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Abstract

An absorbing boundary condition for the ship wave resistance problem is pre-
sented,  In contrast to the Dawson-like methods, it avoids the use of numerical
viscosities in the discretization, so that a centered scheme can be used for the free
surface operator. 'T'he absorbing boundary condition 1= “completely absorbing”.
in the sense that the solution is independent of the position of the downstream
boundary and is derived from straightforward analysis of the resulting constant-
coeflicients difference equations, assuming that the mesh is 1D-structured (in the
longitudinal direction], and requires the eigen-decomposition of a matrix one di-
mension lower than the system matrix. The use of a centered scheme for the
[ree surface operator allows a full finite element discretization. The drag is com-
putad by a momentum Aux balance, 'his method 1= more accurate and guarantess
positive resistances,
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1. Imtroduction

When a body moves near the free surface of a fluid a pattern of trailing gravity
waves 15 formed. The energy spent in building this pattern comes from the work
done bv the body against the wave resisfance. Numerical modehing of this problem
is a matter of high interest for ship design and marine engineering [1-12|. As a
first approximation, the wave resistance can be computed with a potential model.
whereas [or the viscous drag it can be assumed that the position of the surface
i5 held hixed at the reference bvdrostatic position, Le. a plans. his s, basically,
the Frowude hyvpotheses, With this assumption, we are neglecting the interaction
produced by the boundary laver, which tends to produce a larger body, whose
wave pattern, in turn, tends to modify the potential fow which is the input to the
boundary layer process. Faen if a potential model 1= assumed for the houid, the
problem i nonlinear due to the free surface boundary condition.

We concentrate in this paper in the computation of the Aow field and wave
resistance for a body in steady motion, by means of a potential mode] for the fluid
and a lnearized (res surface boundary condition. 'This 15 the basis for most ship
dezign codes in industry. The governing equations are the Laplace equation with
slip boundary conditions on the hull and channel walls, inlet/outlet conditions
ab the corresponding planes and the frese surface boundary condition. The [res
surface boundary condition amounts to a Neumann boundary condition with a
source term proportional to the streamlined second derivative of the potential.
However, the problem as stated =0 far 1= ill posed, in the sens= that it s invariant
under longitudinal coordinate inversion {x — —x), and it is clear then, that it
cannot capture the characteristic trailling waves propagating downstream. I'n do
this, we can either add a dissipative numerical mechanism or impose some kind of
“ahsorbing boundary condition ™,

It can be shown that the addition of a third-order derivative to the free surface
boundary conditions, adds a dissipative mechanism and captures the correct sense
of propagation for the wave pattern. This 1= equivalent to use a noncentered dis-
cretization scheme for the sscond-order operator and [alls among the well-known
“upwind-technigques”. "T'he amount of viscosity added 15 related to the length of
the mesh downstream of the body, If the viscosity parameter 15 too low, the
trailing waves arrive at the downstream boundary, are reflected in the upstream
direction, and pollute the solution. If it 1s too high, the trailing waves are damped
and incorrect values of the drag are obtained. Extending the mesh in the down-
stream direction allows the use of o lower viscosity parameter, since the waves
are damped in a larger distance, but increases the computational cost [core mem-
ory ). Numerical experiences show that this third-order streamline viscosity term
i5 too dissipative and the meshes should be extended downstream too much, Daw-
son [1| proposed a method, where the fifth-order derivative is used instead, with
a vary particular fimte difference discretization. It 1= astomshing that standard
dizcretization of the same operator does not work, and neither do higher order
operators (sav seventh order). As a result, mest codes today are still using some
kind of variant of the Dawson scheme., However, this very particular viscosity term
i5 hard to extend to general boundary fitted meshes, not to mention unstructured
computational methods like finite elements. It = by this cause that most codes
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are based on a highly structured panel formulation.

Another possibility that is investigated in this work is to use an absorbing
boundary condition in the downstream boundary, 1If such a numerical device could
be found, then there is no need to add a numerical viscosity term. since the trailing
waves are not reflected upstream, and a usual centered scheme can be used for the
free surface boundary term. As a bonus, if such a centered scheme could be used.
then the trailing waves would not dampen and the drag could be computed in terms
of the momentum fow through a plane arbitrarily located downstream of the body.
Absorbing boundary conditions are well studied for other wave phenomena [13-19)
like the Helmholtz equation in acoustics but are harder to find in the context of
the free surface lows studied in this paper. Brosze and Romate |2| developed
an absorbing boundary condition for potential flow with a panel method buat in
the context of following a temporal evolution of the free surface problem and
Lenoir and Tounsi [17] treated the “sea-keeping” problem, which is closer to the
Helmholtz-like squation than the “wave-resistance” problem.

T'he abzorbing boundary condition we develop hers 15 based on straightlorward
study of the solutions of ODEs with constant coefhcients on unbounded domains
and follows closely the general case described in [15]. Onee we solve for the roots
of the characteristic equation, the unbounded domain solution downstream or
upstream corresponds to retaining in the general solution, those terms that decay
in that direction. For those roots with a null real part. a perturbation technique
determines the =ense of propagation. It can be shown that this s equivalent to
determining the sign of the group velocity for the corresponding mode. Once the
general unbounded domain solution is found, the absorbing boundary condition is
obtamead by differentiating this form and results in a full matrix coupling all the
degress of freedom on the outlet plane. This behavior is similar to the well-known
MM absorbing boundary condition propossd by Givali and Keller in the context
of the Helmhaltz equation [13,14].

2, Governing equations

Figure 1: Geometrical description.

Consider the flow around a ship moving at constant speed and with hxed
orientation in space (i.e. no pitching, yawing, or rolling are allowed ) with respect
to water at rest in a channel of constant section which, for simplicity, 15 assumed
to be a rectangle of depth H and width Ly as shown in figure 1. We describe the
fAow in a svstem of coordinates attached to the ship, =0 that the ship iz at rest and
the flow and elevation pattern arrive at a steady pattern alter an initial transient.
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The fluid to be modeled oocupies region £ which is bounded by the channsl walls
and bottom g, the inlet foatlet boundaries infouts the wetted surface of the ship
Yanip and the free surface Xpe.. The governing equations are

Ad =10 in  £2,

G,=0 at Eppee + Eoh + Eship

| Tl)* g = Yalle®  at ¥ (1.8-2)
b= U x at ¥,

radiation b.c.'s at X

The Laplace equation {1.a) comes from the assumption that the Aow is irrotational
and incompressible. The usual slip condition (1.b) is imposed at the channel walls,
bottom, and free surface. Alternatively, we will consider also the case of imposing
Dirichlet boundary conditions at the bottom: € = U . This is discussed both at
the beginning of Section 4 and in Appendix 1. Fquation {1.c) is the *dvnamic free
surface” boundary condition. It comes rom the Bernoulli equation {including a
hydrostatic term gz, i stands for the surface elavation) and it is usually linearized
under certain assumptions as, for instance, that the ship i= thin, slender. slow,
or deeply submerged. The “radiation boundary conditions” should allow, roughly
speaking, the Oow of energy in the form of radiating waves to propagate down-
stream and exit cleanly at ¥oum. In contrast, no waves are allowed bo propagate
upstream to 35, =0 that we simply impose that the potential should approach the
undisturbed one thers, Note that, the different treatment in 35, and ¥, 15 the
only element that can break the symmetry & — —r, and ensure a physically cor-
rect wave pattern. Another means of doing this is the addition of some “upwind”
or “numerical dissipafion” mechanism.

In slow ship theory, the Qow iz decompossd in a basse How deqg, also called
“double body flow”, and a “wave perturbation” flow & [3.7] defined by

b=y + o (2)

The great simplification comes [rom the [act that the governing equations for both
fAows are restricted to the domain 25, where the free surface ¥ has been replaced
by the undisturbed position of the free surlace Xpeeo, which in this cass s simply
the plane z = 0. T'he double body flow satishes

Adp — 0 in 0,
I:]-'I:I:rl l at Xeh 4 }:Hhi]:l F Xfresn. |.r_-i]

I:lil:l:" U':q._ -1 at }:-II'I_,"DIJL'

The wave perturbation component ¢ satishies a similar system, but with a lin-
earized [ree surface boundary condition. This linear boundary condition is ob-
tained by performing a hrst-order perturbation expansion of both the kinematic
(1.b) and dypamic [l.c) free surface conditions, and eliminating the surface eleva-
tion 7). This results is a combined Neumann-like boundary condition involving the

a3
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normal and streamlined second-order derivatives at the free surface. Several ver-
sions of the free surface boundary condition have been proposed (see [1-12], espe-
cially |[7-9]). which depend on the particular assumption (i.e. slow ship, thin ship,
or deeply submerged ship, for instance]. We will make use here of a rather stan-
dard slow ship expansion, but the process of developing the absorbing boundary
condition 1= rather independent of the specihic linearized free boundary condition
used., The governing equations for the wave perturbation potential are

Ao — 1, in £,
P on 0. at ¥ 4 }:Hhi]:l'
0, , at X, (4]
N I: Uu,'{.-rujl'ﬁ_j:] r.he, 8t e
' T T
radiation b.c.'s, at Mo
Here L Ppi and rhs is a right-hand side term involving the residual of

the Bernoulli equation at the reference ree surface = — 0 for the base flow. This
instance of the boundary condition has the advantage that it can be easily treated
in a finite element context, since the conservative form of the streamlined second-
order derivative can be integrated by parts. However, it will be clear from the
development through the paper that the proposed boundary condition can be easily
coupled to any version of the linearized fres surface boundary conditions. Tt will
also be explained for a finite element (FEM) discretization, but it is automatically
extended to any other kind of “in velume” methods: finite volumes (FVM), finite
differences [FDM) ar the vounger “mesh-less methods” [20,21]. The extension to
boundary integral methods as the “pans!” or “boundary element” ones is still in
developrment.

We will describe the method in a more restricted context, by replacing the
ship by a pressure distribution, 2. noouniform atmeospheric pressure. Phyvsically,
this problem corresponds to hovercrafts, and the nonlinear free surface boundary
condition is

Pl:x::l I I&Flvd:lj - pgry ftm Il.‘lzpf.-"mj. I:S]

where Fyim 15 the atmospheric pressure far from the disturbance and Pix] 15 a
given function. 1t 1= clear that once the absorbing boundary condition s obtainad,
it can be applied to the more general ship case, defined by (4], since the absorbing
properties are independent of the generating mechanism. The 31D examples below
carrespand to the general case of equations (4). Assuming that the disturbance is
small, Le. | P — Fyp| < |l.-"gp{.-’1":". we can take Pp = Ux as the base low and we
obtain the following linear problem for the wave perturbation potential:

Aa =10, in 2,

& = L, ab ¥op.

o — [, ab g, [G.a-e]
b+ K e = —(Use/pg) AP 2. at ¥iee,

and radiation b.es, at XMout, .
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Here K = g/ I.’,".j,,LE i= the characteristic wave number, related to the Froude number
Fr b

. ]
\h.'"llﬂ' :-':i|1'||::- 'l.."l}'ﬁ:- L‘&Ili]:- .

where Lship 18 a characteristic length of the ship. This problem is far more simpls
than the previous one since the mnvolved operator plus boundary conditions are
invariant under & translation in the = direction. o addition, we will assume that

Fr

(7)

the pressure perturbation has compact support. Le., that
AP =0 for |J:| = Lo, IZ?H]

3. Partial discretization

r”J‘\ - Channel fypical section

Figure 2; Discretization of the problem as the composition of a 200
discretization in yz and a 11D discretization in x. PEM unstructured mesh
on the tvpical channel section.

To apply the method., we have Arst to discretize the problam in order to obtain
a system of ODEs. Let 2. be the typical section of the channel [see higure 2}, then
w2 will discretize the problem in two steps by doing, first, a partial discretization
in ¥, and, then, a one-dimensional discretization in the x coordinate. We will
show how the partial discretization by finite elements 15 performed; the case of
finite differences 1= straightforward. Having a two-dimensional bnite element mesh
in the tvpical section we approximate the potential by

'r"rﬂlu.l:l

Bz, u.z) o dlry,z) = Y dwlw) Nelw, 2), )
b=l

where MNyab i the number of “free” nodes in the typical ssction: i.e. they do not
include the bottom nodes if IMirichlet boundaryy conditions are imposed 10 that part
of the boundary. Ny [y, z) are two-dimensional interpolation functions, Replacing
this in the Laplace equation(B6.a) and integrating by parts in gz, we obtain

M‘i‘,m: — K | f ‘""'-_.l ':.f:',r.l dyy = 0, (1[]]

-
“fress o
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where ¢z) is the vector of nodal potentials and M and K are the typical FEM
matrices for the identity (mass matrix) and Laplace aperators, defined by

[ 2]

otz = | 72
it "
My, [ Nilw, z) Nyp(y, =) dy d=.
Jvy.
Kk i} "-._"H:."'v'_.iilzy,z] -"-._"F;"ﬁ"k[y.zjl dy dz.
Jay.
Replacing @, from the free surface boundary condition (6.d), we arrive at
M . — Kb = Glx), (12)

which is a system of ODEs. T'he modified mass matrix M includes the “free surface
mass matrix” M, and Giz) is a right-hand side contribution coming from the
pressure perturbation on the free surface, defined b

M= M- K M., (13)
where
J'Ifrm..ljk f ."".-'j{_a;,[]]."u"k[y.[]]l iy, |:1-1]
:':f'rn:'u
anc
Gplr) = U/ pa) f Ny AP o dy. (15)
:':Frn"ch

M and M. are positive definite and semi-definite mass matrices, respectively,
K = positive semi-definite if Neumann boundary conditions are imposed at the
bottom, and positive defnite if Dirichlet boundary conditions are imposad at the
bottom. All of them are symmetric. Due to the negative sign in (13) M doas not
have a definite sign.

4. Modal decomposition

The general solution to (12) can be found by means of a modal decompesition.
Let 8, A be the salution to the sigenvalue decomposition problem.

KS — MSA, (16

with 8 nonsingular and A disgonal. For a Dirichlet boundary condition at the
bottom, this decomposition 15 assured by the fact that both M and K are EVITI-
metric and real, and K 1= positive definite. For a Neumann boundary condition
abt the bottom K i= only positive ssmi-defimite, but the oull sigenvector of the ma-
trix K can be treated ssparately and the problem is reduced again to K positive
definite [for details, refer to Appendix 1). We can assume also that 8 and A are

=
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real. We make the change of variables ¢¢6 = 8U, and system [12) becomes, after
premultiplving by SN a et of uncoupled equations of the form

Uppz — Aelie = Py, (17)

where

Flz) = 87 IM~! G(z). (18]

For small Froude numbers (large K): (i) the [ree surface term can be neglected
in (13), so that the problem is equivalent to the Laplace equation with some
prescribed flux on the free surface: and (i) the matrix M = M is positive definite
and all the eigenvalues {Ap} are positive, corresponding to the purely viscous case.
But, for the Fronde numbers of interest (typically Fr = {f'_"'nzl.-"fifm,il,]l":-', where Az
is the tvpical vertical size of the elements near the surface, see Appendix 2], N,
eigervaluss become negative, and we may assume that

{,.:'u.*. <0 for 1 =k < N I:].':J]

Ap =0 For Nige + 1= F = Nk

Fach negative Ap gives two complex conjugate inviscid g eigenvalues of the form
uE = i A (=ee Bzure 3).

@

Inwviscidl pure viscous
* laft-going
£ E L -
L A
. X
pure Viscous

nght-going inviscid

Figure 3; Eigenvalue distribution for the inviscid free surface problem.

The key part of the method relies on the solution of each of the 11} equations
(17). Physically, a radiation boundary condition is such that when it is imposed on
a boundary it gives the zame solution as if the boundary were “prshed”™ to infinity,
La. the “unbounded domain solution”., We will sz that for the positive Ag's, this
process of pushing the boundary to infinity has a well-deliined limit, whereas [or the
negativie Ay, 's, a perturbation analvsiz will be required. ''he treatment given here
resernbles the one given by Hagstrom and Keller [15], but here we consider in detail
the case of these negative eigenvalues (iL.e., not exhibiting a natural exponential
decay or growth).
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®

i

{right-going) (left-going)
) +4R

Figure 4: Pure viscous case (Heat equation with Newtonian cooling). The
efgenvalnes are on the real axis.

®

+i[A

—HIA

Figure 5: Inviscid case {Helmholtz equation). The p eigenvalues are on the
IMAZINArY axis.

4.1. The “purely wviscous™ case: Let us start with the Ay = 0 case, which
is equivalent to a 113 heat equation with Newtonian cooling in |z| < L and he-
mogenaous INrichlet conditions at = = 4. PFor the sake of clarity we will drop
the & subindex and. as we are interested in the limit for L — 20, we label the
corresponding =olution as U, which satishes

Uiz — AU = Fixr)  in x| < L,

(20.a-b)
[, =0 at 1 — [,

with A = 0. Due to the compact support of AP assumed in (8), I has the same
compact support, i.e.
Flz) =0 far || = Lap. (21

The solution ta this s of the form

U = Upwn + U p. (22)

where Iy yp i= a nonhomogeneous solution satisfying (20.a]) but not necessarily
the boundary conditions, and Uy g i= the general homogeneous solution, found
by looking for solutions of the form "™ and solving the characteristic polynomial

10
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which in this case |leads to g = £k with & VA (see figure 4). Then, the general
homogeneous solution 1s

Upplx) = ae® 4 beF" (23)

But, due to the assumption of compact support for the pressure perturbation (8],
F'is null for |z| > Lap and, then, an expression of the form (23) holds for Lg wm
in the region @ = Lap and = < —Lap. However, the coeflicients are different for
both regions,

t Rz I — .
{-'rf_:xllfl':' {E_\;”; by e FLap, (24)

kz =
o e f b e R [or € —Lap
MH MH = = “AP:

for o

The constants a and b are determined from the boundary conditions and result in

FoookL - —3BL | - |
—np € by e oy — by

a
b —byp e by e Fbyn — by
Tkl _ —2kL 1
and, letting L, — oo, we obtain
im a= —al.. lim & = =k, . 2
L N NH (26]

This defines the “unbounded domain solution™ limp—ac g for the problem. It is
clear that it s unique from the unicity of the bounded =olution. It can also be
shown that it is independent of the kind of boundary condition imposed at the
artificial boundaries r = £L. Moreover, it satishes

T {{b-‘!i” — bl e I:ur T = +Lap, (27)
Lo (agy — aky) e for = —Lap.
B0 that the “unbounded domain salution™ is such that it has only decaying compo-
nents for © — o0 in ¢ = Lap and vice versa for the left boundary, I we classilv
a decaving component to 40, such as e " ng “right-going”, and eF® ag “lafi
roime”, then we recover the well-koown rule for imposing boundary conditions in
the context of hvperbolic systems: Impose the incoming components to zero and
ket free the outgoing components. This suggests the ollowing modification of [20],
including “abeorbing” boundary conditions based on differentiation of the forms
in (27) as

Uae — AL = Fix) in|z| < L;

o+ e =0 ab x = L= Lap [2KE.a-c]

U, =k =0 at # = —L = —Lap .

It can be shown that the solution to this svstemn agrees with imy o U, . indepen-
dently of L, as long as L = Lap, of course. FEquations [28.b,c) are then referred
to as “complefely absorbing boundary conditions”.

11
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4.2, The inviscid case: Now consider [20) in the Ay < 0 case, which i= a
11 Helmholtz equation. The characteristic equation leads now too g +ik (=eo
figure 5] with k v-"m and the general solution to the homogeneous equation
is now of the form ae™®  be™ 2 After imposing the boundary conditions, we
obtain 3k S i B |

Ctagy e “ by — B

_ﬂ"!.-ll NH
I L I brL
STkl _ ikl : (29)

X

Clearly, this expression does not have a definite value for . — 22, and the denom-
inatar even diverges for BL = na /2. The same is true for 6. This result seems to
dizagres with the physical intuition. Il some acoustical experiment 1= made inside
a tube, and the length of the tube 15 increased, we expect that for a tube long
encugh the effects of the position or type [rigid wall, membrane, or anything else)
of the other end will be negligible.

®

g ] (righe-gaing)

fleft-going) (MK

Figure 6; The inviscid eigenvalues are “perturbed” with a small dissipative
term.

The solution to this paradox s that in the real world there exists alwayvs some
amount of physical dissipation. Roughly speaking, we propose to add a dissipation
term, classily the modes as right- or left-going and then let the dissipation param-
gter go to zero. However, the resulting absorbing boundary conditions will depend
on the particular dissipation operator chosen, and then the conclusion i= that the
dissipation operator has to be chosen as close to the physics of the problem at
hand as possible, such that the sense of propagation of the undamped waves is
preserved. As an example, we will first derive the absorbing boundary conditions
for the Helmholtz equation, as coming rom the wave squation in the frequency
domain. Later, we will derive the absorbing boundary conditions for the inviscid
modes, Ag = 0, Faen il it s equivalent to a Helmholtz equation, it will be shown
that the physical dissipation appropriate for the wave-resistance problem leads
to an absorbing boundary condition that is essentially different from the wawve
eruation in the frequency domain.

4.2.1. The 1ID Helmholtz egquation: Consider the 11 Helmholtz equation with
homogeneous Dirichlet boundary conditions at @ = £,

UiLzr | [FEE | icﬁ}lu.{;, i in |?| = L

I[.'i[].a- b
wip, — [ at 1 — 4L

El

12
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where wgp 15 the amplitude of the perturbation, w ch 15 the dispersion law,
with w the frequency and ¢ the spead of sound. Dissipation has been introduced
by adding a term #dw., with & = 0. & — 0. The characteristic eigenvaluss are
p = Fiky (see figure 6), where &y is the complex solution of

kst = w7} id, (31)

with Be {ks} = 0. As 55 | i is in the first quadrant, k; will be there also, e
Im {ks} = 0, and then

; o for @ — Foac
jetikaz| : * (32)
0 for @ — £50,

=0 that ik 1= right-going and —ikys 15 left-going. "'he general expression for the
homogeneous solution 15 of the form

LN (33)
Forming the general solution and solving for the constants,

—ady e L gy AR bgy — by
—Ziks L _ diksl 1

. . 34
— il L b Biley L | - (
b —byggy e |_"’:\'||*- ' _'I by — By
e dikg L nZiky L :
and again,
lim a— —agy.  lm b= —byy. (35)
fo—+ s Li—ma

As in (27), only the decaving components are retained in the far-field expansion,
=0 that

ettker,  for o= | FLap,

|I_Iilrn_!'._aa,-ib|:_-|-_-:| e {&.—H-'a.!-_ (36

for & = —Lap.
T'his i= the far-field expansion for the “viscous unbounded domain” solution for the
problem. and it can be shown that it does not depend on the particular boundacy
condition imposed at x L. The “inviscid unbonnded domain” 1= obtained by
letting & — 0 and 1= simply

u(z) = lim {b]i_rnx u,”,{.z]} . (37)

This is the salution we want. A kev point is that the order in taking the limits
does mal ter.
As ks — k For 8 — 0, it results that w  &®® for © = Lagp, and then
oy —thw =10, at x L= Lap, [3%)
is the appropriate right boundary condition, whereas
e+ iku =10, at = —L < —Lap, (349

is the appropriate left one. Again, the solution to the Helmhaoltz 11 equation with
these boundaries is the same as the limit salution (37), independently of L = Lap.
It can be shown that the defnition of right- and left-going are phvsically correct.
Indesd, coming back to the time domain, it results that right-going waves do have
a positive o group velooity, whereas the left-going ones have a negative —e group
velooity,

13
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4.2.2, The wave-resistance problem: Other numerical algorithms, notably thoss
based on the work of Dawson, do not use radiation boundary conditions, buat
|1'|=-::Lcmrl Lh.r_'_'-.' ﬂd.d a F.'IUH'JIE'.'FH'.H.II 'I.'J:':'E.'l!'HJf}-' term pr.npc:an.:-nHI L.U ﬂl-:#l_”_rﬂ. 1..l.r.hr:rt:= T
a “numerical viscosity parameter” or. also, a *Ravieich viscosity coefficient™. A
term proportional to . '-'-rffill’,:-::- i= also l:.ilkﬂa-IF:lHLHL h.ul the ::]HI'H[_'II ng of the waves s
too strong to be admissible for numerical calculations. Since after determination
of the sense of propagation we take the limit & — 0, precision does not matter here,
and we choose by simplicity the low order ¢ .. dissipative term. 'he perturbed
[ree surface boundary condition is

'#':n | hr_l (ql:':m" — & m.!.‘l:‘.T‘:' _Euxfﬂﬂ]j"r]:z- (1[]]

Repeating the semi-discretization process we arrive at the perturbed svstem of
ODEs
DM . — “_IMFFWE':I‘:.T'.I _d'flt’:::.r::'_ K GI::J'] |:"1-1]

and the characteristic equation is obtained by replacing ¢ = gyef*T, and results
i1

(ps"M + 0K ' s M — K) gy — 0. (42)

To find the sense of propagation it 1= not necessary to determine the whole de-
pendency of g on & but anly a first-order expansion about 4 = 0. Accordingly, we
assurne a regular perturbation expansion for yg and ¢y of the form

g = g+ M U[ﬂ'zj, anc

43.a-b
s =ty + Ad |+ O(F7), et

where Ja.r2 and ¢ are the sigenvalues and esigenvectors of the unperturbed svs
tern (16), i.e. the diagonal elements of A and column vectors of 8 respectively.
Replacing Eqgs. (43.a.b) in {42) and retaining only those terms up to Q{d), we
obtain

(4 M~ )+ 20N i K M 6] (0 + Ag) = 0. (44]
Premultiplying by -:,1.'=|:.T. we obtain

T
i :gH._| 'ii'l:l I"-"Irr-:'-."'f_;‘l]

M= —Yod ST M- o0 (45)
It fallowrs from []I‘::l that
dn’ K dn = g - M, (46
=0 that T
A= it ! b - Miree - g (47)

g - K - gy

But, from [13) and (16), we have that for the inviscid modes

|M K™ g Mippeetiy = 0 Kby 1+ |Aehp” Mepy = 0 (48)

and, since g is pure imaginary for the inviscid modes Ir:“' = 0, then Ay is negative,
=0 that all the inviscid eigenvalues are right-going [see figure 7).

14
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right-going :'; pume ;aiscqus
left-going
MMM T
R

pure viscous % 1 inviscid
rightgoing .| | right-going

fmiscid

Figure 7: Distributions of g eigenvalues for the free surface problem with a
small dissipative term.

It can be shown in a more general context that the “sense of propagation”™ as
defined here hazs a correct physical sense, since “right going” modes correspond to
positive group velocities for the time-dependent problem. Indesd. it can be shown

that _
M= -2, (49)
U
where v, 15 the z-component of the groap wvelocity, and o 1= 8 real positive
constant.
As for each Ap < 0 both eigenvalues p +iy/|Ag| are right-going, the un-
bounded domain solution is

) R
e {EH-' by || by [Aelz2  for == Lap . I:E[]]
] for @ = —lap

for 1 = & < Nige, where & = Lap = far downstream and =2 Lap 1= far upstream.
The corresponding radiation boundary conditions are

U =0 =10 at = —L < —Lap, and
' (&1]

none at =L = Lap.

4.8. Summary of cases: [n brief, the method can be described as follows:

e Look for solutions with a dependency o e** in the r direction
# Solve the characteristic equation for the eigenvalues {p}. They are classified
according to:
i Viscous if Re{u} # 0; inviscid otherwise.
i The viscous modes are classified as right-going, if Re {pg} < 0, lefi-going
if Re{pu} = 0.
i lo classify the inviscid modes, add a small dissipation and classily them
as in the previous point.

e Hetain only the right-going modes (viscous or inviscid) in the general expres-
=100,
# |'he radiation boundary condition 15 found by differentiation of this general

farm.
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Of course, this corresponds to a boundary which 1= located at the right end

of the domain. For a boundary at the left end, the lefi-going modes should be
retained.

5. T'he radiation boundary condition

Figure 9; Mode amplitude for the inviscid modes,

The absorbing boundary conditions for the viscous modes downstream [28.h),
sz figure B, can be written as

| 3
H\'iﬁrf'[u:r I A&U] 0. l::'"j]
where
A2 = diag{0o, ..., O fAn e AN
N (53.a.b)
and Iyiser: ||:I""I-.-'i:|-:::"':"""-'|n1' I""Iri:p:::"':""".vim:' |

IT ey 15 the projection matrix on the subspace spanned by the viscous modes in
the U bazis. Coming back to the ¢ basis, we obtain

H‘I.'-IHI.":‘;I.!il.T | I-""HJH';‘:'::I 0 at = FL, |:5-'1.]

where

H'.-iru' H'.'im:"!-' 5_|1
and Fl, — 5A%2s7!
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and, similarly, upstream,
Il — Fopedh) =0 at x— —L. [ 56

IT iee 1= the zame projection operator as I e but now in the ¢ basis. On the
other hand, for the inviscid modes the conditions are

Hiul.lfj':il_r Hinl.-'l:'lli 0 at = —-L, (5?]
where, analogously to (533.5) and (55.a) Iy i= defined as

Iy | | T

i ™ Ny I:l""'i e V. | S I ! (53]

vise

and none at x — I, see figure 9. In total, we have Nopp+ Ve @quations upstream
and Nyjap — N downstream, making a total of 28,y which s correct, since we
have a systam of Nyup second-order O Es,

The ¥ matroix is [ull, =0 that the ODEs are fully coupled at the boundaries,
This 15 a characteristic of higher order absorbing boundary conditions, as the
DN [13]. “nonlocal™ in the DNL acronym, stands for this fact.

MN-T N MNet

1
- == 0

Figure 10; second-order approximation to the artificial boundary condifion.

6. Discrete radiation boundary condition

Mo we will consider the [ull discretization of the wave-resistance problem
[or a pressure perturbation on a 113 structured grid. We mean by this a mesh
which i= composed of identical layers of nodes on planes at pesitions ©; = JAr
The generating mesh in the channel ssction can be nonstructured and completely
general.  Afterwards, we will se= that the extension to the general case, with a
ship, or arv other kind of obstaclz, and a nonstroctured mesh around it 15 very
simple, provided that the mesh s LD-structured far downstream and far upstream
{|x| = L) for a certain L.

The abvious way is to proceed to a 11 discretization of {12) by finite elements
and a second-order approximation to equations [54,56,57). This is straightfor-
ward, 1= briefly described in the next section, and will be called in the fallowing
the “partially discrete” approach. Another possibility is to discretize the inte
rior governing equation [12) and then to design an absorbing boundary condition
for the resulting svstem of difference equationzs. ''his = explained in Section 6.2,
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Figure 11; Schematic description of the “partially” and “fully” discrete
versions of the boundary condition.
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where it 15 explained in the context of the Helmholtz equation and the extension
to potential Aow with free surface 1= summarized.  We term this approach the
“fully discrete” one. It turns out to be that 11D discretization and the design of
the absorbing boundary condition “do not commuote™ and the resulting discrete
absorbing boundary conditions are different [se= higure 11). We will show that the
partially discrete alternative gives some amount of reflection due to the numerical
error introduced in the wave number, and then, the fully discrete alternative is
strongly recommended.

6.1. Partially discrete approach: l'inite element 110 discretization of (12)
gives

Adt _9Bg! | Ae' = ArPGY, (59)

where

A M- LACK,
B — M | LA K, and (60)
G’ - et paa’ i
The boundary conditions (54.56). can be discretized with a second-order approx-
imation to the first derivative by means of a fictitious layer (see figure 10). Let

N be the last node laver of the mesh, (=0 that xy L), and let N + 1 be the
fictitious laver, then the discrete version of the boundary condition is

N+l _ ai—1 )
H'.'i:p." ('?:’ Eﬂ._:qb | Fu.hr: 'i’ﬁ) 0.

and Aa™ T —2Ba™ | A =0

(61

where we added the “interior” governing equation for J = N in order to balance
the number of equations and unknowns. Note that we assumed GV 0 due to
(#). Bimilarly, at the left end we have

. II;II_"".I I _ a—N—1 P o

wise ( 9 Ar — & ph= '5;‘ ) D1
A‘:I‘-"_HI L EBti:I_N | A¢—N—I 0
Him"lﬁ'_ﬁ 0.

T
" — @ ) 0.
247

1

(62)

and iy (

Do not confuse the order of approximation to the semi-discrete boundary condi-
tions [(24,56]), with the order of the boundary condition itself. Usually, absorbing
boundary conditions are classified as first-order, sscond-order, ete. .. |, depending
on the order of expansion with respect to the angle of incidence of a plane wave
with respect to the normal to the boundary, In this respect, this boundary con-
dition is exact like the IMN in the sense that it is fully absorbent under mesh

refinement.
6.2. Fully discrete approach:
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Figure 12; Discrete coeilicient of reflection for the 113 Helmboltz equation.

ar
A

Figure 13: Hoots of the charscteristic discrete equation.

Mow consider again the discrete Helmholtz equation as described in Section
4.2, whose absorbing boundary condition is (38). Discretization by FEAM on a
mash of constant mesh step Ar gives

Gitl _ gi 4 il
Ar?

— YA sl e = (63)

Second-order discretization of the absorbing boundary condition about x5 with a
fictitious node &V 4 1 leads to

a1
S —ikgV =0, and
(‘f:,."."l 1 _ ';.;'-:f:'h'r | A=l . . . {E-‘t.ﬁ.—h]
A - S L L A P R A V)
x

where W + 1 corresponds to the fictitious node. The interior equation (fd.b) for
the nods N equation iz added in order to balance the number of equations and
unknowns, Eliminating the potential at the hOotitious node,

" = fpna™ !, (635)
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where |

1— YAha™ Yy y
feo (1 b A _;m:) ' 196

The “fully discrete” alternative shown in figure 11 is to find the general solu-
tion to the difference equation (63} in the form

g ﬂp'il | b;..l-i, (67)
where gy are solutions of the characteristic equation
Ap? —2Bp + A=, (65

with
A= (14 Yk Ar™) and B = (1 — Yak®Aa®). (69

Both gy are complex conjugate and of unit modulus; see hgure 13, The pertur-
bation analysis shows that g moves inside the unit circle for a small dissipative

term, whereas p_ moves outside, so that we retain the p' component in (67) and

zatisfy the boundary condition

" = fepe” ', (T00)

whers
I FI . [?1].

Mowy, inorder bo compute the reflection coefficient for a given boundary condi-
tion we insert the general solution (67) in the boundary condition in the form (65)
or [T0] and obtain a linear relationship between the amplitude of the incoming
wave b to the oubgoing wave a

e L= fpdt 1= ey
TS R T 1 — fuZ!

b

i

I

(72)

It i= clear now from this and (T1) that the fully discrete boundary condition gives
a null reflection coefhcient, whereas the partially discrete one [65,66), suffers from
some amount of reflection which is computed from (7T2,66) and plotted in figure 12,
This reflection is purely numerical i x [Fnﬂ.i'-_‘]2 for small ke, and for the critical
wave number. where the wave becomes evanescent it reaches the maximum value
of 100%; reflection.  The *fully discrete”™ approach is then adopted. The term
“dizcrete” in the name of the method stands for this particular way of obtaining
the abeorbing boundary condition by the straightforward solution of the svstem
of discrete equations.

In conclusion, the “fully discrete” version of the absorbing boundary condition

[or the potential flow problem with a free-surface s given by

" — Frng™ ') =0,
M — Fppo™ V1) =0, (73)
and H'ln'l.":t'_hr -!T'ln'l.":t'_.h'rI : 0.
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where
Frp = 8diagi{l,....0 '”-'I'-:i..-.- Flaseny Ir.'_.!.':m“h }E_I . and
-."'.i1|1.' _"g':ri“
ph = =\ ER -] (74)
, : for & Mo 1,000, M alal
1 4 |_.ﬂ'£'£.-:"-|:;- inv glak
£k .

| — 'l.{:ﬂ.'r. Ak

7« Implementation details

Up=cnst Upgranst Ug=cnst
Struct. non struct. struct.

W My W W W e
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w
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5
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5
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-~

-N+1 N-1

Figure 14: Unstructured mesh with structured lavers upsfream and
downstream.

7.1. Nonstructured meshes and nonconstant base-How velocity vector:
The method was described for structured grid and constant base-flow in the ®
direction. but it only needs thess restrictions to apply several layers near the
upstream and downstream boundaries (see figure 14), allowing a nonstructured
mesh and nonconstant flow in a certain region near the ship, Onee those layers
are avallable, the matrices A and B can be evaluated and Vrp oand ITyise are
computed in order to impose conditions [ T3,74).

7.2. Numerical computation of the eigen-decomposition (16). : In prac-
tice, we found it preferable to compute the absorption matrix directly by eigen-
decompesition of A7'B [rather than with M“'I{:I. A standard FEM code [with
standard boundary conditions, =ay Neumnann, at the inlet/outlet planes) computes
the matrix system with the free surface term. As no numerical dissipation term
is added, the free surface term can be easily cast in a weak form. (This point is
important for the finite element formulation). Matrices A and B are extracted,
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and A7'B and its sigen-decompasition is computed as a full matrix. This warks
rather as a black box on matrices A and B, The term “algebraic” for the method
stands for this. We used the standard LAPACK rouatines DG ECO, DOESL, and
DGEEVX to perform inversions and eigen-decompesitions.  As the size of the
matrices i= one dimension lower, this part of the computations 1= oot relevant
regarding CPU time and RAM requirements.

7.3. FEM system solution. Effects of shifiing the boundary conditions:
Regarding the additional cost when solving the global FEM svstem matrix by a
typical direct skyline solver, note that the resulting absorbing matrix s [full, Le.
connecting all the degress of freedom on the two first structured layers {marked
as —N and —N 4+ 1 in fgure 14), and alsa an the last two [marked as & — 1 and
N, This represents some local increase in the bandwidth but the overall increase
in RAM requirement is negligible.

ra
1 - S
\ M egeraions deisfead downsiream -j—

Figure 15; Effect of shifting boundary conditions from downstream to
npstream.

Heowever, there 15 a practical problem related to the shifting of the boundary
conditions from the downstream boundary to the upstream one (see figure 13).
Considering a mesh like that in figure 14, the degrees of freedom are numberad
from left to right. At the left in figure 15 we see the symmetric structure of the
matrix for the problem with standard Neumann boundsry conditions at the left
and right boundaries. T'hen the proposed boundary conditions imply the deletion
of some rows corresponding to the inviscid modes downstream and adding the
same number of rows upstream. There are bwo possibilities, replacing the deleted
rows by the new equations and leaving the ordering of the equations unaltered, or
putting the new equations on top, This last possibility s shown in the iigure. Note
that this causes a shilt of the main diagonal of the system matrix and it 15 likely
that some elements in the new diagonal could be oall, which 10 turns sugoests
that =ome null pivots could be found during elimination. The Grst possibility has
the same drawback. Another alternative is to =olve the original svstern which, in
addition is symmetric, taking into account the ot that A, equations have been
modified by adding an unkoown right-hand =ide. The system 1z solved for N,
right-hand sides with each one having unity in the corresponding modified equation
and zero in the others, The solution 15 then found as a linear combination of these
solutions and impeosing the relaxed equations on this combination. This leads to
A Nige ® Mg syvstem of linear equations that determines the cosflcients in the
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expansion. We call this method “superposition™ and has the advantage that the
cost and structure of the solution for each of the Ny, right-hand sides 1= the same
a= a standard Anite elements problem with standard boundary conditions, like
the Laplace aperator, for instance. Moreover, the proposed boundary conditions
can be put in such way that the resulting matrix is symmetric, with a signihcant
reduction in the RAM requirement. However, the system to be solved is singular
for a certain discrete set of Proode numbers. In practice, one computes the drag
or wave pattern for a certain ==t of Froude numbers, and it 15 unlikely that one
of these would coincide with one of the singular Froude numbers. Details of this
are described in [3]. See also the numerical example for the submerged cylinder,
(Section #.1.3).

7.d. Wave resistance calculation: The energy spent by the ship against the
wave-resistance is emitted in the form of gravity waves that form the wave pattern.
This means that we can compute the dreag by integrating the momentum fox
density on a plane section downstream and this i= the form in which the wave
resistance is separated from the total resistance in experiments (see [7]|]. After
some manipulation, it can be shown [4-6) that the expression is

Fo = —lipn (67 — a7, — @) dS + Yhag f o ol Lo v 0)° dy.  (75)
S E ot b=—dy
and the discrete version 1=
MNeow
Fo=op Y b} (0] Kaby). (T6.a.b)
=1

where ¢ is the jth eigenvector of system (16), i.e. the jth column of matrix S,
and & i= the “amplitude” for the jth inviscid mode, definad by

U = by sinly/ |Aj| = + 75, (77)

where 7, are arbitrary phases. It is obvious from this expression that it is indepen-
dent of the position of the boundary and that a positive drag i= always assured.
This 1= 5 great advantage over Dawson-like methods based on numerical viscosi-
ties, which compute the wave-resistance by straightlorward integration of pressure
forces over the huall [3].

B, WNumerical Examples

B.1. T'wo-dimensional examples:

8.1.1. Submerged dipole {infinitesimal exlinder ): The problem of a submerged
cylinder has an analvtical solution in the limit of very small radius, in which case
the cylinder can be replaced by a dipole (see figure 16). Moreover, the drag cal-
culation has been performed by computing the perturbation in pressure prodoced
by the submerged dipole without free surface and applving this extra pressure as
an equivalent hovercraft problem. The extra pressure s

o 1
AP () = —2pl7 2H ltc{m}. (78]
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Figure 16: Drag curve for the submerged dipole (exlinder with diameter
b < f). The drag coefficient is normalized to B = 1.

Where f is the depth of the cylinder and b is it=s radius (here it enters only through
the intensity of the dipole). The analytical expression for the drag is [6,22]

E-.T-,-r -']'.TE {blllll JIII‘E l_-r—ﬂ E—E.."F'r!_ ETI:J]

where Fr i= the Fronde number based on depth, e, Fr= U/ vaf. In the fgure
we plot I:bl."'_f']'g ' which depends only on Fr. This is an interesting case= in the sense
that the pressure perturbation does not have compact support, Le. it extends to
infinity. However, it decays = |J!'|_E1 and we see that the agresment is good. The
mesh was structured with 2 x 2400x) = 20{z) triangular elements covering the
rectangle |z| < 6, —3 < z < 0 (f = 1). The mesh was refined near the surface in
such a way that Azpoyiem / Acurfnee = 10.

5.1.2. Parabolic pressure distribution: "This i= another 210 example, for a pre
scribed pressure distribution of the form

O )

1] for |z| = a.
The analytical drag coefficient is |f]

(KacosKa —=in HE]IE
(Ha)

", — 16 (81

where ia ]l.n"l"r":". and the I'r number is taken based on a., sea Agure 17,
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Figure 17: Drag curve for the parabolic pressure distribution.

H.1.2.1. Invariance of the discrete solution with boundary position: T'his pressure
distribution has compact support and, then, we can check that the solution is
independent of the position of the boundary condition, as was asserted at the end

of section Section B, 1o verify this, we modeled the problem at Fr
FEM meshes, The first one has 2 x 80 % 10 triangular elements with Ar

0.5 with two
cnst and

Aeporiom f Murface = 10, covering the region —6 < x < 2, =3 < z < (. The second
one 15 identical to this one, but it has been prolonged downstream to @ = 6 with

40 additional elermnent lavers, keeping the =ame Ar. We can see in figure 12 the
potential on the fres surface versus = for both meshes, Both coincide to machine

precision in the overlapping region.

5.1.2.2, Constancy of elevation: In 2D problems, the trailing elevation wave is

a =sinus=sid of constant amplitude fEr downstream.

this wave, and then constancy of the trailing wave amplitude 1= a measure of the

precision of the method. o figure 19, we can sze the trailing wave [or the parabolic
(1.5, for a mesh similar to the previous ones,

I at I

pressure distribation for a
10. No damping is observed qualitativelv. A detailed analvsis

but extended to @

Numerical viscosity damps

shows that the nodal amplitades remain constant fo machine precision.

s8I

4b toits axiz in a channel of depth H

Submerged cviinder; ''hiz 1= the case of a cvlinder of finite radius & at a
2f (see figure 20). The mesh is a

depth f
typical 0" mesh around the cylinder, with two additional structured layers at the
inlet and outlet planes. T'he purposs of this numerical example = to show a case
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Figure 18; Invariance of the discrete solution with the position of the
absorbing boundary condition.

where the mesh 15 not fully structured. The drag cosfhcient has been normalized
with a [actor [E‘.!l.l"_|":|'3 to make it comparable with the infnitesimal radios [dipole]
casz, The resulting drag curve is very similar to that one for a dipole. The drag
was compubad for 500 values of Prin the range 0.5 < Fr << 1 and we show also the
condition number of the linear svstem [=ee hgure 21). We see that. as discussed in
Boction 7.3, the svstern is singular ab a discrete set of Froude numbers. For wery
small Froude numbers the condition number growths indefimitely. We do not have
a satisfactory explanation for this, but we stress the fact that the Froode nomber
range for which we obtain valid resultz covers the range of practical intersst and
i5 wider than those [or other methods,

8.2, 3D examples:

521, Wigley hull: The drag curve for the Wigley model 1805 A is shown in

fgure 22, The hull shape for this model 15 defined by oy (1 — _'J'.El,l'lﬁ-l.::l[l —

0.6x%/64)(1 — z2) for |z| = B, z = —1. The drag coefficient is defined as
250 [

7 :
T ﬂh’i?ipl"? {"IF'T"LE

i (52)

where Sy, = 45345 is the volume of the ship, The FEM mesh had 50(x) » 13(y) =
13{z) = B450 elements, and the result is in good agreement with results found in
the literature [1.7]. Note that a whaole set of secondary maxima i= cleanly captured,
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Figure 19; Pree surface elevation showing that the amplitude of the traiing
wave is nof damped.
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Figure 20; Wave resistance coelficient for a submerged evlinder in a channel
of finite depth.
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Figure 21; Condition number for the submerged oviinder.

1.2 T T T T i
':W i i 1 i
: : Wigiey hull 1805 A |
ir-------- - - {FEM calcwlation =
11 ST Tl i SEERS
O : :
o4r - """ 777 T R — ':

02| i R

FEEgW | 010 012 Lia Di6 018 02 022
0

0 02 0.4 0E 0.8 1 Fr 12

Figure 22; Drag curve for the Wigley hull.

extending to Froode as low as 0.1, In the other extreme, Froude numbers as high as
1.2 are computed without problems, whereas standard methods like those derived
[rom Dawson sulfer from reflections, especially at high Froude numbers,

5.2.2, Rectangular pressure distribution: We consider a uniform rectangular pres
sure distribution of width 5 and length L, such that L/B = 34, for which exper-
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Figure 23; Drag curve for the rectangular pressure distribution.

imental and analytical results are reported in |[7]. This case is interesting, since
it is purely 313 and large oscillations in the drag curve at small Froode numbers
are expected, dus to the discontinuity in the pressure distribution. The mesh had
A0(x) = 150y = 10(z) 4500 elements, see figure 23, Coincidence with results
reported in [7] are very good. Whereas only the maximum around Fr .33 is
shown in those results, we here capture two additional maxima at Fr = 0,215 and
(1.255, approximately.

B, Conclusions

A discrete nonlocal (DNL) absorbing boundary condition for the wave resis
tance problem has been presented. It is bassd on an eigen-decomposition of the
system of ODEs that results from partial discretization in the transversal section
of the governing equations. By construction, the numerical salution s independent
of the position of the absorbing boundary, Fven if this iz a well-known result [or
exact boundary conditions on a wide range of problems such a= Helmholtz equa-
tions, elasticity equations in the frequency domain or the sea-keeping problem [17],
it has not been reported in the literature [or the specific case of the wave-resistance
problem. As no numerical viscosity is used. the wave-resistance can be computed
from a momentum fux balance and positive wave resistances are guarantesd. Drag
curves computed with this method exhibit very well-delined sscondary maxima.,
and computations can be carried out for a wide range of Froode numbers.

Appendix 1. Neumann boundary condition at the bottom

Considering now the case of Neumann boundary condition at the bottorm,
then it is easy to show that the associated matrix for the Laplace operator on a
typical section is only semidefinite positive, since the vector

vi=c|1 1 ... 1], (23)

representing a constant potential held

ut . =) Z.:w_,ij"l."‘.[y.z:l e, (54)

]
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i5 an eigenvector with oull eigenvalue for K. Le.
K =10, (%5)

: N .
In order to have a unit vector we choose © = Ngae <. This is the only eigervector

. . . . l"ll I h
with null eigervalue of K, so that completing to an orthonormal basis {1".'},1 o

VIV =L V=|v, v Vg | (%6
and making the change of variables
b= Vi, (%7)
system [12) reads now
My o .r — Ky b = Gylr). (38

where the ¢ subindex stands for matrices and vectors in that bazsis. Matrices and
vectors are block split in the subspace *07 spanned by the null eigenvector vy and

- L]
the subspace “+" spanned by the rest {v; }_,i slnb e that

K, V'KV [ . D"‘"Tﬂlnh .
"'_"I:|-I|'|I::-:"c I_ I{l;-"

- - ME M

M, =V I MV [1&1'” M’;,], (9)
w o

"
and Gy = VG [G‘f].
;‘h

The j, k-th element of K is v - K v, =0 that its first column is null by (85). By
symmetry, the first row is also null. Equation [88) in split form reads
a0 , -+
J‘I.Ir.'r, % g M,r.l '|||"|11, ":’;'-'

) i 004,k
and M0+ Ml KT 9t = Gl (

v
Assuming ."l._.l":!l:I 0 {we will discuss this assumption later), we can eliminate Y
&
and arrive at
T RTINS o T R 9l
le:::.: o le 4 |: ]
which is an equation for ¥, where
M ]f:-'I;I - (.-ﬂf!”]" I'-._-'I;':DI:-'I':,' . 1= symmetric
I{J: Foois symmetric and positive definite [HE]

- | 00y — 1 0 3 0
and G* = G — (A Ayl

Due to these properties, an eigenvalue decompesition like [16) applies for the pair
I"Errl,l , WI*. I'he analys=is for this reduced svstem [ollows as for the case of the null
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Dirichlet condition at the bottom and appropriate absorbing boundary conditions
can be found., It remains to determine the appropriate boundary conditions for
the #" mode. Coming back to (90.a) and solving for 3", we obtain

My v, — (M), (93]

whoss solution is

. ,'I,f':":'}_| (f f A det — ],}[4':']1'[,') b ax + b (94)

The b term represents a constant potential and can be dropped. The az term
represents a potential constant on the channel section and varies linearly along the
channel. T'his 15 equivalent to a change in the uniform base velocity compensated
by a uniform raise in surface elevation, and it can also be dropped. so that no
particular boundary condition has to be imposed for this “mode”.

Mow we dizcuss the implications of the restriction JUE.'] £ 0. Tt can be s=en

that ."l:l'::n [ when the channel is at a critical regime, Le. when Pry = 1, becausa

::Inl:-

¥ Z Mk 1 21k

(95
[ uﬁy. z) dy dz — ! f ?:,2[;:. 0 .
¥y I
But w(y, z) = cnst J"I."_.”lh_l":-', &0 that
M = (Ly/ Noan) (H — K1), (916)
and this is null when Frig = Use/{gH)% = 1. Usually. we are interestad in the

range Pry = L, and Frgy [J'.-l."lhfjl:‘r='l"1'L1 o that it 15 enough to fale a mesh
with H several times larger than the ship length L, in order to have .II_IED A0
in the range Frr = 1. Anywav, note that the analvsis breaks down at a =single
Froude number, which proves the general applicability of the DNL methodology
[or deriving absorbing boundary conditions for & wide range of physical problems.
Moreower, the fact that the decomposition proposed abowve breals at Prg = 1 does
not spoil the DNL methodology itself, since an alternative representation of the
system may be found, appropriate lor the DNL analvsis. However, [or reasons of
space we will not discuss this point further heres,
Appendix 2. The number of “inviscid” and “viscous” modes

For simplicity, we will consider the case of Dirichlet conditions at the bottom
of the channal, so that matrix K is positive definite. Dus to the Svivester's imertia
Theorem 23] the number of pesitive and negative eigenvalues of system [16) re-
mains the same if the matrix K 15 replaced by ancther positive definite symmetric
matrixz. We then replace K by B and let W oand B be a solution for the eigenvalue
problem

M W = MW B, (97)
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with W real and nonsingular and B real and diagonal, B = diag{ 3, .. "'ll:""'lslnh}'
M 1= positive semi-definite and has rank Nppe. where Npee 1= the oumber of
nodes in the slab that are on the free surface, =0 that there are Ny positive
eigervalues and the rest is null; then we assume

G =0, for 1 <7 = Niee,

. (49%)
and 35 =0, for Npee < 7 < Nk
Then, ~
MWJ EM—“_IM&W}WJ.
Mow,; — K3 Mw;, (99)

(1— K3 Mw;.

=0 that the eigenvalues of MM are of the form 1 — H'_ls’_f_';. A= stated above,
they are all pesitive for Fr small enough (K large). More precisely, they are
- . . - : . N : .

all positive for Fr = 1/ /i Liship. where Gyig rmin; rT,“' 5. The npumber of
negative eigenvalues increases monotonically with Fr, and for Fr = 1/ Gmax Lship
there i= a constant number of Npe negative eigenvalues.

We can estimate roughly the value of G, rom a simplified 20 analvsis. In
the 213 cass the slab contains only Nigee 1 nodes at the free surface and the
M and B matrices are of the form [assume constant size elements of length

A = H/Nojan)

L .

1 0 ... 0 vooa 0

[[] 0oL []w U

[reses [: : . J and Wl ﬂz
¢ 0O Y Yk
0o ... 0 _ 5w

The first diagonal element of M s A — K~V and changes =ign at K1 Lz,
=0 that G, o~ 35z, and we may estimate that the eigenvalues change sign

(10101]

somewhere near Fr ~v (Az /3 Lanip) %2, Comhbining these results with that found in
Appendix 1, we determine a range of Fr where the FEM calcalation applies,

1 s
Jat - H 3=
(. ) sz (—) (101)
3 L'=1=I1i|.1 'F"'H-|Ii'|:-

This range i5 broad encough for applications. The Froude numbers of interest rarely

exceed unitv, neither do they go below Fr — 0.1, As F'Ex meshes may be be refined
exponentially towards the surface, we can get Az =mall enough at the surface and
H 2 Lypip. 50 that restrictions (101) are satisfied.
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