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Abstract. We are interested in the behavior of the dynamical system gen-
erated by successive applications of Hutchinson similitudes starting from a
metric measure space. We prove that, in the case of families of similitudes
with the same contraction ratio, even when no point of the orbit is a doubling
space, a gradual doubling property is taking place and the limit point recovers
the homogeneity property.

Introduction

Throughout this paper (X, d) shall always be a compact metric space. Given
a finite set {φi : X → X , i = 1, . . . , M} of continuous functions on X and a

probability sequence {p1, p2, . . . , pM} (i.e. 0 < pi < 1 and
∑M

i=1 pi = 1), we define
two special mappings. First, given Y ∈ K, the family of all closed subsets of X , we

consider T1Y =
⋃M

i=1 φi(Y ). Second, given µ ∈ P , the set of all probability Borel
measures on X , we define T2µ = µ′ with

µ′(B) =
M
∑

i=1

piµ
(

φ−1
i (B ∩ φi(Y ))

)

,

for every Borel subset B of X . Set T : K × P → K × P to denote the application
T (Y, µ) = (T1Y, T2µ). Following the standard notation (see [6],[5]) we shall say that
{φ1, . . . , φM} is an iterated function system (IFS) when each φi is a contraction on
X , i.e. when there exist a1, a2, . . . , aM > 1 such that

d(φi(x), φi(y)) ≤ 1

ai
d(x, y)

for every x, y ∈ X .
The results in [8] show that under the open set condition for the IFS the limit set

(attractor) equipped with the invariant measure and the usual Euclidean distance,
is a normal space of homogeneous type. In other words, the measure of a ball of
radius r less than the diameter of the attractor, is comparable to a power of r.

The invariant measure can be obtained also as the limit of the iteration of T2

starting at any measure in P . In [2] some sufficient conditions, in terms of separation
properties of the IFS, are given in order to have the uniform doubling along the
whole orbit starting at any doubling space. Also in [2] the authors show examples
proving that the doubling property is generally not preserved by the iteration of T .
In other words, it may happen that no point of the orbit generated by a contraction
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is a space of homogeneous type, even when the starting point, and the limit point,
have both the doubling property.

Since under the assumptions in [8] the limit space is doubling, no matter wether
or not the initial point is a space of homogeneous type, the question of how suddenly
appears the doubling property of the limit seems natural.

In this note we prove that in a precise sense, and in a particular case of similitudes
on metric space, the elements of Hutchinson orbits become more and more doubling
as the step of the iteration grows.

The proof of our main result, Theorem 3.3, is based on the construction given
in Section 2 of discrete approximations to the attractor. There we prove that
typically the orbit starting at ({x0}, δx0

) is a sequence of uniformly normal, and
hence doubling, metric measure spaces.

In the first section we introduce the basic notation and definitions. We also
state as a lemma some elementary properties of IFS. In Section 2 we consider the
orbits starting from a mass point space, defined by a finite family of contractive
similitudes, and we prove the uniform normality, and hence doubling, for the whole
orbit. In Section 3 we search for gradual improvement for the doubling property of
the orbit as the iteration step increases.

1. Notation and basic results

As we said in the introduction, (X, d) is a given compact metric space. We shall
use Bd(x, r) to denote the ball {y ∈ X : d(x, y) < r}, r > 0.

Let K = {K ⊆ X : K 6= ∅, K compact}. With [A]ε we shall denote the ε-
enlargement of the set A ⊂ X ; i.e. [A]ε =

⋃

x∈A Bd(x, ε) = {y ∈ X : d(y, A) < ε}.
Here d(x, A) = inf{d(x, y) : y ∈ A}. Given A and B two sets in K the Hausdorff
distance from A to B is given by

dH(A, B) = inf{ε > 0 : A ⊆ [B]ε and B ⊆ [A]ε}.
Let us now introduce the Kantorovich-Hutchinson distance on the set of all Borel

regular probability measures on the quasi-metric space (X, d). Let

P = {µ : µ is a positive Borel measure on X and µ(X) = 1},
and let C(X) be the space of continuous real valued functions on X . Let Lip1 be
the space of all Lipschitz continuous functions defined on X with Lipschitz constant
less than or equal to one, i.e. f ∈ Lip1 if and only if |f(x) − f(y)| ≤ d(x, y) for
every x and y ∈ X .

Since (X, d) is compact, dK (µ, ν) = sup
{∣

∣

∫

f dµ −
∫

f dν
∣

∣ : f ∈ Lip1

}

gives a
distance on P such that the dK-convergence of a sequence is equivalent to its weak
star convergence to the same limit (see [5]).

We are now in position to describe the metric on X = K × P . Given two
elements (Yi, µi) of X , i = 1, 2, define

δ ((Y1, µ1), (Y2, µ2)) = dH(Y1, Y2) + dK(µ1, µ2) ,

so that (X , δ) becomes a complete metric space. Let

E = {(Y, µ) ∈ X : supp(µ) ⊆ Y }
In [1] the authors prove that (E , δ) is a complete metric space.
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Next, following Hutchinson ([6]), we introduce the basic facts regarding iterated
function systems acting on a metric space. An iterated function system (IFS) Φ is
a finite family Φ = {φ1, . . . , φM} of contractions on (X, d). This means that there
exist a1, a2, . . . , aM > 1 such that

d(φi(x), φi(y)) ≤ 1

ai
d(x, y)

for every x, y ∈ X . Set amin := mini ai.

Given an IFS Φ = {φ1, . . . , φM}, let T : X → X the application defined by
T (Y, µ) = (T1Y, T2µ) = (Y ′, µ′), where

Y ′ =

M
⋃

i=1

φi(Y ),

and

µ′(B) =

M
∑

i=1

piµ
(

φ−1
i (B ∩ φi(Y ))

)

,

for a given probabilistic sequence {pi : i = 1, . . . , M} (i.e. 0 < pi < 1 and
∑M

i=1 pi = 1) and every Borel subset B of Y ′. This transformation T is called
the mapping induced by Φ associated with the probabilities {pi}. As usual, it is
easy to see that T is a contractive on (X , δ) with contraction ratio 1/amin, and
that E is invariant under T .

With our notation we have that T1 is a contraction on K and from the complete-
ness of (E , δ) and the Banach fixed point theorem we obtain, as in Theorem 2.6
in [5], a fixed point Y∞ for T1 which is the only compact set in X satisfying

Y∞ =

M
⋃

i=1

φi(Y∞).

On the other hand T2 is a contraction on P and we obtain, as in Theorem 2.8 in [5],
a fixed point µ∞ for T2 which is the only probability Borel measure supported in
Y∞ such that

µ∞(B) =

M
∑

i=1

piµ∞

(

φ−1
i (B ∩ φi(Y ))

)

,

for every Borel set B.

Given an IFS Φ = {φ1, . . . , φM} and i = (i1, i2, . . . , ik) ∈ {1, . . . , M}k, we denote
with φi the composition φik

◦φik−1
◦ · · · ◦φi2 ◦φi1 . Then for any subset E of X we

have

φi(E) =
(

φik
◦ φik−1

◦ · · · ◦ φi2 ◦ φi1

)

(E),

and

φ−1
i (E) =

(

φ−1
i1

(

φ−1
i2

(

. . .
(

φ−1
ik−1

(

φ−1
ik

(E)
)

))))

.
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We say that an IFS {φ1, . . . , φM} satisfies the open set condition (OSC) if there
exists a non-empty bounded open set U ⊂ X such that

M
⋃

i=1

φi(U) ⊆ U,

and φi(U) ∩ φj(U) = ∅ if i 6= j. We shall say that U is a set for the OSC for Φ.

Now we shall state, and for the shake of completeness, prove some basic results
about IFS which we shall need later.

Lemma 1.1. Let Φ = {φ1, . . . , φM} be an IFS with the OSC and such that each
φi is one to one. Then, with U an open set for the OSC, we have

(a) if i = (i0, i
′), φi(U) ⊆ φi′(U);

(b) if i, j ∈ {1, 2, . . . , M}k and i 6= j, φi(U) ∩ φj(U) = ∅;
(c) if i 6= (i0, i

′), φi(U) ∩ φi′(U) = ∅;
(d) for any fixed x0 ∈ U and each positive integer n, we have that

card (φℓ(U) ∩ Xn) = Mn−k

for every k ≤ n and every ℓ ∈ {1, 2, . . . , M}k, where

Xn =
{

φj(x0) : j ∈ {1, 2, . . . , M}n
}

.

Proof. To prove (a), let i′ = (i1, i2, . . . , ik) and i = (i0, i
′). Since φi0(U) ⊆ U , we

have that

φi(U) = (φik
◦ · · · ◦ φi1)(φi0 (U)) ⊆ (φik

◦ · · · ◦ φi1 )(U) = φi′(U).

In order to prove (b), fix i = (i1, i2, . . . , ik) and j = (j1, j2, . . . , jk) such that
i 6= j. Let ℓ be the largest index satisfying jℓ 6= iℓ. So that jm = im for every
m > ℓ, and then

φi(U) = (ϕ ◦ φiℓ
◦ · · · ◦ φi1)(U),

φj(U) = (ϕ ◦ φjℓ
◦ · · · ◦ φj1)(U),

where ϕ = φik
◦ · · · ◦ φiℓ+1

= φjk
◦ · · · ◦ φjℓ+1

. From the OSC we have

(φiℓ−1
◦ · · · ◦ φi1)(U) ⊆ U and (φjℓ−1

◦ · · · ◦ φj1)(U) ⊆ U.

Hence
φi(U) ⊆ ϕ(φiℓ

(U)),

φj(U) ⊆ ϕ(φjℓ
(U)).

Since φiℓ
(U)∩ φjℓ

(U) = ∅ and ϕ is one to one, we have ϕ(φiℓ
(U))∩ϕ(φjℓ

(U)) = ∅,
which implies (b).

To see (c) let i = (i0, i1, . . . , ik) and i′ = (j1, j2, . . . , jk) such that i′ 6= (i1, i2, . . . , ik).
Since

φi(U) = (φik
◦ · · · ◦ φi1 ◦ φi0)(U) ⊆ (φik

◦ · · · ◦ φi1)(U),

from (b) we have that φi(U) ∩ φi′(U) = ∅.
Finally let us fix two positive integers n and k with k ≤ n, and let ℓ =

(ℓ1, ℓ2, . . . , ℓk) ∈ {1, 2, . . . , M}k. If x ∈ φℓ(U) ∩ Xn, (c) implies that x = φi(x0)
for some i = (i1, i2, . . . , in−k, ℓ). Then card (φℓ(U) ∩ Xn) ≤ Mn−k. On the other
hand, from (a) we have that if j is any n-tuple of the type (j1, j2, . . . , jn−k, ℓ), then
φj(x0) ∈ φj(U) ∩ Xn. Also we have that φi(x0) 6= φj(x0) for every i = (i′, ℓ),

j = (j′, ℓ), with i′, j′ ∈ {1, 2, . . . , M}n−k, i′ 6= j′. Then card (φℓ(U) ∩ Xn) ≥
Mn−k. �
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In the last part of this section we introduce the notions of doubling and normality
of measures on a metric space.

Given (Y, µ) ∈ E , we say that (Y, µ) is a space of homogeneous type (s.h.t.), or
that µ is a doubling measure on Y if there exists a constant A ≥ 1 such that the
inequalities

0 < µ(Bd(y, 2r)) ≤ Aµ(Bd(y, r))

hold for every y ∈ Y and r > 0. We shall write (Y, µ) ∈ D(A) to keep record of the
quantitative parameter of the doubling property.

Given a metric space (Y, d), a measure µ on Y and a constant β > 0, the
space (Y, µ) is said to be β-normal provided that there exist positive and fi-
nite constants C1 and C2, and constants 0 < K1 ≤ 1 ≤ K2 < ∞ such that if
K1µ({y}) < rβ < K2µ(Y ), then C1r

β ≤ µ(Bd(y, r)) ≤ C2r
β . We shall write N (β)

to denote the set of all couples (Y, µ) ∈ E which are β-normal spaces.

The relationship between normal spaces and spaces of homogeneous type is con-
sidered for the first time in [7]. There Maćıas and Segovia give an explicit construc-
tion of a quasi-metric on a space of homogeneous type in such a way that the new
structure becomes a 1-normal space with the same topology as the original. It is
also a known fact that each β-normal space is a space of homogeneous type and
that the doubling constant A depends only on K1, K2, C1, C2 and β.

Let us observe that a measure can be doubling but not normal. The examples can
even be obtained in the interval [0, 1] for measures that are absolutely continuous
with respect to Lebesgue measure. In fact Lebesgue measure is 1-normal on the
interval [0, 1] and, dµ(x) = w(x)dx with w(x) = x−1/2 is a doubling measure, but
µ is not β-normal for any β > 0. This is a consequence of the fact that, for small

ε > 0,
∫ ε

0
w dx ≃ √

ε while
∫ 1

1−ε w dx ≃ ε.

2. Uniform normality on orbits starting at a mass points

Let Φ = {φ1, . . . , φM} be a given IFS on (X, d), and let T be the induced map-
ping. With OT (Y0, µ0) we shall denote the orbit {T n(Y0, µ0) : n ∈ N0} generated
by successive application of T to the initial space (Y0, µ0).

A metric space (X, d) has finite metric (or Assouad) dimension if there exists
a constant N ∈ N, called a constant for the Assouad dimension of X , such that
no ball of radius 2r contains more than N points of any r-disperse subset of X .
By r-disperse we mean that the distance between two different points of the set is
larger than or equal to r > 0. Then every r-disperse subset of X has at most Nm

points in each ball of radius 2mr, with m a positive integer (see [4] and [3]).

The next result shows that the orbit under T of a mass point is uniformly normal
for contractive similitudes with the same contraction ratio on a metric space with
finite metric dimension.

Theorem 2.1. Let (X, d) be a metric space with finite metric dimension. Let
Φ = {φi : i = 1, . . . , M} be a family of contractive similitudes on X with the OSC,
such that

d (φi(x), φi(y)) =
1

a
d(x, y)
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for every x, y ∈ X and every 1 ≤ i ≤ M , where a > 1. Let T be the contractive
mapping induced by Φ on X , and let β = loga M . If b > 0 and U is a set for
the OSC for Φ, then {(Xn, νn) := T n({x0}, δx0

); n ∈ N} is a uniformly β-normal
sequence, for every x0 ∈ U − [∂U ]b. This means that there exist positive and finite
constants C1, C2, K1 and K2, which do not depend on n and x0, such that

(2.1) C1r
β ≤ νn(Bd(x, r)) ≤ C2r

β ,

for every x ∈ Xn, every r with K1νn({x}) < rβ < K2 and every natural number n.

Proof. Fix b > 0 such that U − [∂U ]b is non-empty, and take x0 ∈ U − [∂U ]b. Then
b < R := diam(U). For each n ∈ N, since (Xn, νn) = T n({x0}, δx0

) we have that

Xn =
{

φj(x0) : j ∈ {1, 2, . . . , M}n
}

.

Hence Xn has Mn elements and νn({x}) = M−n for every x ∈ Xn. We claim that
Xn is ba−n-disperse. In fact, assume that x = xn,j and y = xn,i with j 6= i. Since
U is an open set, we have that Bd(x0, b) ⊆ U . Then

Bd(xn,j , ba
−n) = φj (Bd(x0, b)) ⊆ φj(U),

Bd(xn,i, ba
−n) = φi (Bd(x0, b)) ⊆ φi(U),

and since φj(U) and φi(U) are disjoint, we have Bd(x, ba−n) ∩ Bd(y, ba−n) = ∅.
This implies that d(x, y) ≥ ba−n.

Notice also that if ℓ ∈ {1, 2, . . . , M}k and k ≤ n, from Lemma 1.1 (d) we have

νn(φℓ(U)) = M−ncard(φℓ(U) ∩ Xn) = M−k = a−kβ ,

where β = loga M .
Let us define K1 = bβ and K2 = Raβ. Fix n ∈ N, x ∈ Xn and r > 0 such that

K1νn({x}) < rβ < K2. Then r > ba−n. In order to find constants C1 and C2 for
which (2.1) holds, we shall consider two cases:

Case 1: ba−n < r ≤ Ra−n. Notice first that

νn(Bd(x, r)) ≥ νn(Bd(x, ba−n)) ≥ M−n = a−nβ ≥ R−βrβ ,

and on the other hand,

νn(Bd(x, r)) ≤ νn(Bd(x, Ra−n+1))

= M−ncard
(

Xn ∩ Bd(x, Ra−n+1)
)

≤ N ℓa−nβ

≤ N ℓb−βrβ ,

where ℓ is a positive integer such that 2ℓ ≥ Ra/b, and N is a constant for the
Assouad dimension of X .

Caso 2: r > Ra−n. Let us fix j ≤ n such that Ra−j < r ≤ Ra−j+1, and define

J = {j ∈ {1, 2, . . . , M}j : Bd(x, r) ∩ Xn ∩ φj(U) 6= ∅}.
Since {φj(U), j ∈ {1, 2, . . . , M}j} is a covering of Xn we have that

Bd(x, r) ∩ Xn ⊆
⋃

j∈J

φj(U).
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On the other hand, if x = φi(x0), i = (i1, i2, . . . , in) and j = (in−j+1, in−j+2, . . . , in),
we claim that

φj(U) ∩ Xn ⊆ Bd(x, r) ∩ Xn.

In fact, if y ∈ φj(U) ∩ Xn then y = φi′(x0), where

i′ = (ℓ1, ℓ2, . . . , ℓn−j, in−j+1, in−j+2, . . . , in),

for some ℓ1, ℓ2, . . . , ℓn−j ∈ {1, 2, . . . , M}. Then

d(x, y) ≤ a−jR < r.

Hence

νn(Bd(x, r)) ≤
∑

j∈J

νn(φj(U))

= card(J )a−jβ

≤ card(J )R−βrβ ,

and for every j ∈ J we have that

νn(Bd(x, r)) ≥ νn(φj(U))

= a−jβ

≥ (aR)−βrβ .

We only have to show that card(J ) is bounded by a constant which does not
depend on x, r and j. In order to prove it, let us identify each j ∈ J with the point
φj(x0) ∈ φj(U), and leu us define the set A = {φj(x0) : j ∈ J }. Since φj(U) are
pairwise disjoint for j ranging on the set of indices with fixed length, we have that

card(J ) = card{φj(x0) : j ∈ J } = card(A).

Notice that A ⊆ Bd(x, 2r). In fact, if j ∈ J then there exists y ∈ Bd(x, r) ∩ Xn ∩
φj(U), and

d(φj(x0), x) ≤ d(φj(x0), y) + d(y, x) < a−jR + r ≤ 2r.

Since, being a subset of Xj , the set A is ba−j-disperse, we have that

card(A) ≤ card(Bd(x, 2r) ∩ Xj)

≤ card(Bd(x, 2Ra−j+1) ∩ Xj)

≤ N ℓ+1,

with ℓ and N as before.
Hence (2.1) follows with C1 = R−β and C2 = N ℓ+1b−β. �

As a corollary we have the following result.

Corollary 2.2. Let (X, d), Φ, T and U be as in Theorem 2.1. Then for each b > 0
there exists a constant A = A(b) ≥ 1 such that for every x0 ∈ U − [∂U ]b, the orbit
{T n({x0}, δx0

) : n ∈ N} is contained in D(A).



8 H. AIMAR, M. CARENA, AND B. IAFFEI

3. Gradual improvement of the doubling property along the orbits

The results in [2] suggest that there is a deep interplay between the separation
properties of the IFS and the behavior of the orbits generated by the iteration from
different starting points of the mapping T induced by this IFS. In particular, show
that the doubling property may “suddenly appear” for the limit even when no term
of the sequence has this property.

In this section we shall prove that, in many cases, the terms of the approximating
sequence become more and more doubling in a precise sense, and that the doubling
property of the limit, in this sense, is not so “sudden”. Given ε ≥ 0 and a constant
A ≥ 1, we say that (Y, µ) belongs to Dε(A), or that µ is ε-doubling with constant
A, if (Y, µ) ∈ E and the inequalities

0 < µ(Bd(y, 2r)) ≤ Aµ(Bd(y, r))

hold for every y ∈ Y and every r > ε. When ε = 0 we have that D0(A) = D(A),
and in this case (Y, µ) is a space of homogeneous type.

The next result shows that if a metric measure space is the limit in the metric δ
of a sequence of uniformly εn-doubling spaces with εn → 0, then it is a space of
homogeneous type.

Proposition 3.1. Let (Yn, µn) be a sequence in E such that (Yn, µn) ∈ Dεn(A),

with εn → 0 when n → ∞. If (Yn, µn)
δ−→ (Y, µ) then (Y, µ) ∈ D(A4).

Proof. Take y ∈ Y and r > 0. Let ϕ be the continuous function defined on R
+
0 as

ϕ ≡ 1 on [0, 1], ϕ ≡ 0 on [2,∞) which is linear in the interval [1, 2]. Since Yn
dH−−→ Y ,

we can choose yn ∈ Yn such that d(yn, y) → 0 when n → ∞. Then, since there
exists n0 such that yn ∈ Bd(y, r/16) and εn < 5r/16 for every n ≥ n0, we have that

µ(Bd(y, 2r)) ≤
∫

ϕ

(

d(x, y)

2r

)

dµ(x)

= lim
n→∞

∫

ϕ

(

d(x, y)

2r

)

dµn(x)

≤ lim inf
n→∞

µn (Bd (y, 4r))

≤ lim inf
n→∞

µn (Bd (yn, 5r))

≤ lim inf
n→∞

A4µn

(

Bd

(

yn,
5r

16

))

≤ A4 lim inf
n→∞

µn

(

Bd

(

y,
r

2

))

≤ A4 lim
n→∞

∫

ϕ

(

2d(x, y)

r

)

dµn(x)

= A4

∫

ϕ

(

2d(x, y)

r

)

dµ(x)

≤ A4µ(Bd(y, r)).

�

The main result of this section, contained in Theorem 3.3, is that under the con-
ditions of Theorem 2.1, for any (Y0, µ0) ∈ E with Y0 ⊂ U , the sequence {T n(Y0, µ0)}



DOUBLING PROPERTY ON HUTCHINSON ORBITS 9

becomes, in a uniform way, more and more doubling as n grows. This means that
there exists A ≥ 1 such that for every ε > 0 there exists N = N(ε, Y0, µ0) such
that for n ≥ N we have that T n(Y0, µ0) ∈ Dε(A) for every n ≥ N . This fact is a
consequence of Corollary 2.2 and of the next result, which we state in the following
general context.

Given a compact metric space (X, d), let (Yn, µn) be any sequence in E with the
following structure: each Yn can be written as a disjoint union

Yn =

Mn
⋃

m=1

Y m
n

of Mn Borel pieces Y m
n , such that µn(Y m

n ) = M−1
n and

dn := sup
m=1,...,Mn

diam(Y m
n )

tends to zero when n → ∞.

With the above notation, we shall say that (Yn, µn) satisfies the uniform gradual
doubling property (UGD) if there exists A ≥ 1 such that for every n ∈ N we have
that (Yn, µn) ∈ D5dn(A).

As we have already mentioned, Theorem 3.3 will be a consequence of the fol-
lowing result, which proves that the UGD property can be deduced from the dis-
crete uniform doubling control (DUDC) of (Yn, µn): there exists A ≥ 1 and for
each n there exists a finite set Xn ⊆ Yn such that card(Xn ∩ Y m

n ) = 1 for every
m = 1, . . . , Mn, and {(Xn, νn) : n ∈ N} ⊆ D(A), where νn is the counting measure
on Xn normalized to a probability.

Theorem 3.2. DUDC implies UGD.

Proof. Fix n ∈ N, y ∈ Yn and r > 5dn. There exists one and only one Y m
n such

that y ∈ Y m
n . Let us write xm

n to denote the unique point in Xn ∩ Y m
n . Then

d(y, xm
n ) ≤ dn. For s > 2dn denote

Bi = Bd(x
m
n , s + (i − 2)dn),

i = 0, 1, 2, 3, 4. Notice that

B1 ⊆ Bd(y, s) ⊆ B3,

and then

µn(B1) ≤ µn(Bd(y, s)) ≤ µn(B3).

We claim that the comparison of the measure µn with the counting measure νn on
Xn is the following

(3.1) µn(B1) ≥ νn(B0) and µn(B3) ≤ νn(B4).

If the claim holds, then

νn(B0) ≤ µn(Bd(y, s)) ≤ νn(B4)

for every y ∈ Y m
n and s > 2dn. Let A ≥ 1 be the constant for the DUDC, i.e.

{(Xn, νn) : n ∈ N} ⊆ D(A). Then

µn(Bd(y, 2r)) ≤ νn(Bd(x
m
n , 2r + 2dn))

≤ A2νn(Bd(x
m
n , (r + dn))/2)



10 H. AIMAR, M. CARENA, AND B. IAFFEI

≤ A2µn(Bd(y, (r + 5dn)/2))

≤ A2µn(Bd(y, r)),

and the UGD holds with A2 = A2. Then it only remains to prove the inequalities
contained in (3.1). To show the first one we define the set

J = {j : Y j
n ⊆ B1}.

Notice that if xj
n ∈ B0∩Xn, then j ∈ J . In fact, suppose that d(xj

n, xm
n ) < s−2dn.

To see that Y j
n ⊆ B1 fix z ∈ Y j

n . Since diam(Y j
n ) ≤ dn we have that d(z, xj

n) ≤ dn.
Then

d(z, xm
n ) ≤ d(z, xj

n) + d(xj
n, xm

n )

< dn + s − 2dn

= s − dn,

and hence Y j
n ⊆ B1. So that

µn(B1) ≥
∑

j∈J

µn(Y j
n )

=
∑

j∈J

M−1
n

=
∑

j∈J

νn({xj
n})

≥ νn(B0).

To prove the second inequality let us now define the set

Q = {q : Y q
n ∩ B3 6= ∅}.

Observe that if q ∈ Q then Y q
n ⊆ B4. In fact, if q ∈ Q there exists zq

n ∈ Y q
n ∩

Bd(x
m
n , s + dn). Then for every z ∈ Y q

n we have

d(z, xm
n ) ≤ d(z, zq

n) + d(zq
n, xm

n )

< dn + s + dn

= s + 2dn,

and then z ∈ B4. Hence

µn(B3) ≤
∑

q∈Q

µn(Y q
n )

=
∑

q∈Q

νn({xq
n})

≤ νn(B4),

as desired. �

The following result states, as well as the doubling property for the limit space,
that the approximating sequence (Yn, µn) := T n(Y0, µ0) is uniformly increasing
doubling for adequate inicial spaces (Y0, µ0) ∈ E .
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Theorem 3.3. Let (X, d) be a compact metric space with finite metric dimension.
Let Φ = {φi : i = 1, . . . , M} be a family of contractive similitudes on X with the
OSC, such that

d (φi(x), φi(y)) =
1

a
d(x, y)

for every x, y ∈ X and 1 ≤ i ≤ M , where a > 1. Let T be the contractive mapping
on X induced by Φ. If (Y0, µ0) ∈ E satisfies Y0 ⊂ U , where U is a set for the OSC

for Φ, then there exists a constant A′ ≥ 1 such that (Yn, µn) ∈ D5a−n

(A′) for every
n, and then the limit space (Y∞, µ∞) is a space of homogeneous type.

Proof. Fix (Y0, µ0) ∈ E with Y0 ⊂ U . First notice that

µn(φi(Y0)) = M−n,

for every n and every i ∈ {1, 2 . . . , M}n. In fact, for a fixed i ∈ {1, 2 . . . , M}n we
have that

µn(φi(Y0)) = M−n
∑

j∈{1,2...,M}n

µ0

(

φ−1
j (φi(Y0))

)

= M−nµ0(Y0) + M−n
∑

j∈{1,2...,M}n

j 6=i

µ0

(

φ−1
j (φi(Y0)

)

.

Since µ0(Y0) = 1 and φ−1
j (φi(Y0)) = ∅ for every choice of j 6= i (see Lemma 1.1 (b)),

we have the claim.
On the other hand, fix x0 ∈ Y0. Since d(Y0, ∂U) > 0 we can apply Theorem 2.2

to obtain a constant A ≥ 1 such that T n({x0}, δx0
) ∈ D(A) for every n ∈ N. Then,

applying Theorem 3.2 with

Mn = Mn, Yn =
⋃

i∈{1,...,M}n

φi(Y0), dn = a−n, (Xn, νn) = T n({x0}, δx0
),

we have that (Yn, µn) ∈ D5a−n

(A2). Finally, from Proposition 3.1 we can conclude
that (Y∞, µ∞) ∈ D(A8). �
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Étude de certaines intégrales singulières.
[5] Kenneth Falconer. Techniques in fractal geometry. John Wiley & Sons Ltd., Chichester, 1997.
[6] John E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J., 30(5):713–747, 1981.
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