
COMPLETENESS OF MUCKENHOUPT CLASSES

AIMAR HUGO, CARENA MARILINA, IAFFEI BIBIANA

Abstract. In this note we prove that the Hausdorff distance between compact
sets and the Kantorovich distance between measures, provide an adequate
setting for the convergence of Muckenhoupt weights. The results which we
prove on compact metric spaces with finite metric dimension can be applied
to classical fractals.

1. Introduction

In this section we shall introduce the problem considered in this note through a
concrete example on the most classical fractal: the Cantor set. We shall also state
here the main result of this note.

Let us start by introducing some basic notation. Even when our general result
contained in Theorem 1.2 holds in quasi-metric spaces, the general theory of spaces
of homogeneous type developed by Maćıas and Segovia in [12], allows us to reduce
our environment to a somehow simpler situation. In this note (X, d) is a fixed given
compact metric space. Without loosing generality we assume that the d-diameter
of X is less than one. We shall also assume that (X, d) has finite metric (or As-
souad) dimension. This means that there exists a constant N such that no d-ball
in X with radius r > 0 contains more than N points of any r

2 -disperse subset of X.
It is well known, and perhaps the most important result of the theory of spaces of
homogeneous type, that the finiteness of the metric dimension is equivalent to the
existence of a doubling measure on the Borel subsets of X (see [15] and [16]).

Let us by start by a brief introduction of a distance on the family of all closed
probabilistic subspaces (Y, d, µ) of (X, d) is such a way that a sequence (Yn, dµn)
converges to (Y, d, µ) in that distance if and only if Yn tends to Y in the Hausdorff
sense and µn tends to µ in the weak star sense. This can be accomplished by adding
the Hausdorff distance between compact sets and the Kantorovich distance between
measures. We shall borrow from [4] the notation and basic results which we briefly
introduce for the sake of completeness.

Let K = {K ⊆ X : K 6= ∅, K compact}. With [A]ε we shall denote the ε-
enlargement of the set A ⊂ X; i.e. [A]ε =

⋃
x∈A Bd(x, ε) = {y ∈ X : d(y, A) < ε},

where Bd(x, ε) = {y ∈ X : d(x, y) < ε} and d(x,A) = inf{d(x, y) : y ∈ A}. Given
A and E two sets in K the Hausdorff distance from A to E is given by

dH(A,E) = inf{ε > 0 : A ⊆ [E]ε and E ⊆ [A]ε}.
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It is well known that (K, dH) is a complete metric space (see [10]).

On the other hand, the Kantorovich-Rubinstein distance on the set P(X) of all
the positive Borel probabilities µ (µ(X) = 1) is is defined as follows

dK (µ, ν) = sup
{∣∣∣∣

∫
f dµ−

∫
f dν

∣∣∣∣ : f ∈ Lip1(X)
}

,

where LipΛ(X) means that |f(x) − f(y)| ≤ Λ d(x, y) for every x and y ∈ X. The
metric space (P(X), dK) is complete, and the dK-convergence of a sequence is
equivalent to its weak star convergence to the same limit. We shall also use the
notation Lip(X) :=

⋃
Λ>0 LipΛ(X).

Set X = K × P, and given two elements (Yi, µi) of X , i = 1, 2, we define

dHK ((Y1, µ1), (Y2, µ2)) = dH(Y1, Y2) + dK(µ1, µ2) ,

so that (X , dHK) becomes a complete metric space. Let

E = {(Y, µ) ∈ X : supp µ ⊆ Y },
where supp µ denotes the support of µ, i.e. the complementary of the largest open
set G in X for which

∫
ϕdµ = 0 for every ϕ ∈ C(X), the space of all continuous

real valued functions on X, with supp ϕ ⊆ G, and supp ϕ is the closure of the set
{ϕ 6= 0}. We have that (E , dHK) is a complete metric subspace of (X , dHK).

Let A be a given real number with A ≥ 1. Let D(A) be the set of all couples
(Y, µ) in E such that the inequalities

0 < µ(Bd(y, 2r)) ≤ Aµ(Bd(y, r))

hold for every y ∈ Y and every r > 0. Such a couple (Y, µ) is usually called a space
of homogeneous type if we understand that the metric is the restriction of d to Y .
In [4] we prove the following elementary completeness type result for the doubling
condition. If {(Yn, µn) : n ∈ N} is a sequence in D(A) and (Yn, µn) dHK−−−→ (Y, µ),
then (Y, µ) ∈ D(A4).

We shall introduce the Muckenhoupt classes on a couple (Y, µ) ∈ D(A). Given
1 < p < ∞ and a couple (Y, µ) ∈ D(A), we say that a non negative, non trivial and
locally integrable function w on Y is a weight on (Y, µ). We shall say that a weight
w is an Ap = Ap(Y, µ) Muckenhoupt weight if there exists a constant C such that
the inequality (∫

B

w dµ

)(∫

B

w−
1

p−1 dµ

)p−1

≤ C (µ(B))p

holds for every d-ball B in Y . We shall also use the notation w ∈ Ap(Y, µ), and
we shall say that C is a Muckenhoupt constant for w. A classical reference for the
theory of Muckenhoupt weights in the Euclidean space is the book by José Garćıa
Cuerva and José Luis Rubio de Francia (see [11]).

Let us take a look at the Cantor set and its standard approximations in the
setting described in the preceding general framework. The natural environment for
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the special case of the Cantor set is the space X = [0, 1] with the usual distance.
Let us write

C =
∞⋂

n=1

Cn, Cn =
2n⋃

j=1

Ij
n, Ij

n = [aj
n, bj

n] ,

where Cn is the n-th step in the construction of the Cantor set. For each positive
integer n, set Yn = {bj

n : j = 1, 2, . . . , 2n}, in other words, Yn is the collection of
all the right points of each interval in Cn. Let µn be the discrete measure defined
on Yn by µn({x}) = 2−n for each x ∈ Yn. Let us notice that Yn can be obtained
by dividing by 3n all the non-negative integers whose expansion in basis 3 do not
contain the digit 2 and having at most n digits. So that each point x ∈ Yn can be
identified with an n-tuple (x1, x2, . . . , xn) where each xi is zero or one. With this
notation, following [5], define dn : Yn × Yn → R+ ∪ {0} by

dn(x, y) =
{

0, if x = y,
3−j , if xi = yi for every i < j and xj 6= yj .

It is easy to see that dn is a distance on Yn. Notice that for x ∈ Yn and j a positive
integer, we have

Bdn

(
x, 3−j

)
:= {y ∈ Yn : dn(x, y) < 3−j} = {y ∈ Yn : yi = xi, i = 1, 2, . . . , j} ,

hence

card
(
Bdn

(
x, 3−j

))
=

{
2n−j , j ≤ n,
1, j ≥ n.

So that

µn

(
Bdn

(
x, 3−j

))
=

{
2−j , j ≤ n,
2−n, j ≥ n.

Observe that given a positive integer n and x, y ∈ Yn, x 6= y, with dn(x, y) = 3−j ,
we necessarily have that

x− y =
n∑

i=j

3−i(xi − yi),

from which we obtain the inequalities

dn(x, y) ≤ |x− y| ≤ 3dn(x, y),

for every n and every x, y ∈ Yn. Then, if B(x, r) is the interval of length 2r centered
at x, we have

B(x, r) ∩ Yn ⊆ Bdn(x, r) ⊆ B(x, 3r) ∩ Yn,

for every n, every x ∈ Yn and every r > 0.
Then each (Yn, µn) belongs to D(A) with respecto to the usual distance for

A = 43. Also (Yn, µn) dHK−−−→ (C, µ), where µ is the Hausdorff measure of dimension
s = log 2/ log 3 on the Cantor set C.

Since the set Yn is finite and the measure µn is essentially counting, the basic facts
of harmonic analysis on the space of homogeneous type (Yn, | · |, µn) are somehow
trivial. In particular any positive function defined on Yn becomes a Muckenhoupt
weight belonging to every Ap(Yn, | · |, µn) class. So that interesting problems arise
only trying to obtain uniform bounds.

We start by searching for the possible values of α ∈ R for which the functions
wn(y) := |y|α = yα, y ∈ Yn, are Muckenhoupt Ap weights on (Yn, | · |, µn) uniformly
in n. Then, after a normalization to a probability measure of wndµn on Yn, we
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look at its weak limit µ supported on the Cantor set C. Doing this we recover for
fractional dimension the classical Euclidean fact: w(x) = |x|α belongs to Ap(Rn) if
and only if −n < α < n(p− 1) (1 < p < ∞).

For this sequence of weights wn = yα on the sequence of spaces of homogeneous
type (Yn, | · |, µn) we have the desired uniform Ap condition for an adequate interval
of values for α.

Proposition 1.1. For s = log 2
log 3 and −s < α < s(p − 1) there exists a constant

C = C(α) such that wn ∈ Ap(Yn, | · |, µn) with Muckenhoupt constant C for every
n ∈ N.

Proof. Let us fix α in the open interval (−s, s(p − 1)). We shall show that there
exists a constant C independent of n such that

(1)

(∫

B(x,r)

wn dµn

)(∫

B(x,r)

w
− 1

p−1
n dµn

)p−1

≤ C(µn(B(x, r)))p

for every n, every x ∈ Yn and every r > 0. Both integrals on the left hand side
of (1) involve positive or negative powers of the variable y ∈ Yn. So, let us start by
obtaining upper estimates for the integrals of these type of functions on B(x, r).

Notice first that for any β ∈ R we have that
∫

B(x,r)

yβ dµn(y) =
xβ

2n

for every 0 < r ≤ 3−n and every x ∈ Yn, since B(x, r) ∩ Yn = {x}. Let us
then assume that 3−n < r ≤ 1, and take an integer j such that 0 ≤ j ≤ n and
3−j < r ≤ 31−j . Now, as in the Euclidean case, we divide our analysis according to
the relative position of the “first point” in Yn, 3−n, and x with respect to the size
r of the given ball. Let us first assume that x ∈ Yn and 0 ≤ x − 3−n < 2r. Then,
for β ≥ 0 we have

∫

B(x,r)

yβ dµn ≤
∫

B(3−n,3r)

yβ dµn(y)

≤
∫

Bdn (3−n,32−j)

yβ dµn(y)

≤ 3(3−j)βµn(Bdn(3−n, 32−j))

= 3(3−j)β23µn(Bdn(x, 3−j−1))

≤ 3(3−j)β23µn(B(x, 3−j))

≤ 3(3−j)β23µn(B(x, r)).

On the other hand, for −s < β < 0 we have
∫

B(x,r)

yβ dµn(y) ≤
∫

Bdn (3−n,3−j+2)

yβ dµn(y)

=
3−nβ

2n
+

∫

Bdn (3−n,3−j+2)−{3−n}
(y − 3−n)β dµn(y)

=
3−nβ

2n
+

n−j+1∑

`=0

∫

3−`−j+1≤dn(3−n,y)<3−`−j+2
(y − 3−n)β dµn(y)
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≤ 3−nβ

2n
+ 3

n−j+1∑

`=0

∫

3−`−j+1≤dn(3−n,y)<3−`−j+2
dβ

n(y, 3−n) dµn(y)

≤ 3−nβ

2n
+ 3

n−j+1∑

`=0

3β(−`−j+1)2−`−j+2

≤ 3β(1−j)+122−j
∞∑

`=0

(
3−β

2

)`

≤ 2431+β 1
2− 3−β

3−βjµn(B(x, r)).

Then (∫

B(x,r)

wn dµn

)(∫

B(x,r)

w
− 1

p−1
n dµn

)p−1

=

(∫

B(x,r)

yα dµn

)(∫

B(x,r)

y−
α

p−1 dµn

)p−1

≤





24p−13α+p−1
(

2−3
2α

p−1

)p−1 µp
n(B(x, r)), 0 < α < s(p− 1),

µp
n(B(x, r)), α = 0,

23p+131−2α

2−3−α µp
n(B(x, r)), −s < α < 0.

In the case x− 3−n ≥ 2r we immediately have
∫

B(x,r)

yβ dµn ≤
{

(x + r)βµn(B(x, r)), if β ≥ 0,
(x− r)βµn(B(x, r)), if β < 0.

Since x ≥ 2r we have x+r
x−r ≤ 3. Then

(∫

B(x,r)

yα dµn

)(∫

B(x,r)

y−
α

p−1 dµn

)p−1

≤ 3|α|(µn(B(x, r)))p.

¤
Proposition 1.1 shows that the sequence of weights wn is uniformly in Ap of the

corresponding domain and measure. The question considered in this note is whether
or not from this uniform property on the approximating sequence it is possible to
deduce the Muckenhoupt condition for the limit weight on the limit measure space.
The main aim of this paper is to prove a general result in this direction which is
essentially contained in the next statement. A quantitative more precise version of
Theorem 1.2 is contained in Theorem 3.2.

Theorem 1.2. Let 1 < p < ∞ be given. Let {(Yn, µn) : n ∈ N} be a given sequence
in D(A) such that (Yn, µn) dHK−−−→ (Y, µ). Let {wn : n ∈ N} a sequence of weights for
which there exists a fixed constant C such that wn ∈ Ap(Yn, µn) with Muckenhoupt
constant C for each n, normalized in such a way that

∫
wn dµn=1 for each n. If

wndµn converges to dν in the weak star sense, then there exists a weight w on Y
such that dν = wdµ, and w ∈ Ap(Y, µ).
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Notice that from Theorem 1.2 and Proposition 1.1 we may conclude that for
s = log 2

log 3 and −s < α < s(p−1), the weight w(y) = yα belongs to Ap on the Cantor
set C with its natural Hausdorff measure µ. Let us point out that for this very
special example, since from the results in [13] the limit Cantor space (C, | · |, µ) is
an s-normal space of homogeneous type, it is possible to show that the only powers
of the distance to a fixed point in C which are Ap weights are those in the interval
(−s, s(p− 1)) (see [1]).

The key of our argument is to give an equivalent version of the Ap condition
using smooth mean values of Lipschitz functions instead of maximal operators, in
order to be able to apply the metric Kantorovich view of the weak star convergence
of measures.

In Section 2 we review some basic facts of Muckenhoupt’s theory on Ap-weights
and we obtain some reformulations of the Ap condition which are suitable to obtain
the proof of Theorem 1.2, which is given in Section 3.

2. Basic Muckenhoupt theory

The first basic result of the Muckenhoupt theory is the equivalence of the Ap

condition with the boundedness of the Hardy-Littlewood maximal operator on the
corresponding weighted Lp space. We shall state this equivalence in two separate
theorems for the general setting. The first one follows exactly the lines of the
Euclidean case (see [9] for example). The second can be found in [2] and is an
extension to spaces of homogeneous type of the technique in [8].

Theorem 2.1. Let (Y, d, µ) be a space of homogeneous type. Let 1 < p < ∞ and
let w be a weight in Y such that the Hardy-Littlewood maximal operator satisfies
the inequality ∫

|Mf |p w dµ ≤ C

∫
|f |pw dµ

for some constant C and every f ∈ L1
loc. Then w ∈ Ap(Y, d, µ).

Theorem 2.2. Let (Y, d, µ) be a space of homogeneous type and let w ∈ Ap for
some 1 < p < ∞. Then the Hardy-Littlewood maximal operator is bounded in
Lp(w). In other words

∫
|Mf |p w dµ ≤ C

∫
|f |pw dµ

for every function f ∈ L1
loc, where C depends only on the geometric constants, on

p and on the Muckenhoupt constant for w.

In both results M is the non centered Hardy-Littlewood maximal function de-
fined by taking mean values with respecto to µ over the family of d-balls on Y .

The boundedness on Lp(ν) of the Hardy-Littlewood maximal function defined
with respecto to the measure µ...

Theorem 2.3. Let (Y, d) be a compact metric space and let (Y, d, µ) be a space of
homogeneous type. Let ν be a Borel measure on Y which is positive and finite on



COMPLETENESS OF MUCKENHOUPT CLASSES 7

each d-ball of Y . If there exist 1 < p < ∞ and C > 0 such that the inequality

(2)
∫

Y

(
1

µ(Bd(x, r))

∫

Bd(x,r)

|f(y)| dµ(y)

)p

dν(x) ≤ C

∫

Y

|f(y)|p dν(y)

holds for every r > 0 and every f ∈ L1(Y, µ), then ν is a doubling measure on Y ,
ν is absolutely continuous with respect to µ, and the Radon-Nikodyn derivative of
ν with respect to µ is an Ap(Y, d, µ) weight.

Notice that the boundedness of the Hardy-Littlewood maximal operator with
respect to ν implies (2), hence the results of Theorem 2.3 are valid.

In the proof of Theorem 2.3 we shall use a powerful tool of real analysis which has
been constructed on spaces of homogeneous type by M. Christ in [7]: the “dyadic
cubes”. Given (Y, µ) ∈ D(A) for some A ≥ 1, for every j ∈ N ∪ {0} there exists a
finite initial interval K(j) such that for each (j, k) ∈ A := {(j, k) : j ∈ N ∪ {0}, k ∈
K(j)} there exist a point yj

k ∈ Y and an open set Qj
k satisfying, among many of

the basic properties of dyadic cubes of Rn, the following two which will be used in
the sequel:

(a) there exist constants a > 0, c > 0 and 0 < δ < 1 such that Bd(yk
j , aδj) ⊆

Qj
k ⊆ Bd(yk

j , cδj) for every (j, k) ∈ A;
(b) every bounded open subset of Y can be written, up to a set of µ-measure

zero, as a disjoint union of Christ’s cubes (see [3]).

Proof of Theorem 2.3. Fix a d-ball B = B(x0, R) on Y . Let E be a Borel subset
of B. Notice that since for x ∈ B and r = 2R, from the doubling property for µ we
have that

(
µ(E)
µ(B)

)p

≤
(

µ(B(x, r))
µ(B)

)p
(

1
µ(B(x, r))

∫

B(x,r)

XE dµ

)p

≤ C1

(
1

µ(B(x, r))

∫

B(x,r)

XE dµ

)p

.

Hence from (2) with f = XE we have

ν(B)
(

µ(E)
µ(B)

)p

≤ C1

∫

B

(
1

µ(B(x, r))

∫

B(x,r)

XE dµ

)p

dν(x)

≤ C1

∫

Y

(
1

µ(B(x, r))

∫

B(x,r)

XE dµ

)p

dν(x)

≤ C1Cν(E)
= C2ν(E).

The inequality obtained for E ⊆ B can be rewritten as

(3)
µ(E)
µ(B)

≤ C
1/p
2

(
ν(E)
ν(B)

)1/p

.

Taking as E the ball with the same center of B and half its radius we obtain the
first claim in the statement of Theorem 2.3, i.e., ν is also a doubling measure on
(Y, d).
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From the doubling property for µ and the inner and outer control of the dyadic
sets by the family of d-balls, we immediately conclude an inequality which is is
similar to (3) with Christ’s sets instead of balls. In fact, let Q be a dyadic set and
let B and B̃ two concentric balls of comparable radii such that B ⊆ Q ⊆ B̃, hence,
for each measurable set E in Q, we have the inequalities

µ(E)
µ(Q)

≤ µ(E)
µ(B)

≤ A
µ(E)

µ(B̃)

≤ AC
1/p
2

(
ν(E)

ν(B̃)

)1/p

≤ AC
1/p
2

(
ν(E)
ν(Q)

)1/p

.

The last inequality shows that µ(E)/µ(Q) < A(C2α)1/p whenever ν(E)/ν(Q) < α
and E is a measurable subset of Q, for 0 < α < 1. Applying this remark to Q−E
instead of E we can have that

(4)
µ(E)
µ(Q)

≤ 1−A(C2α)1/p implies
ν(E)
ν(Q)

≤ 1− α.

for 0 < α < min{1, /C2A
p}. In fact, ν(E)

ν(Q) > 1− α implies ν(Q−E)
ν(Q) < α, so that

µ(Q− E)
µ(Q)

< A(C2α)1/p,

which implies
µ(E)
µ(Q)

> 1−A(C2α)1/p.

Let us fix such an α and let us write β = 1 − A(C2α)1/p. Notice that 0 < β < 1.
Let us assume that ν is not absolutely continuous with respect to µ. Assume then
that E is a Borel set in Y such that µ(E) = 0 but ν(E) > 0. Since ν is regular,
there exists a open set G containing E such that ν(G) < ν(E)/(1−α). Since both
measures µ and ν are doubling, the boundaries of the dyadic sets are sets of µ and
ν zero measures. In particular, this fact allows to write G =

⋃
j Qj ∪ N , with Qj

dyadic sets and N a set of µ and ν measures equal to zero. Hence ν(G) =
∑

j ν(Qj).

On the other hand, since 0 = µ(E ∩ Qj) for every j, we have that µ(E∩Qj)
µ(Qj)

≤ β.
So that from (4) we get that ν(E ∩ Qj) ≤ (1 − α)ν(Qj). Adding in j ∈ N we get
ν(E) ≤ (1 − α)ν(G), which contradicts the choice of G. So that ν ¿ µ. Let us
write w(x) to denote the Radon-Nikodym derivative of ν with respect to µ. For the
proof of the last statement, namely, that w ∈ Ap(Y, d, µ), we only have to observe
that the standard proof of Theorem 2.1 only requires the current hypothesis (2) of
our Theorem 2.3. ¤

In the last part of this section we aim to get a version for Ap suitable for the
weak star convergence of measures. In this direction we shall prove the following
result.
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Theorem 2.4. Let (Y, d) be a compact metric space and let (Y, d, µ) be a space of
homogeneous type. Let ν be a Borel measure on Y which is positive and finite on
each d-ball of Y . Let 1 < p < ∞ be given. Then ν = w dµ with w ∈ Ap(Y, d, µ) if
and only if there exists a constant C > 0 such that the inequality

(5)
∫ (

1∫
ϕx,r(y) dµ(y)

∫
|f(y)|ϕx,r(y) dµ(y)

)p

dν(x) ≤ C

∫
|f(y)|p dν(y)

holds for every f ∈ Lip(Y ) and for every r > 0, where ϕx,r(y) = ϕ
(

d(x,y)
r

)
and

ϕ is the continuous function on R+ that takes the value one in [0, 1], vanishes in
[2,∞), and is linear in the interval [1, 2].

In order to prove the above result, we shall need to prove the simultaneous
density of the class of Lipschitz functions on the spaces Lp(µ) and Lp(ν).

Lemma 2.5. Let (Y, d) be a compact metric space. Assume that µ and ν are two
finite Borel measures on Y . Then for every 1 ≤ p, q < ∞ we have that Lip(Y ) is
dense in Lp(µ) ∩ Lq(ν).

Proof. Since µ and ν are finite, they are regular (see [6] for example). Moreover,
since Y is compact we have that for any Borel set E in Y and every ε > 0 there
exist two open sets G1 and G2 containing E, and two compact sets K1 and K2

contained in E such that we have µ(G1 − K1) < ε and ν(G2 − K2) < ε. Taking
G = G1 ∩G2, K = K1 ∪K2 and g defined as

g(x) =
d(x,Gc)

d(x,Gc) + d(x,K)
we have that g is a Lipschitz function, and that∫

|g −XE |pdµ ≤ 2pµ(G−K) < 2pε

and ∫
|g −XE |qdν ≤ 2pν(G−K) < 2qε.

With the standard arguments we obtain the desired result. ¤
Proof of Theorem 2.4. Assume first that dν = wdµ with w ∈ Ap(Y, d, µ). For each
x ∈ Y , r > 0 and f ∈ Lip(Y ), we have

1∫
ϕx,r(y) dµ(y)

∫
|f(y)|ϕx,r(y) dµ(y) ≤ 1

µ(Bd(x, r))

∫

Bd(x,2r)

|f(y)| dµ(y)

≤ A
1

µ(Bd(x, 2r))

∫

Bd(x,2r)

|f(y)| dµ(y)

≤ AMf(x),

where A is the doubling constant for µ. On the other hand, from Theorem 2.2 we
have that ∫

|Mf |pw dµ ≤ C

∫
|f |pw dµ

for some constant C. Thus∫ (
1∫

ϕx,r(y) dµ(y)

∫
|f(y)|ϕx,r(y) dµ(y)

)p

w(x) dµ(x) ≤ ApC

∫
|f |pw dµ,

as desired.
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In order to show that (5) implies the absolute continuity of ν with respect to
µ an that dν

dµ is an Ap(Y, d, µ) weight, using Theorem 2.3, we only have to prove
that (5) for every Lipschitz function implies (2) for every function f in L1(Y, µ).
It is easy to see, using again the doubling condition for µ, that (5) for Lipschitz
functions implies (2) for Lipschitz functions. In fact

∫ (
1

µ(Bd(x, r))

∫

Bd(x,r)

|g(y)| dµ(y)

)p

dν(x)

≤ Ap

∫ (
1∫

ϕx,r(y) dµ(y)

∫
ϕx,r(y)|g(y)| dµ(y)

)p

dν(x)

≤ ApC

∫
|g|pdν

for every r > 0 and every function g in Lip(Y ).
Notice that, from the monotone convergence theorem, in order to prove (2) for

general f it is enough to prove it for functions belonging to L∞(µ) ∩ L∞(ν). In
fact, taking

hn =
{

f if |f | ≤ n,
n if |f | > n,

the inequalities
∫ (

1
µ(Bd(x, r))

∫

Bd(x,r)

|hn(y)| dµ(y)

)p

dν(x) ≤ C̃

∫
|hn(y)|p dν(y)

for every n ∈ N, imply the same inequality with f instead of hn. Let us assume then
that f ∈ L∞(µ) ∩ L∞(ν). Let {gk} be a sequence of Lipschitz functions provided
by Lemma 2.5 such that gk → f both in the Lp(µ) and Lp(ν) norms. Set, for fixed
r > 0,

Gr
k(x) =

1
µ(Bd(x, r))

∫

Bd(x,r)

|gk| dµ

and
F r(x) =

1
µ(Bd(x, r))

∫

Bd(x,r)

|f | dµ.

Notice that
∫
|Gr

k − F r|p dν ≤
∫ (

1
µ(Bd(x, r))

∫

Bd(x,r)

|gk(y)− f(y)|p dµ(y)

)
dν(x)

≤ ‖gk − f‖p
Lp(µ)

∫
dν(x)

µ(Bd(x, r))
.

On the other hand, the last integral is finite since ν(Y )∞ and, for r > 0 fixed,
µ(Bd(x, r)) as a function of x is bounded below. In fact, let {Bd(xi, r/2) : i =
1, . . . , I} be a finite covering of the compact space Y by d-balls of radius r/2.
Hence, given x ∈ Y there exists i ∈ {1, . . . , I} such that d(x, xi) < r/2, so that
Bd(x, r) ⊇ Bd(xi, r/2). Thus

µ(Bd(x, r)) ≥ min
i∈{1,...,I}

Bd(xi, r/2) > 0.

Finally, from the above remarks we get

‖F r‖Lp(ν) ≤ ‖Gr
k‖Lp(ν) + ‖Gr

k − F r‖Lp(ν)
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≤ C̃‖gk‖Lp(ν) + ‖Gr
k − F r‖Lp(ν)

≤ C̃‖f‖Lp(ν) + C̃‖gk − f‖Lp(ν) + ‖Gr
k − F r‖Lp(ν).

Letting k →∞ we obtain (2) for bounded functions. ¤

3. Proof of Theorem 1.2

Recall that (X, d) is a compact metric space with finite Assouad metric dimen-
sion. Let (Y, µ) ∈ D(A) and let ν be a Borel measure on Y such that (Y, ν) ∈ E .
For 1 < p < ∞ we shall write ν ∈ Ap(Y, µ) if ν satisfies (5) for some constant C,
for every r > 0 and every f ∈ Lip(X). In the sequel we shall say that such constant
C is a Muckenhoupt constant for ν. Notice that this definition is not a priori
the characterization of Ap(Y, µ) given in Theorem 2.4, since there f ranges on the
space Lip(Y ) and here on the space Lip(X). Since both spaces Lip(X) and Lip(Y )
are defined with respect to the same distance d, the trace on Y of every function
in Lip(X) belongs to Lip(Y ). On the other hand, since X has finite metric dimen-
sion, the basic covering lemma used to generalize the Whitney extension method
for Lipschitz function, holds. This fact proves that (5) holds for every f ∈ Lip(X)
if and only if (5) holds for every f ∈ Lip(Y ). So that ν ∈ Ap(Y, µ) if and only
if ν ¿ µ and w = dν

dµ ∈ Ap(Y, µ). For the sake of completeness let us state the
extension lemma and briefly sketch the idea of the proof that in the Euclidean case
can be found in [14] (see [1] for the general setting).

Lemma 3.1. Let (X, d) be a compact metric space with finite Assouad metric
dimension. Let Y be a given proper subset of X. Then there exists a linear and
continuous extension operator from Lip(Y ) to Lip(X).

Set G = X − Y . Let W = {Bk} be a Whitney covering of balls for G, and let
{φk : k ∈ N} be an adequate partition of unity associated to W. Given a Lipschitz
function f on Y , an extension f̃ of f to X is

f̃(x) =
{

f(x) if x ∈ Y ;∑
k f(yk)φk(x) if x ∈ G,

where {yk} is any sequence in Y such that yk belongs to a fixed dilation of Bk. The
function f̃ has the required properties.

Theorem 1.2 will be a consequence of the following quantitative more precise
statement.

Theorem 3.2. Let 1 < p < ∞ be given. Let {(Yn, µn) : n ∈ N} be a given sequence
in D(A) such that (Yn, µn) dHK−−−→ (Y, µ). Let {νn : n ∈ N} be a sequence of measures
such that νn ∈ Ap(Yn, µn) with Muckenhoupt constant C for every n. If νn

w∗−−→ ν,
then ν ∈ Ap(Y, µ) with the same Muckenhoupt constant C.

Hence Theorem 1.2 is a consequence of Theorems 3.2 and 2.4. Notice also that
when Yn = Y and µn = µ for every n ∈ N, the result of Theorem 3.2 is the
completeness of the class Ap(Y, µ; C) of those Ap(Y, µ) measures with Muckenhoupt
constant C. Hence any contractive mapping on Ap(Y, µ; C) with respect to the
distance dK , has a fixed point in Ap(Y, µ; C). Let us also observe that without the
hypothesis (Yn, µn) ∈ E contained in the definition of Ap(Yn, µn) the result does
not hold. In fact, it is enough to take X = [0, 1], d the usual distance, dµ = dx the
Lebesgue measure, Yn = X, dµn = dµ = dx for each n, and dνn = dx

n .
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Proof of Theorem 3.2. Given f ∈ Lip(X), r > 0, x ∈ X and n ∈ N ∪ {∞}, let us
write Mnf(x, r) to denote the smooth mean value

Mnf(x, r) =
1∫

ϕx,r(y) dµn(y)

∫
|f(y)|ϕx,r(y) dµn(y),

when
∫

ϕx,r(y) dµn(y) > 0. If
∫

ϕx,r(y) dµn(y) = 0 we define Mnf(x, r) = 0. Here
we are using the notation µ∞ for µ. We have to prove that

(6)
∫

(M∞f(x, r))p
dν(x) ≤ C

∫
|f(y)|p dν(y),

where C is a uniform Muckenhoupt constant for the whole sequence {νn : n ∈ N}.
In order to prove (6), it is enough to show that for every ε > 0 there exists

N = N(ε, r, f) ∈ N such that for every n ≥ N the inequality

(7)
∫

(M∞f(x, r))p
dνn(x) ≤ ε + C

∫
|f(y)|p dνn(y)

holds. In fact, once (7) is proved, since |f |p is continuous on X, the weak con-
vergence of νn to ν shows that the right hand side tends to ε + C

∫ |f |p dν as
n → ∞. On the other hand, even when (M∞f(x, r))p could be discontinuous on
X, it is certainly continuous on [Y ]r/4, the r/4-enlargement of Y , since in this
region we have that M∞f(x, r) is the quotient of the two continuous functions∫ |f |ϕx,r dµ and

∫
ϕx,r dµ. Notice that the last one is positive because ϕ is one on

some small ball B centered at a point of Y , and since µ is a doubling measure we
have 0 < µ(B) ≤ ∫

ϕx,r dµ. Also the Hausdorff convergence of Yn to Y implies that
for n large enough Yn ⊆ [Y ]r/8. Hence after a continuous extension to the whole
space X of the restriction of M∞f(x, r) to the closure of [Y ]r/8, we can also take
limit as n →∞ to the left hand side of (7) and use again the weak star convergence
of νn to ν in order to obtain (6), except for an arbitrarily small ε added to its right
hand side.

Let us proceed to prove (7). Notice that to achieve this goal it is enough to
show that for each r > 0 and each f ∈ Lip(X), the sequence Mnf(x, r) converges
uniformly to M∞f(x, r) on [Y ]r/4. In fact, we have that for each ε > 0 there exists
N which could depend on f , r and ε but not on x ∈ [Y ]r/4, such that

∫
(M∞f(x, r))p

dνn(x) ≤
∫
|(M∞f(x, r))p − (Mnf(x, r))p| dνn(x)

+
∫

(Mnf(x, r))p
dνn(x)

≤ ε +
∫

(Mnf(x, r))p
dνn(x),

for every n ≥ N . Now, since νn ∈ Ap(Yn, µn; C), we have (7).
In order to prove the uniform convergence of Mnf(·, r) to M∞f(·, r) on [Y ]r/4,

notice that since
∫

ϕx,r dµ > 0 on the closure of [Y ]r/4, we only have to prove the
uniform convergence of

∫ |f(y)|ϕx,r(y) dµn(y) to
∫ |f(y)|ϕx,r(y) dµ∞(y) on [Y ]r/4

for every f ∈ Lip(X). In fact, since
∫

ϕx,r dµ is positive and continuous on the
compact [Y ]r/4, then it has a positive lower bound c. So that for n large enough
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we have that Yn ⊆ [Y ]r/4 and that
∫

ϕx,r dµn > c/2, hence

|Mnf(x, r)−M∞f(x, r)|

≤ 1∫
ϕx,r dµn

∣∣∣∣
∫
|f |ϕx,r dµn −

∫
|f |ϕx,r dµ

∣∣∣∣

+
∫ |f |ϕx,r dµ(∫

ϕx,r dµn

) (∫
ϕx,r dµ

)
∣∣∣∣
∫

ϕx,r dµn −
∫

ϕx,r dµ

∣∣∣∣

≤ 2
c

∣∣∣∣
∫
|f |ϕx,r dµn −

∫
|f(y)|ϕx,r dµ

∣∣∣∣ +
2

∫ |f | dµ

c2

∣∣∣∣
∫

ϕx,r dµn −
∫

ϕx,r dµ

∣∣∣∣ ,

which tends to zero as n →∞ uniformly on [Y ]r/4.
Let us finally to prove the uniform convergence of

∫ |f |ϕx,r dµn to
∫ |f |ϕx,r dµ∞

on [Y ]r/4 for every f ∈ Lip(X). Precisely this is the main point of the use Lips-
chitz functions in order to test the Muckenhoupt condition. If f ∈ Lip(X), there
exists Λ > 0 such that f ∈ LipΛ(X). On the other hand, for x and r fixed
ϕx,r ∈ Lip1/r(X). Hence gx,r(y) = |f(y)|ϕx,r(y) belongs to Lip 1

r ‖f‖∞+Λ(X), where
‖f‖∞ = supy∈X |f(y)|. From the very definition of dK and the weak star conver-
gence of µn to µ we have

sup
x∈X

∣∣∣∣
∫

gx,r(y) dµn(y)−
∫

gx,r(y) dµ∞(y)
∣∣∣∣ ≤

(
1
r
‖f‖∞ + Λ

)
dK(µn, µ∞) −−−−→

n→∞
0.

In other words,
∫ |f |ϕx,r dµn converges uniformly to

∫ |f |ϕx,r dµ∞ on [Y ]r/4. ¤
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