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Abstract

A general methodology for developing absorbing boundary conditions for general non-
linear hyperbolic advective-diffusive equations with unknown Riemann invariants is pre-
sented. In problems where the Riemann invariants (RI) are known (e.g. the flow in a shal-
low rectangular channel, the gas flow equations), the imposition of non-reflective boundary
conditions is straightforward. In problems where Riemann invariants are unknown (e.g. the
flow in a non-rectangular channels, the stratified 2D shallow water flows) it is possible to
impose that kind of conditions analyzing the projection of the Jacobians of advective flux
functions onto normal directions to fictitious surfaces or boundaries. The advantage of the
method is that it is very easy to implement in a finite element code and is only based on
computing the advective flux functions (and the their Jacobian projections), then, impos-
ing non-linear constraints via Lagrange Multipliers or Penalty Methods. The application
of the dynamic absorbing boundary conditions to typical wave propagation problems with
unknown Riemann invariants, like non-linear Saint-Venant system of conservation laws for
non-rectangular and non-prismatic 1D channels and stratified 1D/2D shallow water equa-
tions, is presented. Also, the new absorbent/dynamic condition can handle automatically
the change of Jacobians structure when the flow regime changes from subcritical to su-
percritical and viceversa, or when recirculating zones are present in regions near fictitious
walls.
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1 Introduction

Special care must be taken when deciding the number and which boundary con-
ditions have to be imposed at each part of an artificial boundary because in many
instances this is a very difficult task and sometimes these conditions are not clear.
For hyperbolic problems the decision is based on the number of incoming charac-
teristics n+ and the quantities known for each problem. On one hand, if the number
of conditions imposed on the boundary is in excess they are absorbed through spuri-
ous shocks at the boundary. On the other hand, if less conditions are imposed, then
the problem is mathematically ill posed and numerical solutions will explode or
exhibit spurious oscillations. Even if the number of imposed boundary conditions
is correct, this does not guarantee that the boundary conditions are non-reflective.
Dealing with models in infinite or large domains implies the introduction of an
artificial boundary distant as far as possible from the region of interest. The sim-
plest choice is to impose a boundary condition, assuming that the flow far from the
region of interest is undisturbed. However, the boundary condition can be freely
chosen so as to give the best solution for a given position of the boundary. Nev-
ertheless, this position is often too far and the computational cost in 2D and 3D
problems increases rapidly. Boundary conditions that tend to give the solution as
if the domain were infinite are called generally “absorbing” (ABC) or “non reflec-
tive” (NRBC). ABC’s allows to put the artificial boundary closer to the region of
interest for a given admissible error. Of course, the advantage of putting the artifi-
cial boundary closer to the region of interest is the reduction in computational cost
due to a smaller domain. However, in some cases, like for instance the solution of
the Helmholtz equation on exterior domains, using absorbing boundary conditions
is required since using a non absorbing boundary condition (like Dirichlet or Neu-
mann) may lead to a lack of convergence of the problem, because these conditions
are completely reflective and therefore, wave energy is trapped in the domain, pro-
ducing false resonance modes.
There are basically two approaches for the design of ABC’s, non-local and lo-
cal. Non-local boundary conditions are usually more accurate than local ones but
expensive. In the limit, a non-local ABC may reproduce the effect of the whole
external problem onto the boundary, i.e., even maintaining a fixed position of the
artificial boundary the ABC may give a convergent solution while refining the inte-
rior mesh. In general these ABC’s are non-local, i.e., its discrete operator is a dense
matrix (adding extra computational cost compared to local operators). Non-local
boundary conditions exist and are popular for the simpler linear operators, like po-
tential flow problems and frequency domain analysis of wave problems, like the
Helmholtz equations for acoustics or the Maxwell equations [5,4,3,7,11,6,2].
The discrete operator for local absorbing boundary conditions is usually sparse but
has a lower order accuracy. These kind of ABC’s are popular for more complex
non-linear fluid dynamic problems, like compressible or incompressible, Navier-
Stokes equations or the inviscid Euler equations. An excellent review has been
written by Tsynkov [15]. Nycander et al. [9] have proposed an absorbent bound-
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ary condition for the particular problem of 1D two layers stratified shallow flows
based on the barotropic and baroclinic modes and their characteristic variables. The
absorbent boundary conditions proposed in this paper are based on the true states
of problem variables on each layer and on the analysis of the projection of the Ja-
cobians of advective flux functions onto normal directions to fictitious surfaces as
would be explained in next sections.
In order to have an ABC not any n+ conditions must be imposed at the boundary
but exactly those n+ corresponding to the incoming characteristics. This can be de-
termined through an eigenvalue (λi) decomposition problem of the advective flux
Jacobian (A) at the boundary (i.e.,

∑
i(λi(A · n̂) < 0)).

In many cases, the number of incoming characteristics may change during the com-
putation. For instance, in Saint-Venant’s model it is common that the flow goes from
subcritical to supercritical in certain parts of an outlet (fictitious) boundary. In 1D
or 2D model this means passing from one imposed boundary condition to none.
This is illustrated in the typical problem of a flow passing through a sluice gate
(figure 1). The flow upstream of the sluice gate is subcritical. Then, it accelerates to
the transcritical and supercritical state as it passes under the gate, which serves as
sort of “nozzle”. Further downstream the flow shocks back to subcritical regime be-
cause the downstream height is too high to maintain supercritical flow. Depending
on where the artificial outflow boundary is located (i.e., supercritical or subcriti-
cal zone), the number of boundary conditions to be imposed and the structure of
the Jacobians associated to this problem will change. When flow of a compress-
ible gas is considered, the fluid state can evolute from subsonic to supersonic and
the number of incoming and outgoing characteristics will change too. The change

Fig. 1. flow through a sluice gate, flow changes from subcritical to supercritical

of the number of imposed boundary conditions at a given point of the boundary
is hard to implement from the computational point of view since it involves the
change of the structure of the Jacobian matrix. The solution proposed here is to
impose these conditions through Lagrange multipliers or penalization techniques.
The main objective of this paper is to discuss numerical aspects related to the use
of this techniques and how one can impose absorbing boundary conditions when
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the problem at hand have no Riemann invariants (in a mathematical closed form,
see section §3.5) in a mathematical closed form using the scheme presented in [12]
for gasflow equations.
The idea of imposing absorbent/dynamics boundary conditions is based on ana-
lyzing the projection of the Jacobians of advective flux functions onto normal di-
rections to fictitious surfaces or boundaries. Therefore, working in the character-
istic base, the incoming waves can be neglected at fictitious wall obtaining a non-
reflective wall. The advantage of the method is that it is very easy to implement in
a finite element code and is based on imposing non-linear constraints via Lagrange
Multipliers and/or Penalty Methods (see sections §3.7.1 and §3.7.2).

2 General advective-diffusive systems of equations

Consider the advective-diffusive system of equations in conservative form

∂H(U)

∂t
+
∂Fc,j(U)

∂xj

=
∂Fd,j(U,∇U)

∂xj

+ G. (1)

Here U ∈ IRn is the state vector, t is time, Fc,j,Fd,j are the advective and diffusive
fluxes respectively, G is a source term including, for instance, gravity acceleration
or external heat sources, and xj are the spatial coordinates.
The notation is standard, except for the “generic enthalpy function” H(U). The
enthalpy function allows the inclusion of conservative equations in terms of non-
conservative variables. Some well-known hyperbolic advective-diffusive systems
of equations studied in this paper may be cast in this general setting as shown in
following sections.

2.1 Shallow water equations

Shallow water equations describe the open flow of fluids over regions whom char-
acteristic dimensions are much larger than the depth.

Up = [h,u]T ,

U = Uc = [h, hu]T ,

H(U) = U,

Fc,jnj =

 h(u · n̂)

h(u · n̂) u + 1/2gh
2 I

 .
(2)

where h is the fluid depth, u the velocity vector, Up,Uc the primitive and conserva-
tive variables, g the gravity acceleration. We assume that the height of the bottom
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with respect to a fixed datum is constant. If this is not so, additional terms must
be included in the source term G, but this is irrelevant for the absorbing boundary
condition issue. If the channel bed has a variable topography the non-conservative
form of shallow water equations must be used.

2.2 Open channel flow

Flow in a channel can be cast in advective form as follows

Up = [h, u]T ,

U = Uc = [A,Q]T ,

H(U) = U,

F =

 Q

Q2/A+ F

 .
(3)

where h and u are water depth and velocity (as in the shallow water equations).
A(h) is the section of the channel occupied by water for a given water height h. It
then defines the geometry of the channel. For instance

• Rectangular channels: A(h) = wh, w=width.
• Triangular channels: A(h) = 2h2 tan θ/2; with θ=angle opening.
• Circular channel:

A(h) =
∫ h

h′=0

√
2Rh− h2 dh

= θR2 − w(h)(R− h)/2
(4)

where R is the radius of the channel, w(h) = 2
√

2Rh− h2 is the waterline for a
given water height and θ = atan[w/(2(R− h))] is the angular aperture.

Q = Au is the water flow rate. F (h) is a function defined by

F (h) =
∫ h

h′=0
A(h′) dh′. (5)

Again, for the sake of simplicity, we restrict to the case of constant channel section
an channel depth. For more general situations, other terms can be included in the
source and diffusive terms, but they are not needed for the discussion of absorbing
boundary conditions. For rectangular channels the equations reduce to those for
one dimensional shallow water equations.
Channel flow is very interesting since it is in fact a family of different 1D hyperbolic
systems depending on the area function A(h). Riemann invariants are only known
for rectangular and triangular channel shapes (see section §3.5).
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2.3 Stratified shallow water flows

Another physical model where Riemann invariants have not a mathematical closed
form is the flow of a multi-layer fluid in channels.
This kind of physical model exists for instance when flow takes place on a moun-
tainous terrain over plain areas or dense distribution of torrents combined with
heavy rainfall. Floods carrying sediments frequently cause collapses, landslides,
etc. The numerical model describes multi-layer shallow flows in which the super-
posed layers differ in density, velocity in a two-dimensional domain.
Consider an n-layer model, the layers are indexed by i with per-layer constant den-
sity ρi. The thickness of the layer i is hi(x, t) while the height of the bottom is
h0(x, t). i = 1 is the bottom layer, i = n is the top layer. Setting z0 = h0 then
the interfaces between layers are at zi = zi−1 + hi. The in-plane velocity u1,2

i (x, t)
is considered to be constant in each sub-layer and as in one layered shallow water
equations, the vertical velocity is averaged and thereafter eliminated. Then the sys-
tem of mass and momentum conservation equations with U = Uc = {hi, hiui}T
are:

diui + gzix + gziy = − 1

ρi

pix,

dihi + hiuix + hiuiy = 0 for i = 1, 2, .., n.
(6)

where

dif = ft + uifx (7)

and if the top surface is free

pi =
n∑

j=i+1

ρjg(zj − zj−1) (8)

For the case n = 2 and traction free at top and bottom surfaces, the stratified
shallow water equations are (denoting u1

i = ui and u2
i = vi)
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∂h1

∂t
+

∂

∂x
(h1u1) +

∂

∂y
(h1v1) = 0,

∂h2

∂t
+

∂

∂x
(h2u2) +

∂

∂y
(h2v2) = 0,

∂

∂t
(h1u1) +

∂

∂x

(
h1(u1)

2 +
1

2
gh2

1

)
+

∂

∂y
(h1u1v1) +

+ gh1
∂

∂x

(
z0 +

ρ2

ρ1

h2

)
= 0,

∂

∂t
(h1v1) +

∂

∂x
(h1u1v1) +

∂

∂y

(
h1(v1)

2 +
1

2
gh2

1

)
+

+ gh1
∂

∂y

(
z0 +

ρ2

ρ1

h2

)
= 0,

∂

∂t
(h2u2) +

∂

∂x

(
h2(u2)

2 +
1

2
gh2

2

)
+

∂

∂y
(h2u2v2) + gh2

∂

∂x
(z0 + h1) = 0,

∂

∂t
(h2v2) +

∂

∂x
(h2u2v2) +

∂

∂y

(
h2(v2)

2 +
1

2
gh2

2

)
+ gh2

∂

∂y
(z0 + h1) = 0,

(9)

Equations (9) cannot be written in conservation form. The classical hydrostatic
pressure assumption is adopted throughout all layers and along the interfaces.
In the general case of n layers and 2D model, the system (6) has 3n waves that
propagate inside the domain. In the particular case of the two-layers shallow water
equations (eqs. (9)), six waves propagate upstream and downstream at speeds λi, i :
1..6 in both x and y directions.

2.4 Finite element method (FEM)

The discretization of physical models described above is made by means of the Fi-
nite Element Petrov-Galerkin Method using the SUPG (Streamline Upwind Petrov-
Galerkin [14,8]) stabilization and the shock capturing operator [13], which is spe-
cially adapted for each flux function of physical models used in this work. The time
integration adopted is the trapezoidal rule with α = 1.

3 Absorbing boundary conditions

For steady simulations using time-marching algorithms, it can be shown that the er-
ror going towards the steady state propagates like waves, so that absorbing bound-
ary conditions help to eliminate the error from the computational domain. In fact,
it can be shown that for strongly advective problems, absorption at the boundaries
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is usually the main mechanism of error reduction (the other mechanism is phys-
ical or numerical dissipation in the interior of the computational domain). It has
been shown that in such cases the rate of convergence can be directly related to
the “transparency” of the boundary condition [1]. In general, absorbing boundary
conditions are based on an analysis of the characteristic waves. A key point is to de-
termine which of them are incoming and which are outgoing. Absorbing boundary
conditions exist from the simplest first order ones based on a plane wave analysis
at a certain smooth portion of the boundary (as will be described below), to the
more complex ones that tend to match a full analytic solution of the problem in the
external region with that obtained in the internal region. In this paper the usage of
absorbing boundary conditions is accomplished in situations where the conditions
at the boundary change, so as the number of incoming and outgoing characteris-
tic waves varies during the temporal evolution of the problem, or even when the
conditions at the boundary are not well known a priori.

3.1 Advective diffusive systems in 1D

Let us consider a pure advective system of equations in 1D, i.e., Fd,j ≡ 0

∂H(U)

∂t
+
∂Fc,x(U)

∂x
= 0, in [0, L]. (10)

If the system is “linear”, i.e., Fc,x(U) = AU, H(U) = CU (A and C do not
depend on U), a first order linear system is obtained

C
∂U

∂t
+ A

∂U

∂x
= 0. (11)

The system is “hyperbolic” if C is invertible, C−1A is diagonalizable with real
eigenvalues. If this is the case, it is possible to make the following eigenvalue de-
composition for C−1A

C−1A = SΛS−1, (12)

where S is real and invertible and Λ is real and diagonal. If a new set of variables
is defined V = S−1U, then equation (11) becomes

∂V

∂t
+ Λ

∂V

∂x
= 0. (13)

Now, the system decouple and each equation is a linear scalar advection equation

∂vk

∂t
+ λk

∂vk

∂x
= 0, (no summation over k). (14)

vk are the “characteristic components” and λk are the “characteristic velocities” of
propagation.
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3.2 Linear 1D absorbing boundary conditions

Assuming that λk 6= 0, the absorbing boundary conditions, depending on the sign
of λk, are

if λk > 0: vk(0) = v̄k0; no boundary condition at x = L

if λk < 0: vk(L) = v̄kL; no boundary condition at x = 0
(15)

This can be put in the follow compact form as

Π+
V (V − V̄0) = 0; at x = 0

Π−V (V − V̄L) = 0; at x = L
(16)

where Π±V are the projection matrices onto the right/left-going characteristic modes
in the V basis,

Π+
V,jk =

1; if j = k and λk > 0

0; otherwise,

Π+ + Π− = I.

(17)

It can be easily shown that they are effectively projection matrices, i.e., Π±Π± =
Π± and Π+Π− = 0. Coming back to the boundary condition at x = L in the U
basis, it can be written

Π−V S−1(U− ŪL) = 0 (18)

or, multiplying by S at the left

Π±U (U− Ū0,L) = 0, at x = 0, L, (19)

where
Π±U = S Π±V S−1, (20)

are the projection matrices in the U basis. These conditions are completely absorb-
ing for 1D linear advection system of equations (11).
The rank of Π+ is equal to the number n+ of positive eigenvalues, i.e., the number
of right-going waves. Recall that the right-going waves are incoming at the x = 0
boundary and outgoing at the x = L boundary. Conversely, the rank of Π− is equal
to the number n− of negative eigenvalues, i.e., the number of left-going waves (in-
coming at x = L and outgoing at the x = 0 boundary).

3.3 Multidimensional problems

For multidimensional problems a simplified 1D analysis can be done in the normal
direction to the local boundary and with the Jacobian of the advective flux function
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A (equation (12)) replaced with its projection onto the exterior normal n̂, as follows

Π−n (U− Ū) = 0,

Π−n = Sn Π−V n S−1
n ,

(Π−V n)jk =

1; if j = k and λj < 0,

0; otherwise.

C−1An = SnΛnS−1
n , (Λn diagonal),

An = Alnl.

(21)

These conditions are perfectly absorbing for perturbations reaching the boundary
normal to the surface. For perturbations not impinging normally, the condition is
partially absorbing, with a reflection coefficient that increases from 0 at normal
incidence to 1 for tangential incidence.

3.4 Absorbing boundary conditions for non-linear problems

If the problem is non-linear, as the gas dynamics or shallow water equations, then
the flux Jacobian A is a function of the state of the fluid, and then the same happens
for the projection matrices Π±. If it is assumed that the flow is composed of small
perturbations around a state of reference Uref , then the projection matrix at the state
Uref can be computed

Π(Uref)
−
n (U−Uref) = 0. (22)

However, as long as the fluid state departs from the reference value the condition
becomes less absorbing.

3.5 Riemann invariants based absorbing boundary conditions

Suppose that for a small interval t ≤ t′ ≤ t+ ∆t the state U(t) is taken as the ref-
erence state, then, during this interval Π−(U(t)) is taken as the projection operator
onto the incoming characteristics and the absorbing boundary conditions are

Π−(U(t)) (U(t′)−U(t)) = 0. (23)

But regarding the equivalent expression (18) it can be written as

lj(U) · dU = 0, if λj < 0, (24)

where lj is the j-th left eigenvalue of the normal flux Jacobian. Note that, as lj is a
function of U, this is a differential form on the variable U. If it happens that this is
an exact differential, i.e.,

µ(U) lj(U) · dU = dwj(U), (25)
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for some non-linear function wj and an “integration factor” µ(U), then it can be
imposed

wj(U) = wj(Uref), (for wj an incoming char.) (26)
which would be an absorbing boundary condition for the whole non-linear regime.
The functions wj are often referred as “Riemann invariants” (RI) for the flux func-
tion. The main problem of imposing a condition in this way is that RI are only
known for a few set of hyperbolic systems.
For 1D channel flow, Riemann invariants are known for a few channel shapes. For
general channel sections they are not known and in addition there is not a general
numerical method for computing them. They could be computed by numerical inte-
gration of equation (25) along a path in state space, but the integration factor is not
known. In addition, a mathematical closed form for the RI of the stratified shallow
water model is not known.
For the 2D shallow water equations, the Riemann invariants are well known (see
Reference [10]) and

w± = u · n̂± 2
√
gh, (27)

and for channel flow they are known only for rectangular and triangular channel
shapes. For the triangular case, RI are

w± = u · n̂± 4
√
gh. (28)

For the gas dynamics equations, the well known Riemann invariants are invariant
only under isentropic conditions, so that they are not truly invariant. They are

w± = u± 2c

γ − 1
. (29)

3.6 Absorbing boundary conditions based on last state

While integrating the discrete equations in time, the state of the fluid in the previous
state can be taken as the reference state

Π−(Un) (Un+1 −Un) = 0. (30)

It is clear that the assumption of linearization is well justified, since in the limit of
∆t → 0 it should be Un+1 ≈ Un. In fact, (30) is equivalent, for ∆t → 0 to (24),
so that if Riemann invariants exist, then this scheme preserves them in the limit
∆t→ 0 and ∆x→ 0. Hereafter, the proposed strategy is called ’ULSAR’ (for Use
Last State As Reference).
However, if this scheme is used in the whole boundary, then the flow in the domain
is only determined by the initial condition, and it can drift in time due to numerical
errors. Also, in a steady state of a certain regime, there is no way to guarantee
that the regime will be obtained. For instance, to obtain the steady flow around an
aerodynamic profile at a certain Mach number, the initial state with a non perturbed

11



constant flow at that condition can be stated, but, it cannot be assured that the final
steady flow will preserve that Mach number. In practice, a mix of the strategies are
often used, with linear boundary conditions imposed at inlet regions and absorbing
boundary conditions based on last state on the outlet regions.

3.7 Imposing non-linear absorbing boundary conditions

In this section, the integration of the absorbing boundary conditions in a numerical
code is discussed. For linear systems, the discrete version of equation (11) is of the
form

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un+1

0

h
= 0,

C
Un+1

k −Un
k

∆t
+ A

Un+1
k+1 −Un+1

k−1

2h
= 0, k ≥ 1

(31)

where Un
k is the state at grid point k at time tn = n∆t. It is assumed a constant

mesh step size of h, i.e., xk = kh, and the boundary located at the mesh node
x0 = 0. Several simplifications were assumed here, no source or upwind terms, and
a simple discretization based on centered finite differences was used. Alternatively,
it can be thought as a pure Galerkin FEM discretization with mass lumping. Also,
backward Euler differencing in time is used.
If the projector onto incoming waves Π+

U has rank n+ = n, then Π+
U = I and the

absorbing boundary condition reduces to U = Uref (being Uref a given value or Un
0

for ULSAR). This happens for instance in a supercritical inlet for free surface fluid
dynamics or an inlet boundary for linear advection. In this case it is replaced the
balance equation for the boundary node (the first equation in (31)) with the absorb-
ing condition U = Uref , keeping the balance between equations and unknowns.
Conversely, if the projector onto incoming waves Π+

U has rank n+ = 0, then
Π+

U = 0 and the absorbing boundary condition reduces to not imposing anything.
This happens for instance in a supercritical outlet in shallow water flows or an out-
let boundary for linear advection. In this case the absorbing condition U = Uref is
discarded. Again, the number of equations and unknowns is maintained.
The case is more complicated when 0 < n+ < n. It cannot be added the absorbing
condition (either (19), (26) or (30)), because the boundary balance equation cannot
be discarded or maintained.
There are at least two strategies for imposing these non-linear boundary conditions.
One possibility is to replace the boundary balance equation for the outgoing waves
with a null first derivative condition. Then a discrete version can be generated with
finite difference approximations. (This requires, however, a structured mesh at least
near the boundary). The other possibility is to resort to the use of Lagrange mul-
tipliers or penalization techniques. One advantage of using Lagrange multipliers
or penalization is that not only the boundary conditions coefficients can easily be
changed for non-linear problems, but also the number of imposed boundary condi-
tions. This is important for problems where the number of incoming characteristics
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can not be easily determined a priori, or for problems where the flow regime is
changing from subcritical to supercritical, or the flow reverts. In the rest of this sec-
tion the second strategy will be described in detail.
In the base of the characteristic variables V, (31) can be written as

Vn+1
0 −Vn

0

∆t
+ Λ

Vn+1
1 −Vn+1

0

h
= 0,

Vn+1
k −Vn

k

∆t
+ Λ

Vn+1
k+1 −Vn+1

k−1

2h
= 0, k ≥ 1.

(32)

For the linear absorbing boundary conditions (19) it should be imposed

Π+
V (Vref) (V0 −Vref) = 0, (33)

while discarding the equations corresponding to the incoming waves in the first
rows of (32). Here Uref/Vref is the state about which the linearization is done.

3.7.1 Using Lagrange multipliers

This can be done, via Lagrange multipliers in the following way

Π+
V (Vref) (V0 −Vref) + Π−V (Vref) Vlm = 0,

Vn+1
0 −Vn

0

∆t
+ Λ

Vn+1
1 −Vn+1

0

h
+ Π+

V (Vref) Vlm = 0,

Vn+1
k −Vn

k

∆t
+ Λ

Vn+1
k+1 −Vn+1

k−1

2h
= 0, k ≥ 1,

(34)

where Vlm are the Lagrange multipliers for the imposition of the new conditions.
On one hand, if j is an incoming wave (λj ≥ 0), then the equation is of the form

vj0 − vref0 = 0,

vn+1
j0 − vn

j0

∆t
+ λj

vn+1
j1 − vn+1

j0

h
+ vj,lm = 0,

vn+1
jk − vn

jk

∆t
+ λj

vn+1
j,k+1 − vn+1

jk

2h
= 0, k ≥ 1.

(35)

Note that, due to the vj,lm Lagrange multiplier, it can be solved for the vjk values
from the first and last rows, while the value of the multiplier vj,lm “adjusts” itself
in order to satisfy the equations in the second row.
On the other hand, for the outgoing waves (λj < 0), the equations are

vj,lm = 0,

vn+1
j0 − vn

j0

∆t
+ λj

vn+1
j1 − vn+1

j0

h
= 0,

vn+1
jk − vn

jk

∆t
+ λj

vn+1
j,k+1 − vn+1

jk

2h
= 0, k ≥ 1.

(36)
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So that the solution coincides with the unmodified original FEM equation, and the
Lagrange multiplier is vj,lm = 0.
Coming back to the U basis, it can be written

Π+
U(Uref) (U0 −Uref) + Π−U(Uref) Ulm = 0,

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un+1

0

h
+ CΠ+

U(Uref) Ulm = 0,

C
Un+1

k −Un
k

∆t
+ A

Un+1
k+1 −Un+1

k−1

2h
= 0, k ≥ 1.

(37)

3.7.2 Using penalization

The corresponding formulas for penalization can be obtained by adding a diagonal
term scaled by a small enough regularization parameter ε to the first equation in (37)

−εUlm + Π+
U (U0 −Uref) + Π−U Ulm = 0,

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un+1

0

h
+ Π+

U Ulm = 0;
(38)

where, for the moment, the dependence of the projectors on Uref is dropped. Elim-
inating Ulm from the first and second rows it is obtained

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un+1

0

h
+ Π+

U (Π−U + εI)−1 Π+
U(U0−Uref) = 0. (39)

Now, using projection algebra it can be shown that

(Π−U + εI)−1 = (
1

ε
Π+

U +
1

1 + ε
Π−U) (40)

so that the last term in (39) reduces to Π+
U(U0 −Uref) and the whole equation is

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un+1

0

h
+

1

ε
CΠ+

U(U0 −Uref) = 0. (41)

Here 1/ε can be taken as a large penalization factor.

4 Numerical experiments

Several numerical and theoretical aspects of absorbent boundary conditions are
studied in this section. Most of them arising in typical problems in hydrology and
hydraulic areas where hyperbolic PDE’s govern their behavior. The experiments
range from 1D Saint-Venant models for different channel shapes, to 1D and 2D
stratified shallow flows and problems with regime change and back-flow at outlet
fictitious boundaries.
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4.1 1D shallow water equations

As explained in precedent sections, RI for 1D Saint-Venant equations are known
only for rectangular and triangular channel shapes. So, classical ABC could be
used in order to avoid wave reflections at fictitious walls. The next section is de-
voted to evaluate the performance of ULSAR ABC’s proposed here in problems
where channel shapes differ from those with known Riemann invariants. Also, the
performance of ULSAR conditions is compared with those ABC’s based on Rie-
mann characteristics in the full nonlinear range in the case of the shallow-water
flow in a rectangular channel. It is shown that both (ULSAR and RI based B.C.’s)
local boundary conditions have similar “transparency” properties.

4.1.1 Circular cross section channel

Consider a 1D Saint-Venant flow in a very long horizontal and circular section
channel with radius Rchann = 1 m. All variables and parameters are dimensionless
by selecting Rchann and g = 1 m/s2 as reference values for length and time scales.
Fictitious walls are introduced at x = 0 and x = Lx = 20. The fluid state is
initialized having a strong perturbation in the free surface elevation h which is
function of the coordinate x and describing a Gaussian curve triggering full non-
linear effects. The perturbation is

h(x, t = 0) = h0 +
A√
2π

exp−0.5(x−µσ )
2

with h0 = 1,A = 2, µ = Lx/2 and σ = 0.04Lx. The initial velocity u is constant in
the whole domain at t = 0, i.e, u(x, t = 0) = 0.5. For t > 0 the initial perturbation
breaks and two resultant waves (that are not symmetrical due to the initial imposed
velocity) move toward the fictitious walls. The non-dimensional number that gov-
erns this kind of flow is the Froude number (Fr = |u|/

√
gh) which is subcritical

in this case. The evolution of the perturbation is simulated using Nx = 400 equal-
spaced finite elements (∆x = Lx/Nx = 0.05) with SUPG stabilization and trape-
zoidal temporal scheme with ∆t = 0.05. Absorbing boundary conditions based on
the ULSAR strategy are applied at both ends x = 0, L. The set of non-absorbent
classical Dirichlet B.C. are u(x = 0, t) = 0.5 and h(x = Lx, t) = 1.
In Figure (2) the time evolution of the free surface elevation is shown for both type
of boundary conditions. Note that the transparency of ULSAR B.C.’s is very high.
Impinging waves are completely absorbed as they pass through walls despite the
full non-linear character of the flow. Similar results are obtained with other channel
sections like, trapezoidal, parabolic or more general sections derived from the basic
ones.

15



Fig. 2. Classical and ULSAR B.C.’s comparison for 1D-SW flow in a circular section chan-
nel.
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4.1.2 Generic shape channel

This test is similar to the previous one except that the channel section shape is
constructed using the most basic shapes or generated by a polygonal curve, for
instance. Then, consider the 1D Saint-Venant flow in a channel with cross section
as shown in Figure (3). Same parameters, initial and boundary conditions adopted

Fig. 3. Cross section definitions

for the circular channel case are used here. Geometrical dimensions are: B1 =
4 m, B2 = 6 m and Z1 = 2 m. All variables and parameters are dimensionless
by selecting B1 and g = 1 m/s2 as reference values for length and time scales.
Figure (4) show the time evolution of the free surface height using ULSAR B.C.’s
and Classical Dirichlet ones. Here, the impinging waves are completely absorbed
at walls in the same fashion as in previous example.

4.2 Rectangular cross section channel: comparison between ULSAR and Rie-
mann invariants based ABC

The key point of this test is to show experimentally that the ULSAR conditions
are equivalent to the Riemann invariants based conditions. For this purpose, an 1D
Saint-Venant flow in a rectangular channel of 1 m width is considered. Physical
and numerical parameters, and the initial and boundary conditions are the same as
in previous cases, testing the both conditions in the linear and non-linear ranges.
All variables and parameters are dimensionless by selecting B = 1 (the channel
width) and g = 1 m/s2.
Figure (5) show the behavior of the free surface and the transparency of both ap-
proaches. In Figures (6) and (7) the differences, in both variables u(x = 0, t) and
h(x = 0, t) as the simulation proceed are shown. It is clear from figures that differ-
ences are several orders of magnitude less than the values of variables. But perhaps
a better way to evaluate the performance of ULSAR B.C.’s, compared to Riemann
invariants based conditions, is computing the norm L2 of the spatial derivative of u
and h as a function of time, i.e., ||du/dx||2 and ||dh/dx||2. Clearly, this is a mea-
sure of the error between the actual fluid state to the steady non-perturbed solution
once the waves leave the domain. The error is shown in Figures (8) and (9) putting
in evidence that ULSAR conditions are equivalent to RI based one including the
linear and non-linear ranges.
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Fig. 4. Classical and ULSAR B.C.’s comparison for 1D-SW flow in a channel with a polyg-
onal cross section.
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Fig. 5. ULSAR and Riemann invariants based ABC’s comparison for 1D shallow water
flow in a rectangular channel.
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Fig. 6. Differences (velocity) between ULSAR and Riemann invariants based ABC’s at
left fictitious boundary: the evolution in time for 1D shallow water flow in a rectangular
channel.

Fig. 7. Differences (free surf. height) between ULSAR and Riemann invariants based
ABC’s at left fictitious boundary: the evolution in time for 1D shallow water flow in a
rectangular channel.

4.3 1D stratified shallow water equations

Let us focus this test on the one-dimensional version of equations (6) and (9).
This case is similar to the one-layer examples presented above but considering the
flow of two immiscible layers over a rectangular unbounded channel. All variables
and parameters are dimensionless by selecting B = 1 m (the channel width) and
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Fig. 8. ||du/dx||2 vs. time for ULSAR and Riemann invariants based ABC’s.

Fig. 9. ||dh/dx||2 vs. time for ULSAR and Riemann invariants based ABC’s.

g = 1 m/s2 as reference values for length and time scales. Absorbing walls are
introduced at x = 0 and x = Lx = 20. The state is initialized with a strong
perturbation in the variable h(x, t = 0) of the top layer (i.e., h2(x, t = 0)) de-
scribing a centered curve like equation (4.1.1) with h0 = 0.5, A = 2.5, µ = Lx/2
and σ = 0.04Lx. The bottom layer is initialized with a constant height along the
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channel such that h1 = 1. Both layers have an initially low velocity of (u1(x, t =
0) = u2(x, t = 0) = 0.15). Then, the initial perturbation (in the h variable) is
decomposed in two non-symmetrical waves travelling in opposite directions and
interacting immediately with the bottom layer as shown in Figure (10). There are
four characteristic waves in this 1D case. Based on the non-perturbed state two
characteristic waves are right-going and two are left-going. The solution with clas-
sical B.C. are also plotted in the sequence of Figure (10). ρ1/ρ2 = 2 is used. As
shown in figure, high transparency properties of ULSAR ABC’s are achieved too
for this problem.

4.4 2D stratified shallow water equations: Dam-break problem

The 2D version of the two-layer shallow water equations is used to simulate the
dam-break phenomenon. All variables and parameters are dimensionless by select-
ing h1(x, t = 0) = 1 m and g = 1 m/s2. The computational region is a 20 m
by 20 m (Lx = Ly = 20) squared dam channel as shown in Figure 11 with two
walls located at the middle of the channel. The separation gap of the walls is 10.
The main channel is horizontal. A mesh of triangles is used and the average ele-
ment size is 0.2. The initial condition is such that in both layers the fluid is at rest,
so, u1(x, y, t = 0) = u2(x, y, t = 0) = v1(x, y, t = 0) = v2(x, y, t = 0) = 0
and a strong discontinuity in both layers thickness located at the levee station is
introduced, i.e., h1(x, y > Ly/2, t = 0) = h2(x, y > Ly/2, t = 0) = 1, and
h1(x, y ≤ Ly/2, t = 0) = h2(x, y ≤ Ly/2, t = 0) = 0.75. The density ratio is
ρ1/ρ2 = 4 and g = 1. Friction terms are neglected in this problem and this as-
sumption has no effect when evaluating the transparency of the artificial walls. The
time step adopted is ∆t = 0.025 s. ULSAR absorbent conditions are used in all
walls excepting the levee walls where a non-slip condition is imposed (in both lay-
ers). Regarding the geometry of the domain and the expansion waves generated at
levee, the quality of ULSAR conditions is evaluated for impinging waves that are
not only normals to walls but also to waves inciding with angles that can vary from
0 to 90 degrees. As stated in section §2.3 there are six characteristic waves. It is
verified that during the whole simulation, at the outlet (left) wall four characteristic
waves are outgoing and two are incoming. The sequence in Figure (11) illustrates
the computational results for each layer thickness and the efficiency of proposed
conditions. As shown in figure, ULSAR conditions behave quite good as fictitious
boundaries including the effect of the angle of incidence of arriving waves.

4.5 Absorbent B.C. as dynamic B.C: problems with regime change

The modeling of the free surface fluid flow problem with dynamically regime
change is a challenge from several points of view. One of these points is the im-
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Fig. 10. Classical and ULSAR B.C.’s comparison for 1D-stratified shallow water flow in a
rectangular channel. red: bottom layer, blue: top layer.

23



Fig. 11. 2-layer dam break with ULSAR B.C.
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position of boundary conditions that at an outlet wall must be non-reflecting when
the unbounded domain is truncated (to save computational resources for instance).
Moreover, in such case, the needed conditions at the outlet wall would change from
subcritical to supercritical ones (and viceversa) as a shock wave (or a strong discon-
tinuity or a hydraulic jump) appears and propagates toward the boundary. So, the
condition must be capable of handling the dynamical change of the Jacobians ma-
trix profile. During the flow computation inside the channel the number of incom-
ing/outgoing characteristics, and therefore the number of Dirichlet conditions to be
imposed, will change. Having a boundary condition that can automatically adapt
itself to this change is essentially useful in such a problem. In addition, the compu-
tational domain is limited to a zone of interest and therefore the CPU time and used
memory are drastically reduced. As explained above, imposing absorbent/dynamics
boundary conditions is based on analyzing the projection of the Jacobians of advec-
tive flux functions onto normal directions to fictitious surfaces. So, when working
in the characteristic base, the incoming waves are fixed to zero (vk = 0) at fictitious
walls obtaining a non-reflective wall. As shown in section §3.7.1, the method has
an extra advantage that is very easy to implement based on imposing non-linear
constraints.
Let us consider the 2D “subcritical to supercritical” shallow water flow on a chan-
nel (Lx = 40 m long, Ly = 20 m width) with variable bed topography. All vari-
ables and parameters are dimensionless by selecting h(x, y, t = 0) = 1 m and
g = 1 m/s2 as reference values for length and time scales. The perturbation in-
troduced on the bed is a parabolic bump located at (x, y) = (10, 10), with height
tbump = 0.5 and diameter Dbump = 12. At lateral wall (y = 0 and y = 20) a
slip condition is used. Initial state, shown in Figure (12), is obtained from a steady
solution of a simulation at low subcritical conditions ((u, v, h) = (0.5, 0, 1) at left
inlet wall and ULSAR B.C.’s at right outlet wall). Also, at time t = 0 the state
at the left boundary wall is raised from steady conditions to a supercritical state
with (u, v, h) = (2.4, 0, 3.1). Consequently, a strong hydraulic jump is generated at
left wall which travels downstream with velocity Vjump = (3, 0). The discontinuity
interacts with the bump and is finally absorbed at right boundary leaving a steady
supercritical flow in the whole domain. So, the fluid flow evolves from subcritical to
supercritical changing automatically and dynamically the flow conditions upstream
and downstream as explained in previous chapters. In the sequence of Figure (13) it
is shown how ULSAR conditions adapt automatically to give a well-posed dynamic
and absorbent condition at artificial walls. The steady supercritical water level (as
seen from a fixed reference) is shown in Figure (14).

4.6 Absorbent B.C. as dynamic B.C: 2D shallow water equations with back-flow
at boundaries

Finally, another interesting aspect of the absorbent/dynamics conditions based on
the last state is pointed out in this test where a back-flow bucket is originated at
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Fig. 12. Initial State: free surface and Froude initial conditions.

an outlet boundary. Regarding that the number and the set of Dirichlet conditions
to be imposed depend on that the wall is an outlet or an inlet, and that the do-
main may have a complicated geometry (e.g., levees, derivation wall, sluice gates,
etc.), it could happen that meanwhile the correct set of B.C. at an outlet has been
imposed, some emitted vortices can reach the outlet wall and change it to an in-
let wall. If classical conditions for the outlet are maintained, the problem could
become ill-posed and the solution misbehaving. Figures (15) and (16) show how
ULSAR B.C’s tackle the problem imposing automatically the correct set of B.C.’s
when two vortices, generated at levee walls in the dam break problem, move to-
ward the outlet walls giving recirculation zones at outflow boundary. Figure (15)
shows the time evolution of the water surface when the dam brakes and the system
reaching a steady state avoiding spurious solutions. Figure (16) shows in detail a
corner of the downstream portion of the dam and the fluid entering to the domain
(see the velocity vectors) due to the emission of vortices and their contact with the
absorbent walls.
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Fig. 13. Froude number: subcritical to supercritical absorbent/dynamic boundary condition.
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Fig. 14. Converged steady state: free surface elevation

5 Conclusions

A general methodology to develop absorbent and dynamic boundary conditions for
problems with unknown Riemann invariants is presented. From the computational
point of view, the method is only based on computing the advective flux functions
and their projected Jacobians onto the normals of the artificial boundaries and then,
imposing non-linear constraints via Lagrange multipliers or penalty methods as
seen in sections §3.7.1 and §3.7.2.
Several interesting aspects of ULSAR conditions are put in relevance not only the-
oretically but also numerically, using a number of tests for different hyperbolic
non-linear systems of equations.
Typical problems arising in hydraulic/hydrology areas and how boundary condi-
tions would be imposed are considered.
It is shown that absorbing boundary conditions reduce computational cost by al-
lowing to put the artificial exterior boundary closer to the region of interest.
The performance and transparency of ULSAR conditions are compared with non-
reflecting conditions based on Riemann invariants in problems with a closed math-
ematical form for RI giving similar results in the linear and non-linear region.
It is noticed that the dynamic conditions proposed in this paper are extremely useful
when dealing with flow with regime change.
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Fig. 15. Dam break with ULSAR B.C.
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Fig. 16. Reversed flow at the outflow boundary.
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