Computing Ship Wave Resistance from Wave Amplitude
with a Non-local Absorbing Boundary Cendition
(submitted for publication to

Communications in Numerical Methods in Engineering)

by M. Storti, J. IVElia and 5. Idelsohn

Grupo de Tecnologia Mecanica d=l INTEC
GUemes 3450, 3000 - Santa Fe, Argenl:in.:
Phone/ Fax: 54-42-55.91.75, Fax: 54-42-55.059 .44
e-mail: metorti @minerea.unl.edu.ar

home-pags: htep: //venus.unl.adu.ar fgtm-eng. html File:

§ld: wdraglZ2iex,v 6,11 1997/12/16 15:16:11 mstorii Exp §



by Stogdi et.al
- wu'r.u.&_i".'-'.frx_,v 611 109702516 15:16:11 metarts F...t,'.'.l ¥

Subject Classification:

= THB20 Ship waves [ Incompressible inviscid fluids, potential theory [/ Fluid
mechanics

¢ (OMN30 Pinite elements, Ravleigh-Ritz and Galerkin methods, finite methods
J Partial differential equations, boundary walue problems [ Numerical
analvsis

Sumrmary

A method for computing ship wave resistance from a momentum Aux balance
i5 presented. It 15 bassd on computing the momentum fux carried by the gravity
waves that exit the computational domain through the outlet plane. 1t can be
shown that this method ensures a non-negative wave resistance, in contrast with
straightforward integration of the normal pressure forces. However, this calculation
should be performed on a transverse plane located far behind the ship, Traditional
Dawson-like methods add a oumerical viscosity that dampens the wave pattern
=0 that some amount of momentum flux 1= lost, and resulting in an error in the

momentum balance, The flow field = computed, then, with a centered scheme
. . . 1
with absorbing boundary conditions .
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1. Imtroduction

When a body moves near the ree surface of a fluid, a pattern of trailing
cravity waves 15 formed. 'he energy spent in building this pattern comes from the
work done by the body against the wave resistance. Mumerical modeling u[ Lhis
problem i= a matter of high interest for ship design, and marine -:rngin-:'trr'inqe_m
A= a frst approximation, the wave resistance can be computed with a potential
modal, whereas for the viscous drag it can be assumed that the position of the
surface is held hxed at the rt:fcrr-:'.l:lc't: hvdrostatic position, Le. a plans. 'This is.
basically, the Fronde's hyvpot heses

We concentrate in this paper in the computation of the Aow field and wave
rezistance for a body in steady motion, by means of a potential model for the fuid
and a linearized ree surface boundary condition. T'his 15 the basis for most ship
de=ign codes in industry. The governing equations are the Laplace equation with
slip boundary conditions on the hull and channel walls, inlet/outlet conditions
abt the corresponding planes and the free surface boundary condition. The [res
surface boundary condition amounts to a Neumann boundary condition with a
source term proportional to the streamlined sscond derivative of the potential.
However, the problem as stated =0 far is ill posed, in the sense that it is invariant
under longitudinal coordinate inversion {x — —x), and it is clear then, that it
can not capture the characteristic trailing waves propagating downstream. To do

this, we can either add a dissipative numerical mechanism or impose some kind of

“aheorbing boundary condition” at the outlet boundary,

Uznally the wave resistance is computed from straightforward integration of

the pressure forces over the hull, However, it 1= well koown that this can give
negative wave resistance, which is physically inr_'u['rLtLi. Fiven for potential flow
without free surface pressure integration yields non-zera (either positive or nega-
tive) drag, whereas it is well known that in such situation the drag should be null.
This non-phvsical drag 15 caused by incorrect integration of the pressure [orces,
specially in regions with strong wariations as near the nose in airfoils.
Alternativelv., the wave resistance can be computed from the downstream
wave pattern by meanzs of a momentum flux balance, In order to ensure a correct
evaluation, this computation should be performed in a plane located [ar down-
stream from the ship., However, traditional Dawson-like methods are dissipative
and some amount of momentum 15 lost, introducing an error in the computation.
Motwithstanding the fact that upwind or numerical viscosity methods are today

l—13

a well established technigque . it 15 evident the interest in Ainding a method

that do not lean on such additives. In another papm’l. wa presented a method
which 15 based on an absorbing boundary condition at the outlet plane so that no
numerical viscosity 1= nesded. The discrete wave pattern has no damping, allowing
the computation of force by means of the proposed momentum Aux balance. In
this work, we show in detail this computation.

2, Governing eguations

Conzsider the How around a ship moving at constant speed in a channel of

constant section which, for simplicity, 1= assumed to be a rectangle of depth H
and width L, as shown in hguare 1. "The Auid to be modeled occupies region 11

bl
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Figure 1: Geometrical descripfion. fus geepies

which is bounded byv: the channel walls and bottom ¥, the inlet foutlet bound-
aries iy our. the wetted surface of the ship Xship and the free surface ¥pee. '1'he
governing equations are:

Adp =10 for x in 11

g =10 at Xpee + Yoh + Eship

L[ Te? gy = WL At Ype (1.8-)
= x at  Fin

radiation h.es at Foui

The Laplace equation (1.a) comes from the assumption that the Aow is irrotational
and incompressible. The usual =lip condition (1.b) is impesed at the channel walls,
bottom and free surface. Equation [1.c) is the “free surface boundary condition”.
It comes from the Bernoulli equation (including a hydrostatic term gz,  stands
for the surface elevation] and it i= uswally linearized under certain assumptions
az=, [or instance, that the ship 1= either thin, slender, slow or deeply Euhmcrrp;crdd.
The “radiation boundery conditions” should allow, roughly speaking, the flow of
energy in the form of radiating waves to propagate downstream and exit cleanly at
Youte In contrast, no waves are allowed to propagate upstream to Y, so that we
simply impose that the potential should approach the undisturbed one there, Nota
that. the different treatment in ¥;, and ¥, 15 the only element that can break
the symmetry ¥ — —r, and ensure a physically correct wave pattern. Another
mean of doing thi=s = the addition of some “npwind” or “numerical dissipation”
mechanism.

In slow ship theory, the Qow iz decompossd in a basse How dy, also called

“double body flow”, and a “wave perturbation” Ilc:-w.1 o
b= dyg + (2]

The great simplification comes from the [act that the governing equations [or
both Hows are restricted to the domain 5 where the free surface X has been
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replaced by the undisturbed position of the free surface X pmeig. which in this case is
simply the plane z = 0. The double body Qow =atishes the Laplace equation with
slip boundary condition on the undisturbed free surface. As the undisturbed fres
surface is a plane, it acts as a mirror and the problem (s equivalent to an exterior
Aow around a closed body formed by reflecting [ “donbling”) the hull about the
undisturbed free surface. In addition, [ar (downstream or upstream) from the
ship the double body flow approaches uniform Oow ey Jeer. With all thess

A BT,

assumptions, the linearized governing equations for & are .

Ag =100, in

= 0, at ¥

=1, ab ¥, [3.a-]
ot K o =0, at Ypee

radiation b.os, at X

where K gl.-"ff.,,,_z 15 the characteristic wave number of the flow.,
3. Wave resistance from wave amplitude

Uzually, the drag on the ship is obtained by integration of the normal pressure
forces over the ship:

o P a8 (4]
’ }:s||i|:| f }-':H-Ili|:|:|.|.|.1|::-r'r

Pressure comes rom the Bernoulll’s equation:
P+ Yap( Vi) + pgz = pac + Yol (5)

from which (1.} is simply the particularization at the free surface. We will start
[rom these expressions to And an expression involving the state of the Auid at the
outlet plane only., The pressure 15 constant on the nop-wetted part of the ship
¥ shipuppers 80d, as the ship is a closed surface:

|

}:H-llip f :I:H|Ii'|:l:l.l.|:I|.1I."I'

[ (P — Proc | Rz d5

Eship

P dS — f Pog Mg 05
: }:5|Ii|.1 f }-':Hlli|:|:|.|.|.1|::-r'r

(6]

Since the surface }:i";-nul F ek + Eree + Eanip 15 closad (it i= the boundary of domain

0]
|[F' - F":-._]é.rl -n dS

:':in,."l:lul Foh HE et :I:H|Ii'|:l

f V. ||::j'.'.'— jI'J':-L:|E.1| di? (T]
LT

f 40
0 o
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where €, 15 a unit vector in the x direction and 10 a normal unit vector exterior to

(2. But &, -n — 0 at ¥y (since the channel has constant section) and p = po. at
¥iree and then:

)
I, —[ (P — Poc ) 72z d5 f ;—F dl} (%)

S T
5 1ot £

From the Bernoulli equation and using the irrotationality of the velocity vector
U =% and the continoity equation:

an

& o2
5 m'f’x Flap(Ue™ — L) — pgs|

. i (9)

and;

5
LE:{E! —pfnv-[{.!ruj 40

— 5 [ {.-'rr U.nds 111
) }:'ln_,"nul (R R e :':5I|i'|:- |: ]
—p 02 ds

A3

:'ln;'nuL
Replacing in [2):
-f';: I:--H:Iiu ] - ':-:l::-'r'-::-ul:l |:1 1 ]

where 7(x) is the momentum flux through the surface at a plane = = cnst.

(x) (0 — poc + pl72) dz dy (12)

o Eix

note that (11} is valid for any zin as long as it is located before the huall, but, as
the drag [orce must not depend on x;,, that means that ) must be of the form
shown in figure 2, it has some variation in that part of the © axis occupied by the
hull and is constant in the remaining part. The wave resistance P, amounts to
the difference between this constant values.

These expressions have been derived for the non-linear svstern (1) and we
have to find the appropriated expressions for the linearized form (3). Far from
the ship, we can assume that ¢y = U _x and then, using Bernoulli's equation and
neglecting terms higher than quadratic in the perturbation potential g«

Gix) [ [Yap|20ac(Une + ) + & — 6% — )] — ppz} dS (13)
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out

Fienre 2: Momentum fux @ as function of the longitadinal coordinafe e

EEN

Figure 3: The actual section ¥, s the sum of

and the “section chanse” A eine dangms

“the non-perturbed section ¥, 5
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MNow consider the contribution from the term:
el [ U, d5 = U M = cte (14)
Jv

Which 1= constant for all = |:J‘I..II i5 the mass flow through ¥, ). But a constant is
irrelevant in &x) since the wave resistance comes [rom a difference [=2e equation
(11)). The same is true for the contribution of the hydrostatic pressure from the
non perturbed channel ssction ¥, g (=se igure 3), and the contribution from the
rest AY, = ¥, — ¥, g can be explicitly calculated as:

Ly f2 7] Ly 12
[ [ z dz dy )f |_,-"2.r||‘E ey (15)
dy=—Lg f2 A== Sy=—Ly 2

Finally, as ¢ and » are of the same order, we can neglect the contribution from
o ‘ br - R Y . . . . .
& — --]'.v‘_!l,II - -p‘_!: over A¥ in (13). The appropriated linearized expression is then:

o
FL,F2

':-'if - .'i::. — .uf] dS — Yopg [ rJ'2 df (16)
dg=—Ly 2

x) = Yhp [

Een

4. Woumerical implementation

We will recall how the linearized svstem iz solved with the DNL{ from Discrete
Non-Local) absorbing boundary conditions and, then, we will see how expression

(16) is computed. Details an the DXL can be found in a companion paper

Channel typical section

W -

Figure 4: Partial discretization of the problem in vz, FEM unsfructured
mesh on the trpical channel section.eoe: wease
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4.1. Partial discretization: We will assume a F'EM partial discretization of this
PDIE in the transversal () and depth {z) directions in the far downstream and
upstream regions |z| = L. This is done by defining a FEM mesh on the channel
typical section (=ee figure 4), and replacing:

""Isln [+

dlx, ., z) ~ ¢l w, z) Z dplr) Nelw, z) (L7)

k=1

where Nypup 15 the number of nodes in the typical section, and N (w, z) the two-
dimensicnal interpolation functions. Replacing this in the Laplace equation{3.a],
integrating by parts and using the free surface boundary condition, the following
system of ODEs 15 obtained:

M. — K = 0 (18)

where:

: [1% -]
M — M — K 'Mp..

Mg ’f Nily,z) Nely, z) dy dz
A3 g

Mrree i ,f Nl z) Nelw, z) dy

oo

([ x) is the vector of nodal potentials and M and K are the typical FEM matrices
for the identity [mass matrixz) and Laplace operators. The modified mass matrix
M includes the “free surface mass matrix” Mgee. NV and Meee are positive definite
mass matrices, K iz positive semi-definite and all of them are symmetric. Due to
the negative sign in [198.c] M has not a definite SIETL,
4.2, The DNL absorbing boundary condition:

System (18] is decoupled in a series of scalar ODE's if we make the change of
basis T E_It}h. where 8 solves the ollowing eigenvalue problem:

KS — M5A (20

with A a diagonal matrix. We dencte by ¢y, the k-th column of A, i.e. the i=th
eigenvector and by Ay — Agp the corresponding eigenvalue. Due to the properties
of M and K (K 15 symmetric positive definite and M is svmmetric] it can be
shown that such decomposition is possible and 8 and A are real. We assume that
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the eigenvalues are sorted in ascending order. A has in general a certain number of
negative sigenvalues that, we will sze later, are responsible of the wave resistance:

{.5'-.:.- < 0; for 1 <& < Nigy (inviscid modes) (21]

Ap = 0; for Nige + 1 = k& < Ny (pure viscous modes)

In addition, as is usual for this kind of eigenvalue problems, the eigenvectors are
orthogonal with respect to both W and K, e

of Mg 0, ¢l -Kaé;—0, ifj#k (22)
The equation for each component Uy of U is
Uy gz — Ml =10 (23]

and its general solution is:

_ Bletiie® | pre=®#e2 for 1 < k< Nigy .
Uk[lj {Epl; I!..,|||“_..1' | Ek_ o HeT : Far -""riu-.- | 1 E 2 i -""rslnl'.- (.3'1.]
where i |Ag|. In order to have a bounded =olution we must have ﬂi!. 0 for
r= Land ap, =0 for x < —FL for the pure viscous modas and, then:
Lz iy =0 atx==x
bz T kT ML = N L. Najab (25)

Uiee — pe U =0,  at x = zin

These are the appropriated absorbing boundary conditions for the pure visoous
modes, The same criteria can not be applied to the inviscid modes, since they
do not grow or decay for @ — £00. However a detailed physical analvsis shows
that wviscous dissipation tends to shilt the pure imaginary eigenvalues towards
the Re{z} < 0 semi-plane. This means that E?f.: 0 for x == 0 and, then, the
appropriated boundary condition 1=

Upg =Upe =0 atx=1miy, k= Ny + 1,00, Naan (26)

Emuations [25,20] represent a set of 28, boundary conditions that closs the svs
tern of governing equations {18). Absorbing boundary conditions are well known in
the context of other wave-like phenomena like the Helmhbolts -:'qualinm-:.H_El. but
are =eldom used in the ship wave resistance prghlc‘m due to inherant dificulties in
developping such conditions, Lenoir A 'l'uunsil'. addressed the problem of absorb-
ing boundary conditions for the sza-keeping problem, which is more closely related
to the Helmholtz problem than to the wave-resistance problem. The boundary con-
ditions presented here for the wave resistance problem are completely absorbent.,
in the sznse that the solution = independent of the position of the boundary where
it is imposed. They are monlocal in the sense that, in the ¢ basiz, they repressnt
[ull matrices connecting all the unkoowns abt two consscutive layers at the inlet
and outlzst planes.
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For a rectangular cross section channel, the sigenvalue decomposition for the
continuum problem mav be solved in L'|IZ)EEI:I] form. as described in the work of
Patlashenko & Givoli® [=ae also Givali et.al. ™" ). However, [or several reasons, we
consider that it 15 preferable to solve the eigernvalue problem at the discrete level.
First, if the sigenvalue problem iz solved at the continuum level, then there are an
infinite number of eigenvalues, and the series must be truncated somewheara, [F not
encugh terms are added. then the boundary condition would have some amount of
reflection. In contrast, the discrete eigenvalue problem alternative, is “parameter
[re=” in this sensa, and gives absolutely no reflection. In addition, the discrete
version may easily include an arbitrary cross channel section {this may be useful
[or certain experimental configurations) and boundary conditions at the walls and
bt tom.

T'he extension to the [ull discrete problem (e, discretized also in the = direc-
tion] i= straightforward. Howewver, a detailed discussion s found in a companion

paper

The far hield expressions are:

N

=lak
Z EI:, el T D for @ =1
k I"'Ill'l' ! I [
qb[l::l ) Ninw Nalub l:j ' ]
z by =in( ppr + g )y Z Ty e Ty ¢ for @ L
| Bl ke =Njpy +1

where the imaginary exponentials have been brooght, by convenience, to trigono-
metric form.

4.83. Discrete expression for the momentum fux:

We now apply (16) to the partially discrete solution of (18,25.26). From [17):

: Nslab
ay = 22 meu[u}

A
: Nglak
= Zm ~ N3 2) (28)

; Nglnk
=gy = Y e )

Here the dotts means partial differentiation with respect to . We can compute
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each of the terms in [16):

f fIE dy dz { ﬂ ﬂ dy dz
I g Jr,

f.'i'r b

|_mh Nl J Fﬂlﬂlﬂhé;..ﬂu’., y.z-| dy dz
,[ szm S HZ ( JJ_

k=1
Nalah ) EEH]
Z -#:-_,. i [ [Nilw, z) New, z) dy dz|
||||z | : =, 0
Nylnb L.
N My
k=1
B M
{ [uiI I '.'J:f] diy dz
; :'.:-::I:I
[ (Vi) (Vo) dy
IE, g
Nslak Nelnh )
[ Z 6 VyeNjlwz)| - | Y b Ve Nilwz) | dudz (50)
- .'-'.'!:.:: |
Nzlnb
bR mk[ ¥y Nl 2)] - [V e N [, 2)] dy dz
jhe=1 X0
@' K
bl f2 by 2 ; 2
2 2 i
- dy = (Usaf 1) }[ [_ ] ey :
/;' —Lyj2 y=—Lyf2 x z=0 (‘;1]
EU'h;,-'llﬂ:lE &JT ']:|""If'r|:'|."';I;:I
Replacing this expressions in (16):
Glr) = Yoo [67 M - . Kop| (32)

Now we compute 3 To, ) by replacing ¢b for the downstream [ar-field expan-
sion in (32). Taking account of the orthogonality between the eigenvectors [22),

=i
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we arrive Lo

M

@7 K= — ¥ [Xe| b sin®{per + ye) (e Mebi)
=1
Nalab ) B
FoY L Al e (o] - M)
b= N+ e+
. (33)

@7 Mo = > [Ae|bf cos’ (pr + ) (dE My,
k=1

""I:slﬂh ) B

FoY L Awlag e (o] - M)

k ""'in'.-'ll
and then;
'l."'.-ll'l'l.' B
Glx) = Yap > [ M| B (@) - My

= o

N (3.a.b)

— g Z fji I[qlf:I Khy), pararx = L
k=1

As expected, this quantity is independent of . The same procedure can be applied
to = —IL and, as the amplitude of the inviscid modes 1= null there:

Glr) =0, for =< —L (35)
Now replacing in (11):
Niny
Fyo=thp Y B (o - Ky (36)
=1

Mote that this expression guarantees always a non-negative wave resistance.
Practical implementation of (36) involves transforming the potential vector
[or sewveral layers (bwo are enough) near the outlet plane to the U hasiz. The
transformation matrix 8§ has been already computed in order to compuate the
DNIL absorbing boundary condition. For each inviscid mode & the amphtode is
computed at both lavers l.r,l'g.lz.?._li_| ] and l.';].l[.?.‘,:] and the amplitude and phasa b, 4,
can be easily obtained. Off course, the phase 1= irrelevant to the caleculation of drag.

8. Wumerical examples

Beveral numerical examples will show that the proposed strategy gives alwavs
positive resistances and wvery well defined peals in the drag carve. We preseont
two 21} examples with analvtical solution and two 310 examples. Thres of the
examples do not include ship forms, and are based on a related problem where the
wave pattern i= produced by a local change in atmespheric pressure by a devies like
an hover-cralt., The advantage of this kind of problem iz that it has an analytical
solution.
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? 1 1 1

drag coefficient: (b/f1° Oy

=i 1 1

0.2 0.4 0.8 o8 1.0 1.2 1.4
Froude number: /U7 g f

Figure 5: Drag curve for the submerged dipole {exlinder with diameter
b < f). The drag coefficient is normalized to B § = L.rue: e

5.1. Submerged dipole: A submerged dipole can be thooght as the limit of
a cvlinder of vanishing radius. The problem was solved by replacing the dipole
by a perturbation in the atmospheric pressure, i.e. as an “equivalent hover-craft
problem”. The drag coefhicient can be computed in closed form and 1=
, Iz 2 3 —6 —2/F a7
[ — Am= (B )7 by e (37)
Pl =k

where [ l is the depth, & the radius of the cylinder (we assume B/ < 1),
and bT Uoaf W f. the Froude number based on depth. The FEM mesh was
stroctured, with 2 % 240(x) » 20{z) triangular elements covering the rectangle
|| = 6, =3 < z < 0. The mesh was refined near the surface in such a way that
Az porrom f Avuriace 100, Note that b enters only throogh the intensity of the
equivalent dipole, =0 that we plot I:E'.'l.-"_.l'}l'3 “w. which 1= a quantity depending only
on the Froude number.

&.2. Parabolic pressure distribution: ''his is another 217 example, with a

prescribed pressure distribution of the form:

RT3 1 e o
AP ].— [z/a)"; para |.1'.| 5 ui (3%)
R4 para x| = a;
The analytical drag coefhcient 1=
c. F,E 16 (Ka cos Ka — sin Ka)? (39)
P (Fa)?
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? [~ 1 1 I 1 1 m |
LS|
£ 18 |
T 9
#
= 5k — 1
|
[ 5 .L.rm
-
4| , 1
analytic
o= lﬁ{Kﬂ :::JHHG—H&J:LR’H}"!
ar b (Ka)? 1
Ka =Fr*
atb 4
FEM
Tt 80 x 10 elements 1
0 . i ¥
.2 0.4 () 0.8 T 1.2 1.4

Froude number: /U {ga

Figure 6: Drag curve for the parabolic pressure distribution.eos: cemps

where Ka ]l.n"l"rl‘E gﬂl.l"{.-'ntl‘:". and the Fr oumber 1= taken bassd on a. The mesh
had 2 x BO x 10 triangular elements with Ar = cte and Az poyom/ &2 surfaee = 10,
covering the region —6 = & < 2, =3 = =z = (],
5.3. Wigley hull: The drag curve for the Wiglev model 1805 A is shown in
fgure 7. 'T'he hull shape for this model 1= defined by +[1 — .'!'-:El.lfﬁ-l.::l[] -
0,627 /64)(1 — 22) for |z| < & z = —1. The “circular Froude coefficient” is defined
A=

250 [ O

r 2
B 'n:ih i'|:-|':I Lia

where (anip 453, is the volume of the ship. The FEM mesh had 50{x) =

13(%) = 13(z) = 2450 elements, and the results are in good agreements with those

o, (401)

found in the literature . No analytical solutions are available in this case (the
continuous curve in the small plot at low Froude oumbers simply fits the FEM
results). Note that a whole set of secondary maxima is cleanly captured, extending
to Provde as low as 0.1, In the other extremea, Froude numbears as high as 1.2 are
computed without problems. whereas standard methods lilke those derived from
Dawson suffer from reflections specially at high Froude numbers,

a.4. Rectangular pressure distribution: We consider a uniform rectangular
pressure distribution of width B and length L, such that L/5 35, for which

. . . . - . ] r
experimental and analvtical results are reported 1in Wehausen's review . No ana-

xXw
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Figure ¥ Drag curve for the Wigley hull, The confinuous curve in therus

wiglay

Iytical =olutions are shown in this case [(the continuous curve simply Ots the [ EM
results). This case i=s interesting., since it 15 purely 310 and large oscillations in
the drag curve at small Froude numbers are expected, due to the discontinuity in
the pressure distribution. The mesh had 30({x) % 15{y) x 10{z) = 4500 elements.
Coincidence with results reported in Wehausen's review are very good. Whersas
only the maximum around Pr = 0.33 (s shown in those results, we arrive here to
captura two additional maxima at br = 0,215 and 0.255, approximately,

6. Conclusions

We presented a method that allows computation of the wave resistance by
integration of the momentum fAux at the outlst plane instead of the traditional
pressure integration over the hull, A key point in this development is the use of a
centered method (i.e., without numerical viscosities) for the discretization of the
[ree surface operator, since this would represent a lost of momentum. Computed

xvi



hy Btorti et.al.
Bld: wdragl 8 tex, v 611 199771216 15:16:11 mstorti Exp ¥

. I e

0 0.2 Q.4 08 o8 T 1.2 Fr 1.4

Figure B: Drag curve for the rectangular pressure distribution. e susem

drag curves show very clean peaks, notably at low Froude numbers, and drags are
always non-negative,
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