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Abstract

This article discusses high performance numerical simulations of electroki-
netic flow and transport phenomena in microfluidic chips. Modeling grounds on
conservation equations of mass, momentum and electric charge in the framework
of continuum mechanics. Two examples of interest in microfluidics are consid-
ered as study cases. Three dimension effects and whole chip geometries are
taking into account. All numerical simulations presented are performed with
PETSc-FEM within a Python programming environment employing parralel
computing. Computation time and parallel efficiency are measured in order to
study additive Schwarz method performance as domain decomposition technique
in solving common ill-conditioned microfluidics problems.
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1. Background

Micro Total Analysis Systems (µ–TAS) perform the functions of large an-
alytical devices in small units [1]. They are used in a variety of chemical,
biological and medical applications. The benefits of µ–TAS are a reduction of
consumption of samples and reagents, shorter analysis times, greater sensitivity,
portability and disposability. There has been a huge interest in these devices in
the past decade that led to a commercial range of products. Most microfluidic
systems have been successfully fabricated in glass or oxidized silicon [2]. Mi-
croscopic channels are defined in these substrates using photolithography and
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micromachining, whose materials and fabrication methods were adopted from
the microelectronics industry. However, for the purposes of rapid prototyping
and testing of new concepts, the fabrication processes are slow and expensive.

Numerical simulations of on-chip processes can serve to reduce the time from
concept to chip [3].The most interesting aspect of computational simulation of
microfluidic chips is the multiphysics nature which combines fluidics, transport,
thermal, mechanics, electronics and optics with chemical, biological thermody-
namics and reaction kinetics. Additionally, studying theses effects is a chal-
lenging problem from the numerical point of view. They comprise geometrical
scales that span six orders of magnitude: from the millimetric size of reservoirs,
through the micrometric width of channels, to the nanometric thickness of the
electric double layer at interfaces.

Some of the first numerical simulations of fluid flow and species transport for
microfluidic chips were addressed to electrokinetic focusing and sample dispens-
ing techniques [4] [5] [6],and they employed an algorithm based on finite volume
method in a structured grid. Bianchi et al. [7] performed 2D finite element
simulations artificially increasing the EDL thickness. Chatterjee [8] developed
a 3D finite volume model to study several applications in microfluidics. More
recently, Kler et al. [9] developed a 3D FEM model to describe the transport of
non-charged species by electroosmotic flow (EOF), and Barz et al. [10]developed
a fully-coupled modeling for electrokinetic flow in microfluidic devices employing
2D finite elements.

Parallel computations and domain decomposition techniques in electroki-
netic flow and transport have not been extensively explored. Tsai et al. [11]
presented a 2D parallel finite volume scheme to solve electroosmotic flow in L-
shaped microchannels and Kler et al. [12] presented 3D FEM simulations for
electrokinetic flow in complex microgeometries. Simulations of electrophoretic
processes employing this techniques were performed by Chau et al. [13, 14] using
finite diference method and Kler et al. [15] using FEM, both in 3D.

In this paper a high performance 3D finite element model for the simulation
of electrokinetic flow and transport in microfluidic chips is presented. In order
to solve the model parallel computing and clasical domain decomposition tech-
niques are employed. Computation time and parallel efficiency are measured in
order to study additive Schwarz method performance as domain decomposition
technique in solving common ill-conditioned microfluidics problems.

2. Theoretical Modeling

In this section a mathematical model to simulate 3D and time-dependent
electrokinetic flow and transport phenomena in microchannels is presented.First
the fluid mechanics and the basis of electroosmotic flow is discussed, then the
mass transport balance is presented. We considered the case of microchannel
networks filled with an aqueous strong electrolyte solution.
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2.1. Governing Equations
Electrokinetic effects arise when there is a movement of the liquid caused by

the migration of ions under the effects of an electric field, in relation to some
solid wall. In the framework of continuum fluid mechanics, fluid velocity u,
pressure p, and electric E fields are governed by the following set of coupled
equations [16, 17, 18],

−∇ ·u = 0, (1)

ρ(
∂u
∂t

+ u ·∇u) = ∇ ·σ + ρg + ρeE, (2)

ε∇ ·E = ρe . (3)

Equation 1 expresses the conservation of mass for incompressible fluids.
Equation 2 (Navier–Stokes equation) expresses the conservation of momen-
tum for Newtonian fluids of density ρ, viscosity µ, and stress tensor σ =
−pI + µ(∇u + ∇uT ), subjected to gravitational field of acceleration g and
electric field intensity E. The last term on the right hand side of equation 2
represents the contribution of electrical forces to the momentum balance, where
ρe = F

∑
k zkck is the electric charge density of the electrolyte solution, obtained

as the summation over all type-k ions, with valence zk and molar concentration
ck, and F is the Faraday constant.

Equation 3 (Poisson equation) establishes the relation between electric po-
tential and charge distributions in the fluid of permittivity ε. Here it is relevant
to mention that the ion distributions ck (to be included in equations 2 and 3
through ρe must be derived from Nernst-Planck equation, which accounts for
the flux of type-k ions due to electrical forces, fluid convection and Brownian
diffusion [19]. This coupling can be avoided by introducing a suitable simplifi-
cation (see section 2.2).

The mass transport of sample ions and buffer electrolyte constituents can be
modeled by a linear superposition of migrative, convective and diffusive trans-
port mechanisms and a reactive term. Considering only strong electrolites,
reactive term vanishes. Thus in a non-stationary mode, for the j-type specie,
the present work considers the following transport equation

∂cj

∂t
+ u ·∇cj = Dj∇2cj −∇ · (νjzjcjFE) , (4)

which governs the molar concentration cj of type-j species in the electrolyte
solution. In equation 4, Dj is the diffusion coefficient, νj is the mobility, and
F is the Faraday constant. Therefore, once velocity u and electric field E are
obtained from equations 1-3, the molar concentration profile cj of different j
species is derived from equation 4.

2.2. Electrokinetic Phenomena
Generally, most substances will acquire a surface electric charge when brought

into contact with an aqueous medium. Some of the charging mechanisms in-
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clude ionization, ion adsorption, and ion dissolution. The effect of any charged
surface in an electrolyte solution will be to influence the distribution of nearby
ions in the solution. Ions of opposite charge to that of the surface (counterions)
are attracted towards the surface while ions of like charge (coions) are repelled
from the surface. This attraction and repulsion, when combined with the mix-
ing tendency resulting from the random thermal motions of the ions, leads to
the formation of an electric double layer.

The electric double layer is a region close to the charged surface in which
there is an excess of counterions over coions to neutralize the surface charge,
and these ions are spatially distributed in a “diffuse” manner. Evidently there
is no charge neutrality withing the double layer because the number of counte-
rions will be large compared with the number of coions. The generated electric
potentials are on the order of 50 mV. When moving away from the surface, the
potential progressively decreases, and then vanishes in the liquid phase.

2.2.1. Electric Double Layer Theory
Consider a simple fully dissociated symmetrical salt in solution for which

the number of positive and negative ions are equal, so

z+ = −z− = z . (5)

When this electrolyte solution is brought into contact with a solid such that the
surface of contact becomes positively charged, the concentrations of positive
and negative ions has the following Boltzmann distribution

c± = c0 exp
(
∓zF

RT
φ

)
; (6)

where φ is the electric potential, c0 is the bulk salt concentration, R is the ideal
gas constant and T is the absolute temperature. Clearly, the ion concentrations
far from the surface c± → c0 as φ → 0.

Under the above assumptions, the electric charge density is

ρe = F
∑

k

zkck

= F

[
+zc0 exp

(
−zF

RT
φ

)
− zc0 exp

(
+zF

RT
φ

)]
= 2zc0F sinh

(
− zF

RT
φ

)
;

(7)

and the electric field E is related to the electric potential φ through

E = −∇φ . (8)
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Equations 7 and 8 can be inserted in the Poisson equation 3 to finally obtain

−∇2φ =
2zc0F

ε
sinh

(
− zF

RT
φ

)
. (9)

The electric potential φ obtained through solving the Poisson–Boltzmann
equation 9 can then be employed for determining the electric field E (equation 8)
and the electric charge density ρe (equation 7). The electrical forces can then
be computed and entered in the momentum equation 2.

2.2.2. Electric Double Layer Thickness
The electric double layer thickness may be approximately quantified through

the Debye length [20, 19],

λD =

√
εRT

2z2c̄F 2
; (10)

were c̄ is taken to be the average molar negative ion (counterion) concentration.
The Debye length represents the position where the electrical potential en-

ergy is approximately equal to the thermal energy of the counterions. It is
obtained by neglecting the presence of coions and solving a simplified Poisson
problem.

For the ionic concentrations normally used in practice, λD is on the order of
10 nm. Away from the interface, at distances beyond λD, the bulk of the fluid
is electrically neutral.

2.2.3. Electroosmotic Flow and Slip Velocity Approximation
Electroosmotic flow in microchannels grounds on the existence excess of ions

in the fluid near solid walls. When an external electric field is applied in the
axial direction of a channel, the electrical forces acting on excess ions drag the
surrounding liquid and then electroosmotic flow develops.

For thin electric double layer in relation to the channel width, electroosmotic
phenomena is confined to regions close to channel walls. Under these conditions,
the electroosmotically driven flow can be regarded as the result of an electrically-
induced slip velocity ; its magnitude can be approximated by [20, 19]

uEO = −εζ

µ
E ; (11)

where ζ is the electrokinetic potential.
Further, uEO can be used as a boundary value at the channel walls. This

possibility greatly simplifies calculations since ion distributions are decoupled
from Navier–Stokes and Poisson equations. In fact, if ion concentrations are
assumed to be uniform (except in the close vicinity of the charged interface), and
hence throughout the flow domain, the right hand side of equation 3 vanishes,
as well as the last term of equation 2.

The slip velocity approximation is valid for small values of λD/h (where h is
the channel width), which is usually the case in micro-scale channels at moderate
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ionic concentrations (≈ 10−3 M). Nevertheless, at very low ionic concentrations
(≈ 10−6 M), or in case of nanoscale channels, λD/h approaches one, indicating
that the electric double layer from opposing surfaces overlap. In that case,
approximation 11 does not apply and the full problem must be solved.

2.3. Classical Domain Decomposition Methods
Domain Decomposition Methods (DDM) [21] are divide and conquer tech-

niques for solving boundary value problem by splitting it into smaller boundary
value problems on subdomains and iterating to coordinate the solution between
the subdomains. The problems on the subdomains are independent, which
makes domain decomposition methods suitable for parallel computing on dis-
tributed memory architectures. Domain decomposition methods are typically
used as preconditioners for Krylov space iterative methods, such as the Conju-
gate Gradient (CG) method or Generalized Minimal Residual (GMRES) meth-
ods.

In non-overlapping methods (also called iterative substructuring methods),
the subdomains overlap only on their interface. In primal methods, such as Bal-
ancing Domain Decomposition (BDD) and the enhaced version BDDC [22], the
continuity of the solution across subdomain interface is enforced by representing
the value of the solution on all neighboring subdomains by the same unknown.
In dual methods, such as Finite Elements Tearing and Interconnecting (FETI),
the continuity of the solution across the subdomain interface is enforced by La-
grange multipliers. An enhaced, symplified and better performing version of
FETI, known as FETI-DP [23], is hybrid between a dual and a primal method;
its performance is essentially the same as the BDDC method. BDD and FETI
mathods were primarily developed for solving of elliptic boundary value prob-
lems.

In overlapping domain decomposition methods, the subdomains overlap by
more than the interface. Overlapping domain decomposition methods include
the classical Schwarz alternating procedure and the Additive Schwarz Method
(ASM) [24]. Schwarz methods can be easily applied to a variety of problems [25,
26] and can be implemented in a fully-algebraic manner (i.e. without knowledge
of the underlying discrete grids).

2.3.1. Additive Schwarz Preconditioning
The original alternating procedure described by Schwarz [27] in 1870 is an

iterative method to find the solution of a partial differential equations on a do-
main which is the union of two overlapping subdomains, by solving the equation
on each of the two subdomains in turn, taking always the latest values of the
approximate solution as the boundary conditions.

The procedure described above is called the multiplicative Schwarz proce-
dure. In matrix terms, this is very reminiscent of a block Gauß–Seidel iteration.
The multiplicative Schwarz procedure is not fully parallel at the highest level:
some processors have to wait others in order to perform the local work. The
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analogue of the block Jacobi procedure is known as the additive Schwarz pro-
cedure. The additive procedure is fully parallel; however, the convergence rate
is usually slower.

The application of the additive Schwarz procedure as a preconditioning
method for the solution of systems of linear equations can be summarized as
follows:

• The support mesh/grid is decomposed into Ns (possibly overlapping) sub-
domains Ωi, i = 1, . . . , Ns.

• Each subdomain Ωi is associated to a local space Vi with the help of
a restriction operator Ri. The restriction operator Ri extract from the
global vector the unknowns associated with Ωi, while the extension oper-
ators RT

i extends by zeros unknowns from Ωi to the global vector. The
preconditioner operator can then be easily written in matrix terms as

P−1 =
Ns∑
i=1

RT
i A−1

i Ri; (12)

where Ai = RT
i ARi are the local matrices associated with the subdo-

mains Ωi; they are related to the global matrix A through the restriction
operators Ri. In the special case of zero overlap, the matrices Ai have
entries from contributions originated in the subdomain Ωi; if the overlap
is greater than zero, the matrices Ai have additional entries contributed
by neighboring subdomains.

• Any Krylov-based iterative method can then be employed for solving the
(left) preconditioned linear system P−1Ax = P−1b.

Many factors impact the performance of additive Schwarz preconditioning
in the context of parallel iterative methods for the solution of systems of linear
equations. The main ones are summarized in the following list.

• Additive Schwarz methods are normally implemented in such a way that
the number of subdomains Ns and the restriction operators Ri are in-
herited from the previous partitioning of the underlying discrete grid or
mesh. The local problems (involving matrix Ai in equation 12) are usu-
ally solved by variants of incomplete factorization methods (e.g. ILU(0)).
For well-conditioned problems, incomplete factorization methods are the
faster alternative regarding to overall wall-clock computing time.

• Iterative methods frequently stagnate when then global problem is ill-
conditioned and the local problems are treated with incomplete factoriza-
tions. In such cases, the local problems have to be solved either with and
inner iterative method or a full direct method (i.e. LU factorization). In
either case, as the size of the local subdomain increases, also do the time
required for obtaining the local solution. This is specially true when the
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local solver is based on a LU factorization. In order to employ a direct
method and maintaining the size of local problems manageable, local sub-
domains can be further partitioned at each processor in sub-subdomains.
This strategy degrades convergence, but can improve the overall solution
time.

• As the overlap increases, convergence rate improves; but computing, com-
munication and memory requirements increase. Ghost vector values have
to be gathered from and scattered to neighboring processors at each iter-
ation; matrix values have to be gathered from neighboring processors in a
setup phase, and the local problems to solve are larger (in the setup-phase
factorization as well as in the backward/forward solves at each iteration).
Then, as overlap increases, actual improvements in the total wall-clock
time for obtaining the final solution will depend upon the balance be-
tween better convergence rates versus the extra costs.

• Finally, for global problems of medium to large scale, as the number of pro-
cessors assigned to its solution increases, the parallel efficiency decreases.
Actually, this behavior is shared for any non-embarrassingly parallel algo-
rithm. As a rule of thumb, each processor have to be in charge of 50,000
to 100,000 unknowns (depending on computing and network hardware) to
achieve parallel speedup.

3. Materials and Methods

3.1. Hardware
Simulations were carried out using a Beowulf cluster Aquiles [28]. Its hard-

ware consists of 82 disk-less single processor computing nodes with Intel Pen-
tium 4 Prescott 3.0GHz 2MB cache processors, Intel Desktop Board D915PGN
motherboards, Kingston Value RAM 2GB DDR2 400MHz memory, and 3Com
2000ct Gigabit LAN network cards, interconnected with a 3Com SuperStack 3
Switch 3870 48-ports Gigabit Ethernet.

3.2. Software
All numerical simulations presented were performed within a Python pro-

gramming environment built upon MPI for Python [29, 30, 31], PETSc for
Python [32], and PETSc-FEM [33, 34]. PETSc-FEM is a parallel multi-physics
code primarily targeted to 2D and 3D finite elements computations on general
unstructured grids. PETSc-FEM is based on MPI and PETSc [35, 36, 37],
it is being developed since 1999 at the International Center for Numerical
Methods in Engineering (CIMEC), Argentina. PETSc-FEM provides a core
library in charge of managing parallel data distribution and assembly of resid-
ual vectors and Jacobian matrices, as well as facilities for general tensor algebra
computations at the level of problem-specific finite element routines. Addition-
ally, PETSc-FEM provides a suite of specialized application programs built on
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top of the core library but targeted to a variety of problems (e.g., compress-
ible/incompressible Navier–Stokes and compressible Euler equations, general
advective-diffusive systems, weak/strong fluid-structure interaction). In partic-
ular fluid flow computations presented in this article are carried out within the
Navier–Stokes module available in PETSc-FEM. This module provides the re-
quired capabilities for simulating mass transport and incompressible fluid flow
through a monolithic SUPG/PSPG [38, 39] stabilized formulation for linear fi-
nite elements. Electric Computations are carried out whith the Laplace’s and
the Poisson-Boltzmann modules.

4. Numerical Simulations

This section presents the results of numerical sumulation performed on two
study cases. The first case is an example of capillary zone electrophoresis (CZE)
in a whole (µ–TAS) geometry including electrodes and reservoirs. The second
case deals with electroosmotic flow in nanoscale channels. The values of the rel-
evant physical properties and constants employed in both cases are summarized
in table 1.

4.1. Capillary Zone Electrophoresis
Previous works related to numerical simulation of electroosmotic flow and

electrophoresis have restricted the problem domain to the microchannels by
supposing appropriate conditions for the electric potential, velocity field, and
concentrations at inlet and outlet regions. In this example, results from numeri-
cal simulations performed on a whole microfluidic system domain are presented.

The simulation domain is a a cross-shaped microchannel network with verti-
cal wire electrodes at reservoirs.The channel sections are trapezoidal, with shape
and dimensions as shown in figure 1.

Electrophoretic injection and separation processes are simulated in order
to determine potassium and sodium ion concentrations. During the injection
stage, potentials at the electrodes are selected in such a way that the intersection
region is filled with a precise sample volume to be analyzed. In the separation
stage, potentials at the electrodes are appropriately selected in order to achieve
different relative velocities for each specie, avoiding leakages at the injection
channels.

The complete simulations requires the solution of three subsidiary problems
involving charge, mass, momentum and species conservation equations described
in section 1. A tetrahedral mesh with 941056 elements was generated in order
to solve the problem. The electric fields are obtained through solving Poisson
equation (equation 3), with ρe = 0, for the potential and employing Dirichlet
boundary conditions at electrodes and homogeneous Neumann boundary condi-
tions at channels and reservoirs walls. To solve this equation conjugate gradient
was employed as iterative solver, and HYPRE BoomerAMG [40] as precondi-
tioner.
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Property/Constant Symbol Value Unit
density ρ 1000 kg/m3

viscosity µ 10−3 kg/m s
ionic valence z 1 –

bulk concentration c0 10−2 mol/m3

electrokinetic potential ζ −4 · 10−2 V
temperature T 300 K
gas constant R 8.31 J/mol K

Faraday constant F 96485 C/mol
permittivity ε 80× 8.85 · 10−12 F/m

sodium diffusivity DNa 1.34 · 10−9 m2/s
sodium mobility νNa 5.18 · 10−8 m2/V s

potassium diffusivity DK 1.96 · 10−9 m2/s
potassium mobility νK 7.58 · 10−8 m2/V s

Table 1: Physical Constants and Properties.

Figure 1: Geometry of the Microchannel Network.
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Fluid velocity was obtained by solving mass conservation equation 1 and
Navier–Stokes equation 2 in stationary mode. The slip velocity approximation
(equation 11) was employed as boundary condition at the channels walls

Finally, transport equation 4 was solved for the concentrations of Na+ and
K+ ions by employing the electric field and fluid velocity previously obtained.
This problem is transient; initial concentrations (at t = 0 s) were set to zero
everywhere except at one of the reservoirs.

Equations like 2 or 4 in high aspect ratio geometries, generates an ill-
conditioned problem, then, a domain decomposition technique is required to
obtain acceptable results (see next section). In solving equations 2 and 4 for the
present problem, additive Schwartz method was used as a left preconditioner,
with one layer of overlapping between subdomains, with a maximum size of
2000 unknowns in each subdomain. Flexible GMRes was employed as iterative
solver, and LU factorization was used in each subdomain.

Figure 2 shows sample distribution in the central region of the cross network,
previous to the separation process, and mesh details in the region near the
electrode.

Figure 3 shows concentration distributions of Na+ and K+ ions at some
moment (t = 15 s) during the separation stage.

4.2. A Model Problem for Additive Schwarz methods
This example explores the applicability of additive Schwarz methods to a

model problem of interest in nanoscale fluid dynamics applications. Consider
an aqueous solution of a simple fully dissociated symmetrical salt which flows
on a channel driven by the action of electrical forces originated from external
electric fields.

The channel has an L-shaped geometry with an horizontal and vertical
lengths of 3 µm and a cross-section of 0.4 µm × 1 µm. As the electric dou-
ble layer thickness (estimated through the Debye length, equation 10) is around
0.1 µm, the slip velocity approximation (equation 11) cannot be employed.

A Laplace potential was computed by solving equation 3 with ρe = 0, Dirich-
let boundary conditions of 0.5 V at the inlet and 0 V at the outlet, and ho-
mogeneous Neumann boundary conditions at the channel walls. A Poisson–
Boltzmann potential was computed by solving the nonlinear equation 9 with
Dirichlet boundary conditions of 20 mV (the electrokinetic potential) at the
channel walls and homogeneous Neumann boundary conditions at the channel
inlet and outlet. The solution for Poisson–Boltzmann potential is shown in
figure 4b. The Laplace and Poisson–Boltzmann potentials were added-up in
order to determine a total potential. Isolines of the total potential are shown in
figure 4c.

Finally, Navier–Stokes equations are solved by entering the electrical forces
as shown in equation 2. Electrical forces are determined from the total potential
and Poisson–Boltzmann potential through equations 7 and 8. Non-slip velocity
boundary conditions are imposed at channel walls, and homogeneous Dirichlet
boundary conditions are employed for pressure at the inlet and outlet. The
computed velocity magnitude is shown in figure 4d.
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Figure 2: Sample concentration (mol/m3)after the injection stage and mesh
detail in electrode zone.

Figure 3: Na+ and K+ ions concentrations (mol/m3) after separation stage.
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(a) geometry (b) Poisson–Boltzmann potential (V)

(c) total potential (V) (d) velocity magnitude (m/s)

Figure 4: Model Problem for ASM.
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The L-shaped channel domain was discretized with a tetrahedral mesh with
569791 nodes, 3483613 elements and 20025163 degrees of freedom. The rest
of this subsection explores the issues commented previously by applying the
additive Schwarz preconditioner to the model problem.

Although the problem at hand is essentially linear, it was solved as a full
nonlinear one employing two iteration of a standard Newton method. In all
the cases, the final (outer, nonlinear) residual norm was reduced by a factor of
around 10−6.

The linear systems at each nonlinear step were solved with GMRES(300)
(i.e. GMRES restarted at 300 iterations) by defining a fixed relative tolerance
of 10−4 for the reduction of the initial (inner, linear) residual norm.

The additive Schwarz method was employed as a left-preconditioner within
GMRES iterations. Being the global linear systems of saddle-point nature, they
are ill-conditioned. Incomplete factorizations methods cannot be practically
employed for the local problems, as this leads to GMRES stagnation. Thus,
the local problems were solved by employing full direct methods and aggressive
subdomain sub-partitioning at each processor. The sub-partitioning was per-
formed on the adjacency graph obtained from the local, diagonal part of the
global sparse matrix with the help of METIS [41] library.

In all test cases, wall-clock time measurements do not account for the time
required for evaluating and assembling residual vectors and Jacobian matrices,
but only for the time spent in solving the linear systems. Parallel efficiency was
computed by taking as reference the timings of the runs performed on the smaller
number of processes, i.e. Ep = (PminTPmin)/(pTp), where p = {Pmin, . . . , Pmax}
is the set of number of processes employed and Tp is the wall-clock time mea-
surement with p processes.

Problem was solved employing 15, 20, 25, 35 and 45 processors. Figures 5
shows wall-clock time measurements and parallel efficiency for the additive
Schwarz preconditioner with overlap zero. The optimal subdomain size seems
to be around 1500 unknowns. Clearly, as the number of processors increase
beyond some limit, the required wall-clock time for obtaining the solution do
not decrease but stagnates.

5. Conclusions

A 3D finite element model for the simulation of electrokinetic flow and trans-
port phenomena in microfluidic chips was presented. Two examples of interest
were succesfully solved using parallel calculations. First electrophoretic sepa-
ration of ions as a typical application of µ–TAS was modeled and solved in a
complete chip geometry. Then a model problem in nanofluidics was used to
confirm additive Schwarz methods aplicability and good performance in these
kind of problems. Time and parallel efficiency measured are comparable with
related works in the area.

Simulation tool presented seems to be a suitable way to model and desing
µ–TAS and others applications that involves electrokinetic flow and transport
in microfluidics.
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Figure 5: Additive Schwarz Preconditioning.
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