤ ξ1 , (2)
(η1, η2) : 0 ≤ η1 ≤ 1 ; 0 ≤ η2 ≤ η1 , (3)

see Fig. 1. The generic points on each of these triangles are transformed to the p and q panels
using

x(ξ1, ξ2) = Np(ξ1, ξ2)Vp , (4)
y(η1, η2) = Nq(η1, η2)Vq , (5)

with the element shape functions

Np(ξ1, ξ2) =
[
(1− ξ1) (ξ1 − ξ2) ξ2

]
, (6)

Nq(η1, η2) =
[
(1− η1) (η1 − η2) η2

]
, (7)
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Figure 2: Integration region in the plane of the relative coordinates µ1, µ2.

and the element nodal coordinates at the triangle vertices

Vp =

Vi

Vj

Vk

 ; Vq =

Vr

Vs

Vt

 . (8)

Then, Eq. (1) is written as

Zpq =

∫
Ap

dApx

∫
Aq

dAqy f(x,y) = JpJq I , (9)

where Jp,q = 2Ap,q are the Jacobians of each panel, and Ap,q are their areas, respectively, and
the interaction integral I in simplex coordinates is

I =

∫ 1

0

dξ1

∫ ξ1

0

dξ2

∫ 1

0

dη1

∫ η1

0

dη2 f(ξ,η) . (10)

3 DOMAIN DECOMPOSITION FOR CONTIGUOUS OR COINCIDENT FACETS

In the Taylor strategy, when the pair of interacting triangles is contiguous or the triangles are
coincident, Eq. (10) is split into six independent integrals and a change of integration order is
performed. Introducing the relative simplex coordinates

µ1 = η1 − ξ1 ,

µ2 = η2 − ξ2 ,
(11)

and replacing into Eq. (10) it results

I =

∫ 1

0

dξ1

∫ 1−ξ1

−ξ1
dµ1

∫ ξ1

0

dξ2

∫ µ1+ξ1−ξ2

−ξ2
dµ2 f(ξ,µ) , (12)

with ξ = (ξ1, ξ2) on the p panel and µ = (µ1, µ2) on the q one. The natural integration order
(µ2, ξ2, µ1, ξ1) is conveniently changed to the (ξ2, ξ1, µ2, µ1) one, and the integrals that have
overlapping domains are combined, e.g. see (Taylor, 2003a,b), resulting

I = E1 + E2 + E3 + E4 + E5 + E6 , (13)



µ1 µ2 ξ1 ξ2

E1 −1 ≤ µ1 ≤ 0 µ1 ≤ µ2 ≤ 0 −µ1 ≤ ξ1 ≤ 1 −µ2 ≤ ξ2 ≤ ξ1 + µ1 − µ2

E2 0 ≤ µ1 ≤ 1 0 ≤ µ2 ≤ µ1 0 ≤ ξ1 ≤ 1− µ1 0 ≤ ξ2 ≤ ξ1

E3 −1 ≤ µ1 ≤ 0 0 ≤ µ2 ≤ 1 + µ1 µ2 − µ1 ≤ ξ1 ≤ 1 0 ≤ ξ2 ≤ ξ1 + µ1 − µ2

E4 0 ≤ µ1 ≤ 1 µ1 − 1 ≤ µ2 ≤ 0 −µ2 ≤ ξ1 ≤ 1− µ1 −µ2 ≤ ξ2 ≤ ξ1

E5 −1 ≤ µ1 ≤ 0 −1 ≤ µ2 ≤ µ1 −µ2 ≤ ξ1 ≤ 1 −µ2 ≤ ξ2 ≤ ξ1

E6 0 ≤ µ1 ≤ 1 µ1 ≤ µ2 ≤ 1 µ2 − µ1 ≤ ξ1 ≤ 1− µ1 0 ≤ ξ2 ≤ ξ1 + µ1 − µ2

Table 1: Integration extremes of the relative µ1, µ2 and ξ1, ξ2 simplex coordinates for the integrals En, for n =
1, 2, ..., 6, for contiguous or coincident facets (Taylor, 2003a).
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Figure 3: Integration regions for the self–integrals I1, I2 and I3, from left to right, respectively.

where the six integrals En have the new integration order

En =

∫
dµ1

∫
dµ2

∫
dξ1

∫
dξ2 f(ξ,µ) , (14)

for n = 1, 2, ..., 6, with the integration extremes listed in Table 1. Thus, the integration region
in the plane of the relative coordinates µ1, µ2 consists of six triangles with a common vertex at
the origin, see Fig. 2.

4 COMMON FACETS

In the case of common facets, Taylor found that the symmetry reduces the six integrals En
to three ones, i.e.

I = I1 + I2 + I3 , (15)

with
In =

∫
dµ1

∫
dµ2

∫
dξ1

∫
dξ2 [f(ξ,η) + f(η, ξ)] , (16)

for n = 1, 2, 3, where their integration extremes are listed in Table 2. Introducing in Eq. (16)
the Duffy coordinate transformations ω, x chosen by Taylor and summarized in Table 3, and the

µ1 µ2 ξ1 ξ2

I1 0 ≤ µ1 ≤ 1 0 ≤ µ2 ≤ µ1 0 ≤ ξ1 ≤ 1− µ1 0 ≤ ξ2 ≤ ξ1

I2 0 ≤ µ1 ≤ 1 µ1 − 1 ≤ µ2 ≤ 0 −µ2 ≤ ξ1 ≤ 1− µ1 −µ2 ≤ ξ2 ≤ ξ1

I3 0 ≤ µ1 ≤ 1 µ1 ≤ µ2 ≤ 1 µ2 − µ1 ≤ ξ1 ≤ 1− µ1 0 ≤ ξ2 ≤ ξ1 + µ1 − µ2

Table 2: Integration extremes of the relative µ1, µ2 and ξ1, ξ2 simplex coordinates for the integrals In, for n =
1, 2, 3, in the common facet case (Taylor, 2003a).



I1 I2 I3

µ1 ω ωx ωx
µ2 ωx ω(x− 1) ω

Table 3: Duffy coordinate transformations chosen by Taylor in the case of common panels, with 0 ≤ ω, x ≤ 1
(Taylor, 2003a).

I1 I2 I3

Jn (1− µ1)ξ1 (1− µ1 + µ2)(ξ1 + µ2) (1− µ2)(ξ1 − µ2 + µ1)
ξ1 (1− µ1)χ1 (1− µ1 + µ2)χ1 − µ2 (1− µ2)χ1 + µ2 − µ1

ξ2 ξ1χ2 (ξ1 + µ2)χ2 − µ2 (ξ1 − µ2 + µ1)χ2

Table 4: Jacobian Jn and integration coordinates ξ1, ξ2 as a function of the relative coordinates 0 ≤
µ1, µ2, χ1, χ2 ≤ 1 in the case of the self–integrals I1, I2 and I3 (Taylor, 2003a).

normalized coordinates χ1, χ2 given in Table 4, each integral In is regularized and ready for a
numerical quadrature using the expression

In = JaJn

∫ 1

0

dω

∫ 1

0

dx

∫ 1

0

dχ1

∫ 1

0

dχ2 [f(ξ,η) + f(η, ξ)] , (17)

for 0 ≤ n ≤ 3, where the common Jacobian Ja = ω is due to the generalized Duffy transforma-
tions summarized in Table 3, also see Fig. 3. Each Jacobian Jn comes from the interval maps
from ξ1,min ≤ ξ1 ≤ ξ1,max and ξ2,min ≤ ξ2 ≤ ξ2,max, to the normalized ones 0 ≤ χ1, χ2 ≤ 1,
see Table 4. The dependences of the variables ξ1, ξ2 with respect to the integration variables
µ1, µ2, χ1, χ2 are summarized in the same Table 4. Note that the variables ξ1, ξ2 define the po-
sition of one integration point on the considered panel, while the relative coordinates µ1, µ2 are
defined by the generalized Duffy transformations. The position of the remaining integration
point η1, η2 on the common panel is known using both coordinates sets and Eq. (11).

5 TWO PANELS WITH A COMMON EDGE

The local numbering scheme of the panel nodes used by Taylor is followed. If two panels
share a common edge, then a circular shift in the local numbering of the panel nodes is made
in such a way that the common edge has the local vertex numbers 1 and 2 on both simplices. It
should be noted that only in this case of common edges, the local numbering of the panel nodes
is performed in counterclockwise on the p panel, and clockwise on the q panel, see Fig. 4.
Under these conditions, for regularizing each of the integrals En, Taylor generalized the Duffy
transformations through the expressions summarized in Table 5, where all of them have the
same Jacobian Jb = x1ω

2 and 0 ≤ ω, x1, x2 ≤ 1. Due to the several mathematical expressions
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Figure 4: Local numbering scheme of the nodes in the common edge case: counterclockwise on the p panel, and
clockwise on the q panel.



involved, it is convenient to put some checks in the computational algorithm, for example, the
points (ξ1, ξ2) and (η1, η2) must always remain in the corresponding simplex domains. As a
result of this control, for instance, a sign discrepancy in the second entry of the E4 column was
found with respect to the original version of Taylor (Taylor, 2003a). Taking each integral En

E1 E2 E3 E4 E5 E6

µ1 −ωx1 ωx1 −ωx1x2 ωx1x2 −ωx1x2 ωx1x2

µ2 −ωx1x2 ωx1x2 ωx1(1− x2) ωx1(x2 − 1) −ωx1 ωx1

Table 5: Duffy transformations used by Taylor for each one of the six integrals when the common edge is defined
by the vertex V1 and V2, where 0 ≤ ω, x1, x2 ≤ 1. Note: there is a sign discrepancy in the second entry of the
E4 column with respects to the original one given in (Taylor, 2003a).

separately and performing some algebra (e.g. see Appendix), all these integrals are regularized.
The common final expressions are given by

En = JbJ̃

∫ 1

0

dω

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dχ1 (...) , (18)

for 0 ≤ n ≤ 6, where the Jacobian Jb = x1ω
2 is due to the generalized Duffy transformation,

while J̃ = 1 − ω is originated by the mapping from the interval ξ1,min ≤ ξ1 ≤ ξ1,max to the
normalized 0 ≤ χ1 ≤ 1 one. The functional dependences of the simplex coordinates ξ1, ξ2 with
respect to the integration ones (ω, x1, x2, χ) in each En integral are summarized in Table 6.
In summary, first, the quadrature point x(ξ1, ξ2) on the p panel is computed through Table 6;
next, the relative simplex coordinates µ1, µ2 are obtained by the generalized Duffy transforma-
tions ω, x1, x2 given in Table 5; and finally, the quadrature point y(η1, η2) on the q panel is
computed using Eq. (11).

ξ1 ξ2

E1 (1− ω)χ1 + ω ω(1− x1 + x1x2)
E2 (1− ω)χ1 + ω(1− x1) ω(1− x1)
E3 (1− ω)χ1 + ω ω(1− x1)
E4 (1− ω)χ1 + ω(1− x1x2) ω(1− x1x2)
E5 (1− ω)χ1 + ω ω
E6 (1− ω)χ1 + ω(1− x1x2) ω(1− x1)

Table 6: Simplex coordinates ξ1, ξ2 as a function of the quadrature ones ω, x1, x2, χ1, for the integrals En, for
n = 1, 2, ..., 6 in the case of a common edge with local vertex V1 and V2, where 0 ≤ ω, χ1, x1, x2 ≤ 1.

6 COMMON VERTEX

If two panels share a vertex, a permutation on the local numbering of the panel nodes is per-
formed in such a way that the common vertex has the local vertex number 1 on each panel. In
this case, the distance

r = x− y = (η1 − ξ1)V1 + (ξ1 − ξ2)V2 + ξ2V3 − (η1 − ξ1)V′2 − η2V
′
3 , (19)

is null since ξ1 = ξ2 = η1 = η2 = 0 which is the origin of the simplex coordinate system in
four dimensions (in 4D). In this case, the Taylor strategy begins with the integral

I =

∫ 1

0

dξ1

∫ ξ1

0

dξ2

∫ 1

0

dη1

∫ η1

0

dη2 f(ξ,η) , (20)



whose integration domain is re-written as

I =

∫ 1

0

dξ1

∫ ξ1

0

dη1

∫ ξ1

0

dξ2

∫ η1

0

dη2 [f(ξ,η) + f(η, ξ)] , (21)

which has an isolated singularity at the origin and is directly regularized with a Duffy coordinate
transformation in four dimensions and summarized in Table 7, giving

I = Jc

∫ 1

0

dω

∫ 1

0

dz1

∫ 1

0

dz2

∫ 1

0

dz3 [f(ξ,η) + f(η, ξ)] , (22)

with the Jacobian Jc = z2ω
3.

coordinates after a Duffy transformation
(ξ1, ξ2) (ω, ωz1)
(η1, η2) (ωz2, ωz2z3)

Table 7: Duffy coordinate transformation in the four dimensional space when both panels share the vertex V1.

7 NUMERICAL TESTS

Four numerical tests are considered in the following sections: a triangular domain, a square
domain, a refined square domain, and a comparison between irregular tessellations of the square
domain with triangles and quadrilaterals. In each case, the proposed scheme and the Wang-
Atalla approach are employed over triangles and quadrilaterals, respectively, for computing
double surface integrals and comparing the numerical results against the corresponding analyt-
ical solutions.

Regarding to the computational cost, it can be said that both methods, full modified Tay-
lor and Wang–Atalla, require a similar number of operations. On one hand, the Wang–Atalla
scheme with n1d integration points in each coordinate involves a first stage where the full table
of integration points must be built, a task typically with O(n2

1d) operations of symmetry that
can be made as a preprocessing stage. Next, the numerical quadrature is performed through
a nested double loop p, q for computing the matrix entries Zpq

m , giving O(n4
1d) operations by

pair of interacting elements. Since there are E × E pairs of interacting elements, then a total
of O(E2n4

1d) operations are performed for each integral Zm. On the other hand, the present
approach involves a previous preprocessing stage where all the pairs of interaction elements are
classified as (a) self–influence, (b) with an edge singularity, (c) with a vertex singularity, or (d)
regulars, i.e. those that have neither edge nor vertex in common. In cases b-c, a circular shift
in the nodes numbering of the neighbouring elements is performed to obtain the corresponding
ones assumed by the Taylor algorithm. All this information can be stored in an auxiliary array
D(E, nneighbour, nm), of rank 3, where nneighbour is the maximum number of panel neighbours
of each panel at its first layer, while the third index stores other useful data (with nm = 4 in the
present implementation). Then, there is a total of O(E2n4

1d) operations for each integral Zm.

7.1 Triangular domain

In the first numerical test, the following integral is computed:

Ẑ0 =

∫ +1

−1

dα

∫ +1

−1

dβ

∫ +1

−1

dγ

∫ +1

−1

dδ
1

r
, (23)
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Figure 5: Triangular and square integration domains Ω, with side length L = 2, used in the tests. The Wang–Atalla
integration was used on the square domain for the double surface integral of hm/r, where r = ‖x − y‖2, with
x,y ∈ Ω. The regular multiplicative functions hm are detailed in Table 9.

where the integration domain Ω is the flat triangle of side length L = 2 shown in Fig. 5 (left),
and r = ‖x − y‖2 is the Euclidean distance between the integration points x = (α, β) and
y = (γ, δ), respectively. The numerical values obtained for Eq. (23) are shown in Table 8

n1d collapsed WA εr% modified Taylor εr%
2 7.542 123 -6.01 7.968 865 -0.69
3 7.557 045 -5.82 8.032 884 0.10
4 7.882 916 -1.76 8.023 229 -0.01
semi-analytical 8.024 527

Table 8: Numerical evaluation of Eq. (23) using n1d integration points in each coordinate: values obtained with
the Wang–Atalla (WA) scheme with the fourth side collapsed (2nd column), and those with the present approach
(3rd column).

using n1d = 2, 3, 4 integration points in each coordinate for the Wang–Atalla scheme (2nd
column), and for the proposed modified Taylor (3rd column). The first method is applied on the
triangular domain by collapsing one side of the square. The Wang–Atalla formulae are partially
listed in Tables I-IV of their paper (Wang and Atalla, 1997) for a practical use, because there
are symmetries both in the weights functions and in the integration points. Nevertheless, it
should be noted that these symmetries are not trivial to write in full in some cases since there
are four integration coordinates. The exact value for Ẑ0 is computed using the expression given
by Sievers et al. (Eibert and Hansen, 1995; Sievers et al., 2005)

Ẑ0 =
1

3L1

ln1 +
1

3L2

ln2 +
1

3L3

ln3 , (24)
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Figure 6: Two partitions O(L) of the square of length side L = 2 with linear triangles: mesh A with edge
singularities only (left), and mesh B with vertex and edge singularities (right), for the example of Sec. 7.2.

where L1 = ‖x2 − x3‖2, L2 = ‖x3 − x1‖2 and L3 = ‖x1 − x2‖2 are the lengths of the triangle
sides, and

ln1 = ln

∣∣∣∣∣(L1 + L2)2 − L2
3

L2
2 − (L3 − L1)2

∣∣∣∣∣ , (25)

ln2 = ln

∣∣∣∣∣(L2 + L3)2 − L2
1

L2
3 − (L1 − L2)2

∣∣∣∣∣ , (26)

ln3 = ln

∣∣∣∣∣(L3 + L1)2 − L2
2

L2
1 − (L2 − L3)2

∣∣∣∣∣ . (27)

7.2 Square domain

This numerical test is inspired from the one presented by W. Wang and N. Atalla (Wang and
Atalla, 1997), where the following integral is computed:

Zm =

∫ +1

−1

dα

∫ +1

−1

dβ

∫ +1

−1

dγ

∫ +1

−1

dδ
hm
r
, (28)

where the integration domain Ω is the flat square of side length L = 2, centered at the origin,
see Fig. 5 (right), r = ‖x − y‖2 is the Euclidean distance between the integration points
x = (α, β) and y = (γ, δ), respectively, and hm = hm(α, β, γ, δ) are the regular multiplicative
test functions summarized in Table 9. The square domain Ω is split into E triangle subdomains

m hm semi-analytical Zm
0 1 23.785677
1 αβγδ 0.705130
2 (αβγδ)2 0.337057
3 (αβγδ)3 0.083744
4 (αβγδ)4 0.057834

Table 9: Square domain test: regular functions hm (2nd column), and semi-analytical Zm values with 6 digits
accuracy (3rd column), as reported by Wang–Atalla (Wang and Atalla, 1997).
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Figure 7: Absolute value of the relative percent error |er%| of the Z0 integral with respect to the number of the
integration points in each coordinate n1d: (i) full modified Taylor; (ii) mixed modified Taylor and GaussL, with
the modified Taylor scheme in the self–integral only, and the Gauss–Legendre one otherwise; and (iii) full GaussL,
with the Gauss-Legendre scheme in all the domain ignoring the singularities, using the meshes A and B in Fig. 6.

Ωp such that
Ω = ∪Ωp for p = 1, 2, ..., E;

Ωp ∩ Ωq = ∅ with p 6= q;
(29)

therefore

Zm =
E∑

p,q=1

Zpq
m , (30)

where
Zpq
m =

∫
Ωp

dΩp

∫
Ωq

dΩq hm
r

, 1 ≤ p, q ≤ E . (31)

Two simple partitions O(L) of the square are shown in Fig. 6: mesh A consists of two triangles
that share a common edge, arising an edge singularity (left), and mesh B has four triangles shar-
ing edges and a vertex at the origin, arising edge and vertex singularities, respectively (right).
Equation (28) is computed with the regular test functions hm listed in the second column of
Table 9, while the semi-analytical Zm values are listed in the third column. These coefficients
can be calculated through recurrence relations developed by Berry (Berry, 1994). The exact
value for Z0 is computed using (Wang and Atalla, 1997)

Z0 = 16

[
ln

√
2 + 1√
2− 1

− 2

3
(1−

√
2)

]
. (32)

Results are displayed for computations done with a variable number of integration points in
each coordinate, always with smooth asymptotic convergence. The integration points were
computed using an algorithm given by Quarteroni et al. (Quarteroni et al., 2000). In Figs. 7-9,
a comparison is shown among: (i) full modified Taylor; (ii) mixed modified Taylor and GaussL,
with the modified Taylor scheme used in the self–integral only, and the Gauss–Legendre one
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Figure 8: Idem Fig. 7 for Z1 (left) and Z2 (right).

otherwise; and (iii) full GaussL, with the Gauss-Legendre scheme in all the domain ignoring
the singularities. The relative percent error er% is computed with

er%(Zm) =
Zm,num − Zm,semi-analytical

Z
m,semi-analytical

× 100 ; (33)

for 0 ≤ m ≤ 4, and plotted with respect to the number of the integration points in each
coordinate n1d in semi-logarithmic scale. It can be seen that both, the numerical scheme with
a special formula for the self–integral only, and the Gauss–Legendre quadrature formula that
neglects the edge, vertex and self–influence singularities, introduce a relative error which is
several orders of magnitude larger than the present approach in almost cases. Furthermore,
additional checks can be performed verifying the symmetry properties (Berry, 1994)

Zmnpq = 0 when (m+ p) is odd or (n+ q) is odd, (34)
Zmnpq = Zpnmq = Zmqpn = Zpqmn . (35)

n1d scheme Z0 Z1 Z2 Z3 Z4

2 Taylor −4.36× 10−2 -1.92 -7.17 -29.30 -44.64
WA −7.04× 10−1 −9.56× 10−1 -4.02 -26.37 -38.76

3 Taylor +2.29× 10−2 +1.37× 10−1 −2.55× 10−1 -2.30 -5.97
WA -3.91 -8.26 -1.08 −6.52× 10−1 -2.63

4 Taylor −1.14× 10−2 −2.32× 10−2 −2.14× 10−2 −2.22× 10−1 −6.29× 10−1

WA +8.83× 10−2 −1.43× 10−2 −5.03× 10−4 +1.37× 10−4 −1.93× 10−1

Table 10: Relative percent error er% for the Z0-Z4 integrals, with respect to the number of the integration points
in each coordinate n1d, obtained with the modified Taylor integration on triangles and the Wang–Atalla (WA) one
on quadrilaterals, using the uniform refined mesh C of Fig. 10.
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Figure 10: A refined square domain of length side L = 2 with a uniform mesh C (left), and with a perturbed one
D (right).

n1d scheme Z0 Z1 Z2 Z3 Z4

2 Taylor +2.13× 10−2 +3.85× 10−1 -4.80 -26.12 -41.22
WA -0.99 -2.67 -4.59 -26.85 -38.87

3 Taylor −3.28× 10−2 +2.91× 10−2 +3.85× 10−1 −1.13× 10−1 -3.46
WA -3.90 -8.06 -1.37 -1.01 -2.84

4 Taylor 1.32× 10−2 +7.27× 10−3 +3.82× 10−2 +3.59× 10−1 +3.49× 10−1

WA 7.00× 10−2 −4.26× 10−1 −1.43× 10−1 −6.88× 10−2 −2.08× 10−1

Table 11: Idem Table 10 using the perturbed refined mesh D of Fig. 10.

7.3 Refined square domain

A refined square domain of side length L = 2 is tested, with both a uniform and a perturbed
mesh, as is shown in Fig. 10. A comparison of results is given in Tables 10-11 between the pro-
posed scheme on triangles, and the Wang–Atalla one on quadrilaterals, for the relative percent
error er% in the values, from Z0 to Z4. Figures 11-12 show convergence plots of the absolute
relative percent error |er%| with respect to the number of the integration points in each coordi-
nate n1d with the proposed method. From these results, it can be seen that the proposed scheme
leads to relative percent errors which are several orders of magnitude smaller than the Wang–
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Figure 11: Convergence of the absolute relative percent error |er%| with respect to the number of the integration
points in each coordinate n1d with the proposed method using the refined meshes C and D of Fig. 10. Integrals
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Figure 12: Idem Fig. 11 for integral Z2 (left), Z3 (centre) and Z4 (right).

Atalla one, when the number of the integration points in each coordinate n1d is increased. This
can be attributed to the fact that the present approach takes into account the common edge and
vertex singularities, which are neglected in the Wang–Atalla scheme. Only the self–integral is
computed with a special formula in the Wang–Atalla scheme, while a Gauss–Legendre rule is
used for the remaining pairs of interacting panels.

7.4 Irregular tessellations with triangles and quadrilaterals

In this section, Eq. (28) and Table 9 are again computed on the same flat square Ω of side
length L = 2, centered at the origin, as is shown in Fig. 5 (right). First, four tessellations with
quadrilaterals are used and, next, these quadrilaterals are subdivided into triangles. Thus, in Fig.
13, the square Ω is partitioned in the meshes E-H with quadrilaterals (solid lines), and triangles
(dashed lines). Plots of the convergence of the relative percent error |er%| of the value of Zm
with respect to the number of the integration points in each coordinate n1d are shown in Figs.
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14-15, for the integrals from Z0 to Z4, respectively, with the proposed scheme over triangles
(curves E-H). Results with the Wang-Atalla scheme over quadrilaterals are not included due to
length limitations, although they show a same behaviour as those of the previous section.

8 CONCLUSIONS

In this work a modified Taylor scheme (Taylor, 2003a) for computing the singular surface in-
tegrals encountered in Galerkin boundary element methods has been presented. The scheme is
oriented to flat triangles, and removes the weak singularities in the integrand through a series of
coordinate transformations, coupled with an interchange of the order of integration followed by
appropriate Duffy coordinate transformations. It allows to take into account the field singular-
ity due to the self–influence, edge and vertex singularities, and it can be employed as a “black
box” in practical applications. Contrary to the original version, the present strategy consists in a
full numerical quadrature scheme in the four simplex coordinates and is not specialized for any
particular kernel. The extremes of the ξ1, ξ2 integrals, when two panels have a common edge,
are given by the six entries En in Table 6 that are neither presented nor discussed by Taylor in
(Taylor, 2003a), although they are necessary when a full numerical quadrature is chosen in the
four simplex coordinates. Four types of numerical tests were considered: a triangular domain,
a square domain, a refined square domain, and a comparison between irregular tessellations of
a square domain with triangles and quadrilaterals. In each case, the proposed scheme and the
Wang-Atalla approach were employed over triangles and quadrilaterals, respectively, to com-
pute double surface integrals. The numerical results obtained with the proposed method in all
cases compare favorably with those obtained with the Wang–Atalla scheme. The square do-
main test was designed for evaluating the overall performance of the numerical schemes in the
cases: (a) self–influence and edge singularity; (b) self—influence, edge and vertex singularity;
and (c) self–influence neglecting the edge and vertex singularities. In all cases, the proposed
method showed higher accuracy and better convergence properties than more classical ideas, for
instance, the use of a special scheme for handling self–integral together with a Gauss–Legendre
integration for the remaining interactions. The convergence plots shown that proposed scheme
leads to relative percent errors which are several orders of magnitude smaller than the Wang–
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Figure 15: Idem Fig. 14 for integral Z2 (left), Z3 (centre) and Z4 (right).

Atalla one when the number of the integration points in each coordinate n1d is increased. The
numerical results show that although the Wang–Atalla approach is a natural choice for the self–
integrals in quadrilateral elements, its performance is deteriorated when a mesh refinement is
performed, that can be attributed to the fact of ignoring the contributions of edge and vertex
singularities. Moreover, although the Wang–Atalla formulae could be employed for use on
triangles by means of the collapse of one side of the quadrilateral element, such strategy will
inevitably introduce, first, a bias on the integral value due to the lack of invariance against the
numbering of the local nodes and, second, a larger relative percent error than the one found
with the proposed methodology. For these reasons, the modified Taylor methodology proposed
in this paper could be preferable to the Wang-Atalla one when a more precise numerical inte-
gration scheme might be chosen for triangles. Further development could be focused on the
extension of the modified Taylor strategy to other types of finite elements, as the quadrilateral
case.
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9 APPENDIX

In this appendix, the coordinate transformations for the common edge case that were not de-
tailed in (Taylor, 2003a) are summarized. It should be noted that in Eqns. (42, 48, 55, 62, 69,
75):

i) The auxiliary coordinate s2 which is introduced in the following equations is later identi-
fied as the integration variable ω, that is, s2 ≡ ω;

ii) The last mapping from the s2 ≤ ξ1 ≤ 1 interval to the unit one 0 ≤ χ1 ≤ 1 produces the
same additional Jacobian J̃ = 1− ω introduced in Eq. (18).

9.1 Integral E1

Beginning with

E1 =

∫ 0

−1

dµ1

∫ 0

µ1

dµ2

∫ 1

−µ1

dξ1

∫ ξ1+µ1−µ2

−µ2

dξ2 (...) , (36)

introducing the auxiliary coordinates z1 = −µ1 and z2 = −µ2,

E1 =

∫ 1

0

dz1

∫ z1

0

dz2

∫ 1

z1

dξ1

∫ ξ1+z2−z1

z2

dξ2 (...) , (37)

interchanging the integration order,∫ 1

z1

dξ1

∫ ξ1+z2−z1

z2

dξ2 (...) =

∫ 1+z2−z1

z2

dξ2

∫ 1

ξ2+z1−z2
dξ1 (...) , (38)

introducing the auxiliary coordinate s2 = ξ2 + z1 − z2,∫ 1+z2−z1

z2

dξ2

∫ 1

ξ2+z1−z2
dξ1 (...) =

∫ 1

z1

ds2

∫ 1

s2

dξ1 (...) , (39)

replacing,

E1 =

∫ 1

0

dz1

∫ z1

0

dz2

∫ 1

z1

ds2

∫ 1

s2

dξ1 (...) , (40)

where the integration in the z1, z2, s2 coordinates gives the volume of a tetrahedron, then, per-
forming a cyclic permutation,

E1 =

∫ 1

0

ds2

∫ s2

0

dz1

∫ z1

0

dz2

∫ 1

s2

dξ1 (...) , (41)



and using the first Duffy transformation of Table 6 corresponding to the E1 integral, it results

E1 = Jb

∫ 1

0

dω

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

ω

dξ1 (...) . (42)

Finally, introducing the linear mapping from the interval ω ≤ ξ1 ≤ 1 to the 0 ≤ χ1 ≤ 1 one,
the dependences expressed by the first row of Table 6 are obtained.

9.2 Integral E2

Beginning with

E2 =

∫ 1

0

dµ1

∫ µ1

0

dµ2

∫ 1−µ1

0

dξ1

∫ ξ1

0

dξ2 (...) , (43)

interchanging the integration order,∫ 1−µ1

0

dξ1

∫ ξ1

0

dξ2 =

∫ 1−µ1

0

dξ2

∫ 1−µ1

ξ2

dξ1 (...) , (44)

introducing the auxiliary coordinate s2 = ξ2 + µ1,∫ 1−µ1

0

dξ2

∫ 1−µ1

ξ2

dξ1 (...) =

∫ 1

µ1

ds2

∫ 1−µ1

s2−µ1

dξ1 (...) , (45)

replacing,

E2 =

∫ 1

0

dµ1

∫ µ1

0

dµ2

∫ 1

µ1

ds2

∫ 1−µ1

s2−µ1

dξ1 (...) , (46)

where the integration in the µ1, µ2, s2 coordinates gives the volume of a tetrahedron, then, per-
forming a cyclic permutation,

E2 =

∫ 1

0

ds2

∫ s2

0

dµ1

∫ µ1

0

dµ2

∫ 1−µ1

s2−µ1

dξ1 (...) , (47)

and using the second Duffy transformation of Table 6 corresponding to theE2 integral, it results

E2 = Jb

∫ 1

0

dω

∫ 1

0

dx1

∫ 1

0

dx2

∫ s2−µ1

0

dξ1 (...) . (48)

Then, introducing the linear mapping from the interval 0 ≤ ξ1 ≤ s2 − µ1 to the 0 ≤ χ1 ≤ 1
one, the dependences expressed by the second row of Table 6 are obtained.

9.3 Integral E3

Starting from

E3 =

∫ 0

−1

dµ1

∫ 1+µ1

0

dµ2

∫ 1

µ2−µ2

dξ1

∫ ξ1+µ1−µ2

0

dξ2 (...) , (49)

introducing the auxiliary coordinate z1 = −µ1,

E3 =

∫ 1

0

dz1

∫ 1−z1

0

dµ2

∫ 1

µ2+z1

dξ1

∫ ξ1−z1−µ2

0

dξ2 (...) , (50)



interchanging the integration order,∫ 1

µ2+z1

dξ1

∫ ξ1−z1−µ2

0

dξ2 (...) =

∫ 1−z1−µ2

0

dξ2

∫ 1

ξ2+z1+µ2

dξ1 (...) , (51)

introducing the auxiliary coordinate s2 = ξ2 + z1 + µ2,∫ 1−z1−µ2

0

dξ2

∫ 1

ξ2+z1+µ2

dξ1 (...) =

∫ 1

z1+µ2

ds2

∫ 1

s2

dξ1 (...) , (52)

replacing,

E3 =

∫ 1

0

dz1

∫ 1−z1

0

dµ2

∫ 1

z1+µ2

ds2

∫ 1

s2

dξ1 (...) , (53)

where the integration in the z1, µ2, s2 coordinates gives the volume of a tetrahedron, after per-
forming a cyclic permutation,

E3 =

∫ 1

0

ds2

∫ s2

0

dz1

∫ s2−z1

0

dµ2

∫ 1

s2

dξ1 (...) , (54)

and using the third Duffy transformation of Table 6 corresponding to the E3 integral, it results

E3 = Jb

∫ 1

0

dω

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

ω

dξ1 (...) . (55)

Introducing the linear mapping from the interval ω ≤ ξ1 ≤ 1 to the 0 ≤ χ1 ≤ 1 one, the
dependences expressed by the third row of Table 6 are obtained.

9.4 Integral E4

Beginning with

E4 =

∫ 1

0

dµ1

∫ 0

µ1−1

dµ2

∫ 1−µ1

−µ2

dξ1

∫ ξ1

−µ2

dξ2 (...) , (56)

introducing the auxiliary coordinate z2 = −µ2,

E4 =

∫ 1

0

dz1

∫ 1−µ1

0

dz2

∫ 1−µ1

z2

dξ1

∫ ξ1

z2

dξ2 (...) , (57)

interchanging the integration order,∫ 1−µ1

z2

dξ1

∫ ξ1

z2

dξ2 =

∫ 1−µ1

z2

dξ2

∫ 1−µ1

ξ2

dξ1 , (58)

introducing the auxiliary coordinate s2 = ξ2 + µ1,∫ 1−µ1

z2

dξ2

∫ 1−µ1

ξ2

dξ1 =

∫ 1

µ1+z2

dξ2

∫ 1−µ1

s2−µ1

dξ1 , (59)

replacing,

E4 =

∫ 1

0

dµ1

∫ 1−µ1

0

dz2

∫ 1

µ1+z2

ds2

∫ 1−µ1

s2−µ1

dξ1 (...) , (60)



where the integration in the µ1, z2, s2 coordinates gives the volume of a tetrahedron. Next,
performing a cyclic permutation,

E4 =

∫ 1

0

ds2

∫ s2

0

dµ1

∫ s2−µ1

0

dz2

∫ 1−µ1

s2−µ1

dξ1 (...) , (61)

and using the fourth Duffy transformation of Table 6 for the E4 integral, it is

E4 = Jb

∫ 1

0

dω

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1−µ1

s2−µ1

dξ1 (...) . (62)

The linear mapping from the interval s2− µ1 ≤ ξ1 ≤ 1− µ1 to the 0 ≤ χ1 ≤ 1 one leads to the
dependences expressed by the fourth row of Table 6.

9.5 Integral E5

Starting from

E5 =

∫ 0

−1

dµ1

∫ µ1

−1

dµ2

∫ 1

−µ2

dξ1

∫ ξ1

−µ2

dξ2 (...) , (63)

introducing the auxiliary coordinates z1 = −µ1 and z2 = −µ2,

E5 =

∫ 1

0

dz1

∫ 1

z1

dz2

∫ 1

z2

dξ1

∫ ξ1

z2

dξ2 (...) , (64)

interchanging the integration order,∫ 1

z2

dξ1

∫ ξ1

z2

dξ2 =

∫ 1

z2

dξ2

∫ 1

ξ2

dξ1 , (65)

applying the auxiliary coordinate s2 = ξ2,∫ 1

z2

dξ2

∫ 1

ξ2

dξ1 =

∫ 1

z2

ds2

∫ 1

s2

dξ1 , (66)

and replacing in Eq. (64)

E5 =

∫ 1

0

dz1

∫ 1

z1

dz2

∫ 1

z2

ds2

∫ 1

s2

dξ1 (...) , (67)

where the integration in the z1, z2, s2 coordinates gives the volume of a tetrahedron. By propos-
ing a cyclic permutation,

E5 =

∫ 1

0

ds2

∫ 1

s2

dz1

∫ z1

0

dz2

∫ 1

s2

dξ1 (...) , (68)

and using the fifth Duffy transformation of Table 6 corresponding to the E5 integral, then

E5 = Jb

∫ 1

0

dω

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

s2

dξ1 (...) . (69)

Finally, introducing the linear mapping from the interval s2 ≤ ξ1 ≤ 1 to the 0 ≤ χ1 ≤ 1 one,
the dependences expressed by the fifth row of Table 6 are obtained.



9.6 Integral E6

Beginning with

E6 =

∫ 1

0

dµ1

∫ 1

µ1

dµ2

∫ 1−µ1

µ2−µ2

dξ1

∫ ξ1−µ2+µ1

0

dξ2 (...) , (70)

interchanging the integration order,∫ 1−µ1

µ2−µ2

dξ1

∫ ξ1−µ2+µ1

0

dξ2 =

∫ 1−µ2

0

dξ2

∫ 1−µ1

ξ2+µ2−µ1

dξ1 , (71)

introducing the auxiliary coordinate s2 = ξ2 + µ2,∫ 1−µ2

0

dξ2

∫ 1−µ1

ξ2+µ2−µ1

dξ1 =

∫ 1

µ2

ds2

∫ 1−µ1

s2−µ1

dξ1 , (72)

replacing,

E6 =

∫ 1

0

dµ1

∫ 1

µ1

dµ2

∫ 1

µ2

ds2

∫ 1−µ1

s2−µ1

dξ1 (...) , (73)

where the integration in µ1, µ2, s2 coordinates gives the volume of a tetrahedron, then, perform-
ing a cyclic permutation,

E6 =

∫ 1

0

ds2

∫ 1

s2

dµ1

∫ s2

0

dµ2

∫ 1−µ1

s2−µ1

dξ1 (...) , (74)

and using the sixth Duffy transformation of Table 6 corresponding to the E6 integral, it results

E6 = Jb

∫ 1

0

dω

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1−µ1

s2−µ1

dξ1 (...) . (75)

The sixth row of Table 6 is reached by applying the linear mapping from the interval s2− µ1 ≤
ξ1 ≤ 1− µ1 to the 0 ≤ χ1 ≤ 1 one.
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Paquay S. Développement d’une méthodologie de simulation numérique pour les problèmes
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