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1. Abstract

The iterative solution of linear systems arsing from panel method discretiza-
tion of three-dimensional (313) exterior potential problems coming mainly from
aerc-hydrodynamic engineering problems, 1= discussed. We propose an original
preconditioning based on an approximate eigenspace decomposition, that corrects
bad conditioning arising from pair of surfaces that are very closs [rom each other,
which iz a very common situation in slender wings and other asrodyvoamic profiles,
This preconditioning has been tested with the standard Bi-Conjugate Gradient

(BCG) and Conjugate Gradient Squared (CGS) iterative methods.
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3. Imtroduction

The Panel Method 1= a well established numerical techmique for the solution of
potential Aow problems, especially in exterior acro and hydrodynamics doe to its
ability to cope with complex geometries and the lack of artificial infinite boundaries
[1-4]. Our wark is based on Morinag's farmulation [5-8] with plane low order panels
for the potential feld. A characteristic of such formulation is that it gives a full
non-symmetric matrix with relatively low condition numbers. o be more specific,
the condition oumber does not degrade under refinement az it 15 common in the
“In volume"discretization methods, like FDM, FEM, FVM or the relatively voung
“mesh-les=" methods. T'his advantage 15 somewhat compensated by the fact that
Lhe system matrix is full and a definitive assessment of the efficiency of the method,
comparad to the “in voluome™ ones 1= rather involved., However, a clear advantage
of the method, mainly from the practical poinot of view, s the lack of domain
interior meshing, specially in 31,

Application of iterative solvers to papel/BEM (from “Boundary Element
Methad™) problems is described in marny papers [%14|. A rough list of parameter-
[res iterative solvers for non svmmetric systems of lnear equations 1= given by
Natchigal et al [17], where three basic types are considered as follows, First, those
methods based on the normal equations: OGN CONR (Hestnes and Stiefel
52 [22], CONE (Craig’sh, LSQR [Paige and Saunders "82 [23|. Second, those
ones based on erthogonalization: GCG [Concus and Golub 76, Widlund "78),
ORTHOMIN (Vinsome "76), ORTHORES and ORTHODIR (Young and Jea "0,
FOM [Saad "81), GCR (Elman 22, Eisenstat et al. [24], GMRES [Saad and
Schultz [25]. Third, those ones basad on biorthogonalization: BOG = BIOMIN
(Lanczos [18], Fletcher [18], BIORES BO [Lanceos "50, Jea and Young "E3,
BIODIR (Jea and Young "83), OGS BIOMIN® (Sonneveld |20)], BIORES® and
RIODIR? (Gutknecht [26], BICGSTAB (van der Varst [27). QMR (Freund |28).
We also have the USYMLEG and USYMOR methods (Saunders et al [28]. These
terminalogy approximately follows Nachtigal et al. and Gutknecht |26 and others
references can be found in [28] and [30]. lterative solvers are based on repetitive
ralculation of matrix-vector mualtiplication. As the matrices coming from panel
discretizations are full, it is not possible to store the matrix coefficients in core
memory, as it 15 usual in the “in volume” methods, where the matrix s sparse.

Then, the interaction coefBicients have to be recomputed at esch matrix-vector
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operation and the overall cost 1= roughly the number of matrix-vector operations
tirmes the cost of evaluating one of them. Global efficiency 1= controlled thus by: a
a cholce of the iterative solver and preconditioning in order to improve the conver-
gence rate and reduce the number of matrix-vector operations, and b) an efficient

computation of the interaction coefMicients.

Bome preconditioners are purely algebraic, as those based on incomplete fac-
torization [see |9 for instance), whereas others take into account the underlying
phvsics. Most of the phvsically bassd preconditionings for the panel method are
bazed on some kind of multi polar expansion of the field produced by a “clus
ter” of panels [13, 14,15]. The advantage of the algebraic preconditionings are
that thev can be applied to a broader range of problems, whereas physical based

preconditionings vield better performances at the expense of being more specihic,

Preconditioners in a general BEM context are extensively reviewead by Prazad
et al |10], where some success has been reported with the conjugate gradient
and GMEES when they are used 10 conjunction with preconditioning approaches,
Also Hribersak et al [11] have considered Jacobi, incomplete factorization and row-
sum type preconditioners for the BEM solution of viscous flow problems, showing
improved convergence rates with the first two ones. Yan [21] obtained sparse
preconditioners for dense system matrix in 210 BEM analy=is through condensation
by discrete Fourier transforms, whereas Vavasis [15] treats the panel [BEM case
which is rather near to our case, e, solving the Laplace equation in a exterior 312
domain, =0 we will give a brief account of his approach. Yawasis considers thres
basic preconditioners: the mesh neighbor, the malric endries and the hierarchical
clustering which have the following idea in common. From the system matrix A
a small index list L is chosen, drawn from {1.2, .., Ni} such that the variables in
I. have the most infAuence on the variable @0 Next, a small system of equations
ETEF 8; is solved, where the bars dencote that all the rows and the columns of
A are deleted except [or those in the index list L. Once this solution s known, it
expands back to entries of the preconditioner and this procedure 1= done for all its
rows, On one hand, in the mesh negghbor preconditioner we take into account that
the matrix coeflicient relating the control points ¢ and § comes up roughly from a
term like 1/|x; — x|, Therefore, the further apart two control points are, the less
influence it would expect a change at one control point to have on the other, [t s

zaid that two control points are “neighbors” (i they border a common panel side.

a
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Since neighboring control points are the most interrelated, then they are put in
the mesh neighbor preconditioner. Alsn we note that this strategy leads a sparse
preconditioner where its sparsivity pattern will micror the mesh connectivity, On
the other hand, the mesh entries preconditionsr constructs the index list L with
the following criterion: if ayy, ay; satisly ||:'1|"|E_|i|'| = I|r1,-,-f1_li_.|;|, then the control point
7 1= included 10 the index list L. where ¢ denotes some user-specified tolerance,
or “magic number”. For instance, when ag 1/2 and |aij| < aw. with ¢ 1,0
a diagonal and full populated preconditioner are obtained, respectively, whereas
middle values of ¢ does not offer any regular or predictable sparsivity pattern. In
an algebraic context, Jemmings 21| proposed to adopt 001 < ¢ < 010, As it
can be noted, this type of preconditioner does not depend on any panel/BEM
[ormulation, hence it can be applied to an arbitrary svstem matrix, Finally the
hiermarchical clustering preconditioner classifies the control points according to how
far away they lie from the control point 4. The first step in its construction is to
make a hierarchy of clusters, next to the center and radn r [or each cluster ©
are obtained., Onee the clusters, centers and radii are computed, the hierarchy
preconditioner 15 constructed with the aid of the index list L obtained as the
acceptable clusters of each control point. It 5 =zaid that cluster O 5 acceptabls
b the control point # when the distance from the control point @ to the center
of 7 s at least &r, where § = 1 1= a user-specilied number. Vavasis reports good
improvements with the first two types [or rather thick 31D geometries on industrial
applications. Further details about these thres types of preconditioners adapted
for a dense and unsymmetric matrix svstem can be found in the Yavasis's work

and the reference listed there,

However, for thin wings we found that the performance of thess kind of pre-
conditioners 1= rather restricted. On one hand, the mesh neighbor preconditioner
azzumes that the importance of the influence matrix coeflicient 1= only related with
the mesh topology, e, neighbor panels have a strong interaction and remote ones
a wealer interaction. However, this assumption 1= not alwavs the case for dipolar
matrices, which are proportional also to a view factor, so that neighbor panels
{in a topological sense) that are nearly coplanar have weak interaction, which is

actually the case of well refined meshes on smooth surfaces. Moreover, remote
panels (again in a topology =ens=) on opposite sides of thin wing geometries and

[acing each other. have a strong interaction. In other words, the mesh noeighbor
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preconditioner strategy conduces to rather lower performances in such case=s. On
the other hand, the malriz endries preconditioner 15 a good alternative for thick
geometries, with usually low rate in the filling of the preconditioner (ie, its non
zero entries). But, for thin wing configurations [similar to the considered in the
numerical examples) we had to use § > 0.8, with filling ratios greater than 80
5. Finallv, the hierarchical clustering preconditioner shares similar characteristics

with the mesh neighbor one.

For most iterative solvers, the convergence rate 15 closely related to the con-
dition number of the linear svstem, which highly depends on the geometey, 1o
be more specific, high condition numbers arise whenever two surlaces are closs
together, so that the distance between them is smaller than the average size of the
panels. Mote that this implies that, in contrast with the “in volume™ methods,
the condition number is reduced after refinement, since, eventually the average
sige of the panels will get smaller than the distance between the surfaces. Now,
supposs for a moment that the prohlz 5 svmmetric and with a small thickness e,
and we are interested in € — 0. Any distribution of double layer density g given
by gy o on each side of the wing can be decomposad as the sum of 8 svmmetric
one gt oand a skew-symmetric one p= where j.rﬂ: LGy & pz). Wow in the limit
of vanishing thicknes=, the held produced by a skew-svmmetric density on both
sides of the wing are added and the result 15 a flat surface at the plane of symme-
try with a distribution of 2p™, whereas for the svmmetric distribution the helds
tend to cancel each other and the result is also a flat surface but with null doubls
laver density distribution. This shows that the sell interaction coefficient for the
skew-symmetric distribution behaves like ©(1) whereas those for the svmmetric
one behaves like €3(e) for € — 0. This explains why the condition number degrades
as ¢ — [ and sugoests that a phvsically bassd preconditioning based on making
the change of variables and scaling appropriately the svmmetric parct will correct
thiz degradation. We call this the "modal preconditioning” and i=, in our opinion.

the main contribution of this paper.

One may argue that, if the preconditioning is efficient for profiles that are too
thin, then it would be better to handle thoss case specially, e modeling them
as plain flat surfaces. Firstly, we will show in the examples that interesting gains
are obtained for profiles of & % and even 25 % relative thickness. Secondly, even

if the airfoil 15 not too thin, the thickness s smaller near the trailing edge and
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thiz iz a cause of slower convergence., Thirdly and last, using the preconditioning
allows us to solve arbitrarily thin airfoils without worrving about the degres of the
approximation of replacing by a zero thickness airfoil.

With respect to an efficient evaluation of the interaction coefficients, it is a
common practice to use approximated expressions based on Ffar-field expansions,
valid when both panels are separated by a distance that exceeds some threshold
value scaled by the panel size. vpically, the cost of the Er-held expression 1= faster
than the exact evaluation in a ratio 1:5 However, this introduces a consistency
error, and in order to eliminate it, we iterated an outer loop where a residual with
the exact coeflicients 15 computed and a correction 15 added. It i= clear that if too
much iterations of the outer loop (= &) are performed, then it is cheaper to iterate
directly on the exact coeflicients, but it can be shown that this exterior problem
is very well conditioned and, typically, 2 iterations are needed to reduce the error
by a factor 1077, This issue is discussed in depth elsewhere |16).

4. Panel discretization overview

Let I' be a closed surface, and 2% the corresponding interior {exterior)

domain. The governing equations for potential flow are the Laplacse equation in

{1 with =lip condition on [ which, in terms of the perturbation potential can be

written as=:
Ab =0,  in 0
g . ) (1.a,b)
— = —ll. - I, at 1
ol

where 1., 15 the undisturbed velocity and & the perturbation potential defined by
U= U, |} Vi (2)

where u i= the total velocity, This problem can be rewritten as a Fredholm integral

erquation in terms of the single and double layer densities & and p as:

1 3 1 L1 1 ,,
_ A B - 3
pix) EJT_I::PEI::IUH (|x—x"|) : 2#_[,15{1}|x—x’| (3)

for x belonging to the surface I', and 1 is the normal pointing into 82, Por the slip
or inlet foutlet boundary condition as in (1b) it turns out to be that o is simply
& = —0 - Ua and then, the right hand side of (3] is known., Moreover, g is equal
to the perturbation potential & at the surface. The pansl method 1= based on

approximating I by a polyhedral surface, composed of a certain number Npan of

[F]
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. L 1N
non-overlapping fAat panels {175}, F,‘".

i Assuming that g and & are constant over

each panel and impesing (3) by collocation at the centroids of the panels, a linear
svetem of the form:

Ap— Co (4)

is obtained, where g = [p pg |T i= the vector of panel potentials, & the single

laver densities per panel, computed as:

=

)

l=r) —Ure - 11§ I::

and 1; is the normal to paneal i The interaction coelficients are computed from:

]
Oy f—rﬂ'
r, 1% —

4 1
Aij f L{—} AT
! r, on |2 — 2]

where x; 15 the centroid of the -panel.

()

8. T'he modal preconditioning

We will show that, for thin airfoils a symmetric/skew-symmetric decompo-
zition reveals a conditioning which grows inversely proportional to the thickness.
Then, a preconditioning based on this symmetric/skew-symmetric decomposition
i5 proposed. We will show how the preconditioning corrects the bad scaling for a
simple geometry consisting of two facing panels, then for two pairs of panels on a
svmmelric airfoll, and two pairs of pansls on a non-symmetric airfoll. Finally the
expression for the preconditioning in the general case 1= shown.
f. A pair of panels:

Consider first two identical flat square panels of side i, parallel to each other
as in Ogure 1 separated by a distance d = He. We should regard this as a very
crude idealization of a slender airfoil, so that we take the normals as shown in the

figure. The matrix of interaction coefflicients is:

A ['& —ale)

e
=]
i

—ale) e

where we replaced Ay = Azs = 15, as is usual for the sell-interaction coeflicients,

and by symmetry Ag Az = —gle), where g(z) is the potential produced by a

unit distribution of double layer potential at a distance z on an axis perpendicular
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tor the panel and passing through its centroid, z 15 taken as positive if the point 15
on the side with positive charge. The qualitative behavior for g(z) is like that in
figure 2, it i= antisymmetric with respect to z =10, it has a jump of unit magnituds

(i.e. equal to the double layer density) and continuous derivative at z = O

EI.l; o+ II"E
] p— —la (&)

dg dg
iz D4 dz

==

Then for small € we can put, to AOrst order:

o —Ya + ge ‘
.."1 |:_|ll||':E b g 1;,"'3 qf] {J::I

A= the problem is symmetric abont the center plane, it decouples in a svmmet-

ric/antisymmetric basis. Let:

SEREN

be the change of basis matrix, then the translormed matrix is a diagonal one:

A-5'AS
e 0 (1l.a.b)
0 1 —ge

and the bad conditioning is clear since for ¢ — 0 the first diagonal entry vanishes:

1 — 1
L large ¢ (12}
e

cond| A L'und.[;i]

Let us take a closer look at what matrix S represent=. 1f we take its columns as
double-layer density distributions, then the first column corresponds to oy 2 = 1,
and the second one to — iz 1 [==e figure .'*3]. We must recall that a
double-layer density distribution can be thought of as two single laver distribu-
tions of equal strength but opposite sign in the limit when the distance between
the single laver distributions tends to zero, keeping the product of the distanos
and the strength of the single layer distributions constant. By convention, the nor-
mal vector points from the negative charge side to the positive one for a positive

double layer distribution. Note that this distribution corresponds to a svmmetnc

5
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arrangement of charge about the symmetry plane, whereas the szcond column,
corresponds to a skew-svmmetric one. The coefBicients in matrix A are the in-
teraction coefBcient between these two distributions. It is clear from symmetry
arguments that the symmetric arrangement can not have a non zero interaction
with the skew-symmetric one, and this explains why the off-diagonal entries in A
are null, Now, regarding the diagonal entries, for ¢ — 0 the double laver distribu-
tion of panel 1 tends to cancel that one of panel 2, =0 that the held vanishes to zero.
The Arst diagonal entry in A see equation [11.h), represents the self-interaction
coefficient of this arrangement, and then, vanishes for ¢ — 0. In contrast, in the
skew-symmetric arrangement., the Oeld of each panel tends to reinforce that of the
other and, in the limit, a single panel with the original distribution which i= twice
a= much 15 obtained. The second diagonal entry corresponds to the szli-interaction

coelficient for this charmge distribution and then, it approaches a non-null value for

£ — (0. A= for this very simple I[J"'-.’Fm,., 2) case S—L AS i= diagonal, then:
A — 8 diag(s~ ' As)5™! (13)

where diagiX) stands for a diagonal matrix with the same diagonal entries of X:

Xy o ...
| 0 Xeg 0 .
diag{X) : 0 Xsz 0O .. (14)

It 15 well known that the best preconditioning €@ is that one that most resembles A

for a given computational effort noinverting a linear system for the preconditioning

matrix. [n this simple case we can take Q = A, and from [13):
Q — 8 diag(5~' AS) 57! (15)

and this preconditioning will give a preconditioned matrix which is the identity.
and then i= optimal.

In the next section we will extend this preconditioning to the case with large
number of panels and we will show that it has good preconditioning properties.
Note that the computational effort in solving a system for Q as in [13) is negli-
gible since the change of basis 15 performed by J"'u’w“l.-"ﬁ sums and differences, and
the imversion of the diagonal part of the transformed matrix involves € Npan)

operablons.
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7. Symmetric airfoil:

Consider now the case of a symmetric airfoll discretized with a large number
of panels. It 1= easy to sse that it sufhices to consider the interaction coefhicients
between two pair of panels as shown in Agure 4. As the airfoil s symmetric, panels
2 and 4 are obtained from panels 1 and 3 by reflection about the center plane of
the airfoil. For simplicity, we will assume also that all the panels are parallel to
the svmmetry plane, and that panels 1 and 3 are identical [and then 2 and 4}, but

these assumptions are not essential. T'he structure of the matrix is then:

— L5+ e L —pE 0
i _pe L, — U th (16)
—p 0 —Lha + e L

15 — s} qe 0 — P
A
l

Of course, the 2 % 2 disagonal matrix blocks, are the the same as in the 2-panel
example. Regarding the off-diagonal terms, the in-plane coeflicients like Az, Ag.
Aay and Ays are null, which can be easily shown from (6). whereas the others, like

Ay are Of¢) and negative, sav —pe. Now, we write the change of basis matrix as:

[] 01 0 "
| -
q [] o 1 0 (17)

MNote that, again, the first two columns correspond to symmetric (with respect to
the horizontal plane of symmetry)] distribution of potentials, whereas the last two

correspond to skew-symmetric ones. The tranpsformed matrix is

qE  —p 0 0

- - 0 0
A 0 0 1 — ge il (18)

0 0 Fils 1 — e

and it is verified that the off diagonal 2 % 2 blocks are null. In addition, the
first. block diagonal entry corresponding to interaction coefficients between the
svmmetric distributions has terms ((¢), whereas the second block diagonal entry

corresponding to the skew-symmetric mode is €2{1). The condition number is again

10
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3[1/e) and can be corrected with the preconditioning defined by {15). Effectively:

cond [AQ ') = cond (A8 diag(37' A8 s
cond [ A di.t:np__[‘i]l_ljl

1 —p/fla 1] ]
[—m’rr 1 0 0 w (19)

i [] 1 pef(1 — e
|_ i i pef (1 — qe) 1 J
(1) for e—0

B Non-symmetric airfoil:

In this case the change of basi=s does not decoupls the problem as cleanly a= in
the svmmetric case, but we can still show how the propossd preconditioner gives
an (1) condition number, which is verified afterwards with numerical examples.
A= before, we will consider only two pair of panels. For convenience we make the
following block decomposition of A

- A A,
A e (20
A, A__
where each of the sub-matrices are 2 % 2, and we will assess the order with respect

to € of each of the elements in each of the blocks. This is done in the Appendix

and the conclusions are:

Ay =AY, O (21)
Ay = EAY O (22)
A =AY+ O[] (23)
A =AY | O (24]

where ;54.". 31},
9. Efficiency of the preconditioning:
From (21}, (22), (23) and {24) we can write:

- eA* At n
A~ [:Eilil, ii_] (25)
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It is clear from this expression that cond(A) ~ 1/e {or worse). In contrast, il it is
preconditioned with [15):
AQ" = A [Sdisg(ST'AS)S ']
ASdiag(8 A8 57!
SA diag(A)~!8™

A%, A ding(A* 0 !
s t:e_l‘l _J_:| [E I-.‘"-n-l:: | I:] . - :| E_I I::EEEL—[::I
_-f._ﬁt_l A:_ _[] d_legl::ﬁu__]
[ J-‘n.l p disg{ A%, ! A% dieLnle"__]_| -
e B . —1 " —1 S
uﬂL ldlmn[,"-'h ] A diagiAY_)
s (A% diag(AY ]-' il‘i_dleml[il‘__]_l g1
i 0 A? _diag(Ar )™

and then:

cond [AQ™Y) = O(1) (27)

provided that the argument matrix in (26.d) is non-singular.  Again, the bad
conditioning is causad by the symmetric modes. Due to the tendency to cancel the
feld of the facing panel when ¢ — 0,the field produced by these modes is () and
=0 are the interaction coeflicients [the first matrix column in (25)). The diagonal
preconditioning (in the transformed hasis) successfully corrects this behavior,

10. Explicit expression for real (Npan = 2) meshes:

We give now the explicit expression for the change of basis matrix for the
rage where Ny, = 4. We assume that the panels are numbered so that panel
2n — 1 and 2r are on opposite sides of the airfoill and they collapss to each other
for ¢ — 00, The change of basis matrix 15 [ormed by putting Grst all the 1"'..’1,,1,,"'2

svmmetric modes and after the skew-symmetric ones:

= [er (2]

where I stands [or the identity matrix of [Npan/2) % (Npan/2) and the Kronecker
product @ of two matrices 1= defined by

BiA BpA HBisA -|

A= B [ffg”’h HooA  Hog A {gg}

With respect to the limits of applicability, the mesh on both surfaces have to be

congruent, e, for € — 0 the nodes and elements have to ooincide with each other

12
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and the relative shilt has to normal to the surlace. Bmall deviation or distortions
are acceptable provided that they are small with respect to the average element
size (see figure G).

11. Multipolar preconditioning

This preconditioning somewhat follows the lines of the modal one previously
presented, but it s oriented towards to a single surface, instead. It also has some
resamblance to multignd methods, We will see in the next section how to combine
it with the modal preconditioning. Consider. [or instance, two pair of panels as
shown in figure 7 and let us start with the same change of basis as before eq. {17).
We assume that both panels are coplanar and have the same area. "T'his = true or
nearly true for highly structured meshes, We will discuss later how to extend the
multipolar preconditioning for unstructured ones. We make the same block split
as in (20) and we will analyze each block at a time. Consider an off-diagonal term
in A__ lile:

Azg = Yol Az — Aze — Aay + Auz) (30)

As before, Agy— Ags is the potential produced by a double layer density distribution
of g t1 on panel 1 and g = —1 on panel 2. Suppose now that panels 3 and 4

are [ar from panels 1 and 2, e
| x| = |2a4 — 12| 3= K (31)

where xg4 15 the centroid of the “panel cluster” composed of panels 53 and 4 and

s0 on. Then, we can approximate Ag — Az by a quadrupole expansion:
Iz
Az — Ago = —3ah — r.‘ug[.':.y..z]l I::?ﬂ::l
T

where a i the area of the panels, the system zyz i=s chosen as in igure B, and
2=y 3,!2 I 22, Now, let & be a unit vector going from the centroid of panel 3

tor that of panel 4. Then:
Azq = — Yo[da(xas + Vahs) + Pra(xar — Yohi)]
== Whh(s . Vieag) (33)
Ok fr?)
Note that this is @[{k/r)%] smaller than the typical interaction coefficient between

two panels, which has tvpically a decav rate of a dipole I’J'[]frzj. [n contrast,

13
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the disgonal elements are (2{1). In a similar way, it can be shown that the off-
diagonal elements in ﬁ_u_| and A {— are l’__,-'[f.ll.l"r'i:l. I'he diagonal elements vanish
by symmetry. Finally the element= in ..5” v are basically the same as if we added
each pair of panels in a single larger panel, with two points of collocation, e it
has the same structure of the original matrix & buat it has a dimension which is
smaller by hall. In briasl

A ['U':I}' FO(1/77) Ofh/r5) ] (34)

O R/ QI+ (R
where O(I) + O{1/r*) means that the disgonal elements are O(1) whereas the
other off-diagonal terms are E[ll."'rzjl. The preconditioning we propose is obtained

retaining only the ..EL| ¢ block and the diagonal part of A
Q-5 [A[!I | die:g_l:[‘]d_t__]] s~ (35)
The computational effort in ioverting this conditioning corresponds to inverting
the A i+ block. As this has hall the dimension of the full matrix, the core memory
requirement i one fourth smaller and the CPU time one eight smaller than thoss
for the [ull matrix, which i=s a significant saving., However, panel applications are
limited strongly by the matrix size, and then, we are interested in preconditionings
requiting smaller amounts of memory at the expenss of higher CPL times. This 15
achieved using larger clusters. Conzider a cluster of four panels [bwo such clusters

are shown 1in hgure 9], The change of basis we consider s now:

-1 o0 1 1 1 0 0 07
1 o0 -1 1 -1 o 0
1 o 1 -1 -1 o 0
1 0 -1 -1 1 o 0
S =1 o1 0o o o 1 1 1 (36)
o1 0 o 0 -1 1 -1
o1 0 o o0 1 =1 =1
o0 1 0o o 0o -1 -1 1.

Columns 1, 3, 4 and 5 correspond to double layver distributions on cluster 1 whereas
the others correspond to cluster 2. Column 1 represents a constant distribution
of double layer density so its far feld expansion i=s a dipole, whereas columns 3, 4
and 5 have a null total sum of doubls layer density and their far held expansion

are therefore at least of the order of a quadrapale, see Ogure 10, T'he same ooours,

14



fterative solution of panel method discretizations.. .
Eld: panelid tex v 3.0 19930812 14:00 jdelia Exp §

respectively, for columns 2, 6, ¥ and 8 for cluster 2. IF we call the Orst two
columns as the “ modes™ and the rest as the “— modes”, and a block split in the
transformed matrix is induced. "'he matrices ..d_l| . ..d_l_| CA p— and A__ have,
respactively, sises of 2 X 2, 22 6, 6 % 2 and 6 x 6. "T'he behavior with respect to
h/r are as before or higher: for instance ,-'L,g corresponds to the interaction of an
octupole on cluster 2 double differentiated at the center of cluster 1. ''his is then
E[F.l.1l.|"rn]. The size of the Ay block in the preconditioning given by (35) is now
2 x 2, one [ourth the size of A

In this way, by recursion, larger and larger clusters can be used and the
dimen=ion of the matrix to be inverted 1= D[J"'u"pm.l,-"r?a:l where m = 2" iz the number
of panelz in a cluster. Consider a cluster of 27 panelzs, then the “in-clusfer” change

of basis matrix Sopsier 15 delined recursively as:

Sc'lua-lr'riﬁnj 5I:‘|IJHlI."|'[E:] = EI:'|IJHI.I."F[2"_I::|
Sumen(2) - L[ 11 (37)
cluster '.,-"'E 1 —1

We split Busier in its first column representing a constant distribution of

double layer density and all the rest representing higher order distributions:

Sciuster | 5 I 5,

cluster cluster |

(38)

where:

5! a=in=biry 1 L1 (39)

oluster

and 8, e 5 a matrix of 2" = (2" — 1) with the rest of the columns. The

change of basis matrix is, then:

E1|1'|:- | 5 I

eluster

I 8, ®I] (40

eluster

where I is an identity matrix of =size J"I."]m,,l.-"iir". Finally we would like to say
a few words on the implementation of the change of basis for large clusters. As
long as not =0 large clusters are usad, the cost of a change of basis is negligible.
If very large clusters are vsed, and a “paive” implementation {i.e. as a literal

matrix-vector product) is used, the cost could affect performance. However, this
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kind of change of basis can be seen as the “discrete Haar transform”, which s
well known in the theory of discrete signals, There are eflicient implementations
of this kind of transformation, in the same spirit of the well known Pasé Fourfer

Transform algorithm.
12. The modal and multipolar preconditionings combined

T combine both preconditionings for a thin aicfoll, we frst transform the
matrix to the modal symmetric/skew-symmetric hasis, as explained in section §7

and §8. The change of basis matrix is:

-1 0 .. 1 0
1 0 1 0
01 o0 .
a1 N 0 —1 i
, 0 1 S0 ]
E|||-::-:l 'u"_lﬁ (] 1 (] —1 {l]::l
: N : 0 '
N i

And the transformed matrix is:

- _ A H ‘i b—
-""lrn-::-d E‘1|1|:|-:I I As'rn::-d [ ATTIJ " TTI ] {'[E]l
mioel il

For thin airfoils (e — O) jt;;l tends to a matrix with interaction coeflicients
for pansls with double laver density distributions, as if the finite thin airfoil wers
replaced by a mero thickness airfoil at the center planse. We can then apply the
multi-polar preconditioning with, =say, 4-panels clusters. T'he change of basis ma-
trix is the identity for the symmetric modes and the multipolar matrix Sqpp for

J"I."lm,,l.-"ﬁ pancls given by (40):

S Sut |y o | (13)

T'he transformed matrix has a structure of the lollowing form:

. Att At— g
Ao/ s 'AS [ ~mod _ raed THE (44)
e Sml!:'"""“uu:lm E"':JAIIItIlE"”F:'
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The Bup change of basis matrix induces a block decomposition [E[]] i jtmnd

and the same estimation of the arder of coeflicients as in equation [34), section

L1, i= walid.
=+ = +-

A‘lu-:l.."rrl]:- A‘lu-:l.."rrl]:- |::|.5::|

A

SoLA T B

mpE* Hmod

A

mel Smy mel Smy

The combined modal and multipolar preconditioning is obtained in this basis by
=+
neglecting all the non-diagonal elements but thoss in A Lq 50 that the combined

preconditioning is:

[dm(.ir'm:d] 0 0 -‘
=+
del."lnp 0 "'5‘1|1-:I_,"1|1|::- 0 |::|.E::I
0 0 ding| A g )

=+
The cost of this preconditioning is related to solving a svstern for Aggeg which

i5 a system 1"'n’1mh.n"ﬁm. i 2 times smaller than that of the original one. In
the himit of a very large cluster size [2m .l"-’l_m,.,:l the modal/multipolar precon-
ditioning approaches the pure modal one, since the preconditioning is diagonal
{in a somewhat confuse notation we refer to 2m as the size of the cluster so that
a “modal/multipolar preconditioning with 64 panels/cluster” stands for a modal
preconditioning combined with a multipolar preconditioning with 32 panels per
cluster]. For simplicity, we have considered so far that the geometry 15 composed
of a single thin airfoil. In the general case, some other elements not necessarily thin
as, [or instance, a fuselage are presant in the geometry, In that case the change of
basis matrix is block diagonal, with the identity matrix for those elements not in
the thin airfoil part, and the vsual modal change of basis matrix for thoss which
ara on the thin airfoil. After this, the change of basis matrix for the multipolar
preconditioning is constructed by clustering those elements in the thin airfoil, as
well as these in the other (non-thin) parts. The extension to several thin airfoils
i5 also simple.

13. Wumerical examples

Firstly, we will show several small scales (approx. 200 panels). The inter-
eEk of these examples is that we can compute the full sigenvalue distribution and
condition number using standard LAPACK routines (embedded in the high level
scientific programming language Octave). Secondly, convergence curves for exam-

ples with large number of panels (> 12,000) will be presented. We consider first

17



fterative solution of panel method discretizations.. .
Eld: panelid tex v 3.0 19930812 14:00 jdelia Exp §

a thin biconvex spherical lens as shown in Ogure 11 of relative thickness £ "The

expression for the surface of the lens is:
2] + R/ tan(@)]® + =2 + o* = (R sin(#)* (47)

where the angle # is given bv § = 2tan({#,/2). In igure 12 we see the behavior of the
condition number as a function of the relative thickness ¢ for the modal/multipolar
preconditioned (@7 'A) and non-preconditioned (A) matrices. Four values of
thicknesses ranging from 25 % to 0.2 % have been considered. It is verified that the
condition number for the non-preconditioned matrix is Q1) for ¢ — 0, whereas it
is almest independent of e for the preconditioned matrix, Moreower, the condition
number 15 nearly the same for all cluster sizes. Remember that the computational
effort involved in the preconditioning is roughly inversely proportional to the clus-
ter size. However, we will 22 that in practice the rate of comvergence does depend
on the cluster size. T'he mesh was composed of 192 triangular panels. In figure 13
we =2e¢ Lhe eigenvalue spectra for the lens for two thicknesses. 'I'he mesh was the
same as in the previous paragraph, the modal /multipolar preconditioning has been
used. Note that in all cases the esigervalues are clearly separated in two branches
for the non-preconditioned case, and each branch has J"'l."lm,,l.-"E eigenvalues., This is
typical for problems where a symmetry “separates” branches of eigenvalues, As the
thickness gets smaller the lower branch, 1.e. that one with the lowest [in absolute
value) eigenvalues, gets smaller too, and for very small thicknesses (as § = 0.2% in
the Agure) the lower branch is clustered near the origin, whereas the upper branch
it clusterad near |A| = 1. In contrast, the spectra for the preconditioned matrices
remains almest unaltered. In figure 14 we see the convergence history for the 5
U thick lens at 0. 5 and 90 degrees angles of attack, and cluster sizes ne rang-
ing from 2 to 64, where the Bi-Conjugate Gradient (BCG) [18 -19] algorithm was
uzel, The curve labeled as 17 stands for the non-preconditionsd problem.  For
incidence at 0 degrees the flow is svmmetric, and then the skew-svmmetric part
of the equations is not excited, then the rate of convergence 15 poorly improved
by the preconditioning. In the other cases, the improvement in the rate of conver-
gence monotonically decreases with cluster size. For a typical case of incidence at
O degrees we see that even with a large cluster of 64 panels the improvemeant in the
rate of comvergence is significant. Similar plots for thickness of 0.2 % are shown in

fAoure 15, "The improvemnents are more signihcant for thinner lenses, as expectad.
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Figures 16-18 show similar results but for a symmetric delta wing, with a wing
section consisting of a svmmetric Joukowski profile. Figure 19 represents curves
of convergence for a delta wing with a typical section being a Joukowski profile,
where 12,2882 panals were usad and the airfoil thickness was 8 %, see figure 20. In
this case both Conjugate Gradient Squared (CGS) [20] and Bi-Conjugate Gradi-
ent [BOCG) methods were used without and with a preconditioning of 32 panels
per cluster. We can see that the improvement in the rate of convergence by the
preconditioning 1= signihcant with both methods and the performance with OG5 s
better than with BOG, In all cases we show convergence history versus number of
matrix-vector products (which we will call here on “work anits”) and CPLU time.
A work unit involves computation of the interaction coeflicients by columns and
standard dot products or DAXPY [the LINPACK vector sum routine] operations.
T'he ex pression for the interaction coefficients involve transcendental functions and
is, by far, the most time consuming part of the work unit. 'I'n estimate the speedup
obtained with the preconditioning we estimated the rates of convergence as the
reciprocal of the mean slope of the curves with and without preconditioning {as
the curves are often noisy, the choloe of such 8 mean slope 15 somewhat arbitrarcy,
the dashed lines in the figures represent the mean slope we adopted). In the case of
the residual versus work units curves these rates are expressed in work units/order
that iz, the number of work units needed to reduce the residual by a [actor of ten.
In the rcase of the residual versus time, the corresponding unit is CPLU hrs/order.
Wiork units rates have the advantage that are independent of processor speed buat
do not take into acoount the overhead needed by the preconditioning. [t includes
changes to and from the modal basis and a back-substitution for the precondi-
tioning matrix. For the 12,288 mesh with a 32 panels/cluster preconditioning the
ovarhead represents a 6.9 % of the matrix-vector prodoct operation but depends
strongly on details of the implementation.  For instance, on & vector processor
the overhead tend to be smaller, since the preconditioning operations (mainly the
back-substitution) i much more prone to vectorization than the computation of
coelficients, On the other hand, it 5 common to evaluate the interaction coefhi-
cients for distant panels using far-field expansions. In this case the overhead tends
tor be higher, "I'he speedup is defined as the quotient betwesn the rates with and

without preconditioning, and is a little higher for the work units rates than thoss
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bas=d on CPL time:

Speadup (work units) CPLU time for a work unit with prec,

Speadup (CPLU time ) CPLU time for a work without prec.,

preconditioning CPU time overhead (42)

CPU time for a work unit without prec.
=1

Note that solution of the full svstern matrix would require 1.2 Ghvtes of RAM.
whereas the preconditioning matrix only requires 1.2 Mbytes, Indeed, this problem
was ran on a DEC ALPHA /200 workstation of 233 Mhz where the core memory
requirement was anly of 5.2 Mbotes,

14. Conclusions

The modal /multipolar preconditioning successfully corrects the bad condi-
tioning arising from thin airfoils. [t has been shown that the condition oumber
for the resulting linear svstemn is O[1/¢) whereas for the preconditioned system it
i5 almost constant, Mumerical results for a biconvex lens and a symmetric airfoil
are shown, and significants in condition number are obtained even for airfoils as
thick as 25 %,
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168. Appendix :

17. ﬁ_L_| block: Consider for instance coefficient Ay which fram (11.a) and (17)
i

Ay = YalAy 4+ Az 4 Agy + Azz) (44)

Recall that ;'1,.-_-; i5 the potential produced by a constant distribution of double layer
density on the i-panel on the centroid of the j-panel. IT we call ¢ the potential
produced by a distribution of double layer density g = 1 on panel 1 and g = 1 on
panzl 2, then:

A + Aiz = o) (50)
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But, as we discussad previously, for ¢ — 10, the double layer densities tend to cancel

each other and we have:
dh — e (51)
where -:,f_:- i5 the potential produced by a constant “guadruple laver” density., Now:
Ay = Yaleblr ) + dfxz]]
— Yo [Bix1) + ()] (52)
— Yae (%12
where x5 i= the point lying in the middle of the segment joining x; and x5, This
is =2 [or all the elements in the block and then (21) is obtained.
18. A_, block:
Consider first a non-diagonal coefhocient:
Agp = VYol Aay + Az — Agy — Aya)
al(xa) — 3xa]|
— e 3xs) — )] o)

5 B
— 1he” 5 (xa4)

where z = a coordinate normal to the panels 3 and 4 and we have vsed the fact
that ¢ is well behaved at %5 4. Jhi=s reasoning is valid for all the non-diagonal
glements in ..54._| , A5 ..54.33. For the diagonal elements:
Agy = (A + Ajg — Agy — Asa)
Walb(axy) — laea)] (54)
e [d{x1) — a(x2)] + (%)
but now & has some degree of discontinuity across the panel and it can not be
expanded in power series. However, as mentioned abowve, the “goadrople laver
density™ 15 a symmetric distribution of density about the center-plane and then
-'.'_1[:.'«|:|3 | zi) 15 even about z = 0 =0 that:
Agi = Yae [d(x1) — Blxz)] + O
Lo |r.71|:::."|:|2 b lben) — dlxiz — Loen )| E[:E:I (55)
")
A=z all the elements (diagonal and non-diagonal) are C-‘[:E], and then (22} is ob-

tained,
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19. A, _ block:
Consider the off-diagonal coeflicients:

Aaz = oAz — Azz + Ay — Aaz) (56)
5
wixa) + w(aa)
where 0 15 one half the potential produced by a distribution of double laver density

g =1 on panel 1 and g = —1 on panel 2. In this cass, the double layer densities
tend to reinforee each other and:
W—w for £ —0 (57
In addition, ¢ is well behaved at x3 4 5o that:
Aga — wb(xa) + b{xq)
— Zefi[xca1) (58)
1]
in contrast, the disgonal terms are of the form:
Az — 2] + {3a)
(59)
M)
since 1'_ i= odd across the panel. Then, (23) is obtained.
20. A__ block:

For the off diagonal terms:

Az = W(As — Asa — Ay + Aga)

i) — wi(ay)

— wi{m) — () (A1)
— f-ﬁ[xml
D[:}I

sinca 1'_ i= wall behaved on x3 4. On the other hand, for the diagonal terms:
Ass = WAy — Az — Az + Az)
iy ) — (xz]
— (1) — ¥i[xa) (1)
— 2 ()
1]

since ¥ is odd across the panel. Then, (24) is abtained.
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22, Notation and symbols

22.1. Notation

A % B = Kronecker product of two matrices defined by (20)
22.2. Greek letters

[" = airfoil surface

2 = exterior domain to the airfoil

vanishing parameter scaling the airfoil thickness,

™

i = velocity potential
jt = double layer density on the surface.
o = single layer density

22.3. Latin letters

A system matrix of interaction coefficients for double laver density
distribution

A — matrix A in the modal or multipolar basis

L system matrix of interaction cosfficients for single layer density
distribution

H = length side of the square panels

0 = preconditioning matrix

8 — change of basis matrix

cond (X)) = condition of matrix X

d = distance between panels

diag( | 1) for matrices diag(X) i= the diagonal part of X, see equation
(14), whereas 2) diag(e. b, e, ...) stands for a matrix whose diagonal
entries are a, b.e, ...

g = potential produced by a single pansl on a normal axis passing through
its centroid

m — number of panels in a cluster

n — normal unit vector

Npan = number of panels

& = airfoil thickness

.. — undisturbed welocity
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Figure Captions

Crude realization of a thin airfoll with two panels.
Potential across the panel prodoced by constant double layver density
Svmmetric and skew-svmmetric distributions of charge

Figure
Figure
Figure

b =

=

T'wio pair of panels on a symmetric airfoil.
T'wo pair of panels on a non-symmetric airfoil.
Fiffect of small distortions in the efficiency of the preconditioned.

Figure -
Figure
Figure

| o an

Figure 7: 'I'wo pair of panels on a surface.

Figure & Local system at a panel cluster.

Figure 9: T'wo clusters of 4 panels each.

Figure 10 Distribution of double layer densities on the 4 panel cluster.

Figure 11: Geometrical deseription of the lens.

Figure 12; Condition number versus thickness for the lens with several cluster-sizes
Mo

Figure 13: Eigenvalue distribution for the lens with thicknesses 5 % and 0.2 %.

Figure 14: Convergence histories of residual for the 5 % thick lens at several angles
of attack and cluster size n,., where 17 stands for the non-preconditioned
problem.

Figure 15: Same as fgura 14 for the 0.2 9 thick lens.

Figure 16: Condition number wersus thickness ¢ for several cluster sizes n,.

Figure 17: Convergence histories of residual for the 5% thick svmmetric delta wing
at several angles of attack and cluster =size r..

Figure 18 Same as fgure 17 for the 0.2 % thick delta wing.

Figure 19: Convergence curves for svmmetric delta wing 8 % thick, 12,288 panels,
cluster size r, — 32,

Figure 20: 12,288 panels mesh for the 8 % thick delta wing.
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