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tSurfa
e di�usion is a (4th order highly nonlinear) geometri
 driven mo-tion of a surfa
e with normal velo
ity proportional to the surfa
e Lapla
ianof mean 
urvature. We present a novel variational formulation for para-metri
 surfa
es with or without boundaries. The method is semi-impli
it,requires no expli
it parametrization, and yields a linear system of ellip-ti
 PDE to solve at ea
h time step. We next develop a �nite elementmethod, propose a S
hur 
omplement approa
h to solve the resulting lin-ear systems, and show several signi�
ant simulations, some with pin
h-o�in �nite time. We introdu
e a mesh regularization algorithm, whi
h helpsprevent mesh distortion, and dis
uss the use of time and spa
e adaptivityto in
rease a
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y while redu
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ient numeri
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hanges in stressed epitaxial �lms and thereby study their
ompli
ated nonlinear dynami
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e of the �lm. This morphologi
al instability of the free surfa
e may even-tually lead to 
ra
k formation and fra
ture, an issue of paramount importan
ein Materials S
ien
e; see for instan
e [1, 9, 25℄ and the list of referen
es in [7℄.The dynami
s of the free surfa
e �(t) � Rd is governed by the highly non-linear PDE V = ��S(�+ "); (1.1)where d = 2; 3, V and � are the (s
alar) normal velo
ity and mean 
urvature of �,respe
tively, �S = divS rS is the Lapla
e-Beltrami operator and " is the elasti
energy density of the bulk 
(t) en
losed by �(t). In this paper we 
onsider theredu
ed purely geometri
 model for whi
h " is a given for
ing fun
tion. Our goalis to present a novel variational formulation for parametri
 surfa
es based on asemi-impli
it time dis
retization, whi
h requires no expli
it parametrization ofthe surfa
e and yields a linear system of ellipti
 PDE to approximate at ea
htime step. We then develop a �nite element method (FEM) and dis
uss meshdistortion and adaptivity. This endeavor may be viewed as a building blo
ktowards solving the fully 
oupled system.We re
all now two fundamental properties of motion by surfa
e di�usion.The �rst one is 
onservation of volume for 
losed surfa
es:ddt j
(t)j = Z�(t) V = � Z�(t)�S(�+ ") = Z�(t)rS(�+ ") � rS1 = 0: (1.2)The se
ond property is area de
rease for " = 0 and suitable boundary 
onditions:ddt j�(t)j = � Z�(t) V � = � Z�(t) jrS�j2: (1.3)In fa
t motion by surfa
e di�usion is formally the H�1 gradient 
ow for the areafun
tional (see [9℄). It is desirable to preserve these essential properties underdis
retization, as the proposed FEM below does. This method also handles twostriking features whi
h 
an o

ur for surfa
e di�usion in �nite time: a surfa
ewhi
h starts as a graph may 
ease to be so [17℄ (see Figure 1.1), and a 
losedembedded hypersurfa
e may sel�nterse
t [19℄ (see Figure 1.2).
Figure 1.1: Evolution of a 
urve that 
eases to be a graph in �nite time.A number of issues arise, from existen
e, well posedness and regularity toalgorithm design for simulating (1.1), perhaps enfor
ing (1.2) and (1.3). In [18℄,Es
her et. al. proved (lo
al) existen
e, regularity, and uniqueness of solutionsprovided � = 0 and the initial surfa
e is suÆ
iently smooth. They also provedthat if the initial surfa
e is embedded and 
lose to a sphere, the solution exists
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Figure 1.2: Evolution of an embedded 
urve whi
h sel�nterse
ts in �nite time.globally and 
onverges exponentially fast to a sphere. A fundamental math-emati
al obstru
tion to further progress arises from the 4th order nonlinearoperator �S�, whi
h rules out maximum prin
iple te
hniques.A spa
e-time �nite element method for axially symmetri
 surfa
es is pre-sented by Coleman et al. in [11℄, along with several stability properties and veryinteresting dynami
s, some not predi
ted by linearized stability. More re
ently,De
kelni
k et al. provided an error analysis [15℄ for the axially symmetri
 
ase.The graph 
ase was 
onsidered by B�ans
h et al. [7℄ where an error analysis isderived for the spa
e dis
retization, and this analysis was extended by De
k-elni
k et al. [14℄ to a fully dis
rete method for anisotropi
 surfa
e di�usion ofgraphs.In this arti
le we present a novel �nite element formulation for surfa
e dif-fusion of more general surfa
es, whi
h requires no expli
it parametrization. In
ontrast to �nite di�eren
e approa
hes [10, 24℄, we exploit the underlying vari-ational stru
ture and derive an intrinsi
 formulation, whi
h avoids writing (1.1)in lo
al 
oordinates.Basi
 di�erential geometry reveals that the surfa
e Lapla
ian of the positionve
tor ~X on a surfa
e �(t) is the ve
tor 
urvature ~�, namely �S ~X = ~� and~� is a ve
tor normal to �(t) with magnitude equal to the sum of the prin
ipal
urvatures. This identity is the 
hief idea of [16℄ for designing a �nite elementmethod for mean 
urvature 
ow of parametri
 surfa
es. However, we also needto deal with the s
alar 
urvature � in the present 
ontext and 
annot workdire
tly with the 
urvature ve
tor ~�. We propose instead to use four unknowns,namely s
alar 
urvature �, 
urvature ve
tor ~�, normal velo
ity ~V , and (s
alar)normal velo
ity V . Multipli
ation by the unit normal ve
tor ~� to �(t), pointingoutward of the bulk en
losed by �(t) is further used to 
onvert from s
alar tove
tor quantities and vi
e versa, thereby leading to the following four equations:~� = �S ~X; � = ~� � ~�; V = ��S(�+ "); ~V = V ~�: (1.4)This 
onversion, trivial when �(t) is smooth, 
annot be enfor
ed pointwise when
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e Di�usion 4�(t) is polyhedral be
ause ~� is dis
ontinuous and so would be � a

ording to(1.4). The relation between s
alars and ve
tors will later be imposed weakly (orin average), whi
h turns out to be essential. To relate position ~X and velo
ity~V , we resort to a semi-impli
it time dis
retization: all the geometri
 quantitiesand the di�erential operator �S are evaluated on the 
urrent boundary �n,whereas the unknowns ~�, �, V , and ~V are treated impli
itly. If �n := tn+1 � tndenotes the (variable) time-step from time tn to tn+1, then we 
ould write~Xn+1 = ~Xn + �n~V n+1: (1.5)Consequently, (1.4) be
omes the following system of linear ellipti
 PDE on �n:~�n+1 � �n�S ~V n+1 = �S ~X n;�n+1 � ~�n+1 � ~� n = 0;V n+1 +�S�n+1 = ��S"n;~V n+1 � V n+1~�n = 0: (1.6)We now list several properties of and issues pertinent to this system.� Mixed method: the operator splitting of (1.6) 
an be viewed as a mixed for-mulation involving only se
ond and zero order operators.� Parametrization: the formulation of (1.6), and thereby its spa
e dis
retiza-tion, does not require an expli
it parametrization of �n; on
e ~V n+1 has been
omputed then (1.5) 
an be used to update the surfa
e to �n+1.� Avoiding C1 elements: sin
e the operators involved are of either order 2 or 0,we 
an use C0 pie
ewise polynomials of any degree to approximate (1.6); seex2. Therefore, we do not need C1 elements even to approximate 
urvature �.This simpli�es the implementation without 
ompromising a

ura
y� Boundary 
onditions: in the present arti
le we 
onsider either 
losed sur-fa
es or natural boundary 
onditions for whi
h integration by parts yields noboundary terms. This restri
tion is for ease of presentation only, and helpshighlight the novel variational formulation of the problem. But using the
exibility of �nite elements, other boundary 
onditions 
an be 
onsidered aswell, with slight 
hanges in the implementation. Di�erent, physi
ally relevantboundary 
onditions will be addressed in a forth
oming arti
le, where we willalso ta
kle the 
oupling of surfa
e di�usion with elasti
ity in the bulk.� Conservation: testing the third equation in (1.6) with � = 1, and integratingby parts we realize that volume is preserved in the sense that R�n V n+1 = 0,whi
h mimi
s (1.2) (observe that also R�n ~�n+1 = 0.) Multiplying the sameequation by � = �n+1 we prove a dis
rete analog of (1.3); see Theorem 2.1.� Solvability: we show in x4 that the linear algebrai
 system ensuing from (1.6)is uniquely solvable by examining a S
hur 
omplement approa
h for the sin-gle unknown V . This yields a symmetri
 and positive de�nite matrix, thusallowing for an eÆ
ient solution te
hnique via pre
onditioned CG; see x5.
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e Di�usion 5� Mesh smoothing: the geometri
 
ow by surfa
e di�usion may lead to meshdistortions. We propose in x5.2 a pro
edure to maintain shape regularitywhi
h is volume preserving. This pro
edure has some independent interest.� Time adaptivity: large timesteps may yield large 
hanges of nodal positionswith respe
t to neighboring nodes, and thus 
ontribute to mesh distortion.On the other hand, large timesteps may be desirable when 
urvature 
hangesslowly and the evolution is thus slow. We propose in x5.3 an e�e
tive timestep
ontrol me
hanism.� Spa
e adaptivity: a

urate des
ription of a surfa
e with minimal number ofdegrees of freedom �ts quite naturally within the �nite element framework.We propose in x5.4 a simple strategy to equidistribute pointwise errors in anintrinsi
 metri
.� Topologi
al 
hanges: the formulation (1.6) 
annot handle topologi
al 
hangeswithout an a priori 
lassi�
ation of possible singularities, whi
h is not yetavailable for surfa
e di�usion. The proposed method provides an eÆ
ientmeans for studying singularities as well as basi
 properties of the geometri

ow, as explored in x5. We refer to [10, 24℄ for level set methods and to [8℄ forCahn-Hilliard models with degenerate mobility, whi
h are in general 
apableof handling topologi
al 
hanges. EÆ
ient 
omputation of surfa
e di�usion isstill under investigation for level set methods [24℄, and is mu
h less developedfor di�use interfa
e models. Both approa
hes are rather sti�, whi
h justi�esthe sear
h for suitable semi-impli
it time dis
retizations [24℄.The rest of this paper is organized as follows. We present a �nite element dis-
retization of (1.6) in x 2, together with dis
rete versions of (1.2) and (1.3). Wedis
uss the ensuing linear algebrai
 problem in x 3 along with a S
hur 
omple-ment approa
h to its solution in x 4. We do
ument the performan
e of our FEMin x 5 via several simulations, some exhibiting pin
h-o�, sel�nterse
tions, andmushroom formation in �nite time. We dis
uss along key numeri
al issues su
has mesh regularization to avoid mesh distortion, and time and spa
e adaptivityto in
rease a

ura
y while redu
ing 
omplexity. We �nally draw 
on
lusions inx 6.2 Finite Element Dis
retization and StabilityWe now dis
uss the �nite element dis
retization of (1.6) along with a 
ouple ofproperties. To simplify the notation we hereafter drop the s
ripts n and n+ 1.Let T be a regular but possibly graded mesh of triangular �nite elementsover the surfa
e � whi
h, from now on, is assumed to be polyhedral. Let T 2 Tbe a typi
al triangle and let ~�T = (�iT )di=1 be the unit normal to T pointingoutwards. We denote by ~� the outward unit normal to �, whi
h satis�es ~�jT =~�T for all T 2 T , and is thus dis
ontinuous a
ross interelement boundaries. Letf�igIi=1 be the set of 
anoni
al basis fun
tions of the �nite element spa
e V(�)of 
ontinuous pie
ewise polynomials Pk of degree � k over T (k � 1); we thus
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e Di�usion 6have a 
onforming approximation of V(�). We note that V(�) � H1(�) andalso set ~V(�) := V(�)d.To derive a weak formulation, we multiply the equations (1.6) by test fun
-tions � 2 V(�) and ~' 2 ~V(�) and use integration by parts for the se
ond orderoperator �S . Denoting by h�; �i the L2-inner produ
t over �, we arrive at thefully dis
rete problem: seek ~V ;~� 2 ~V(�), V; � 2 V(�), su
h thath~�; ~'i+ � DrS ~V ;r~'E = �DrS ~X;rS ~'E 8 ~' 2 ~V(�); (2.1)h�; �i � h~� � ~�; �i = 0 8 � 2 V(�); (2.2)hV; �i � hrS�;rS�i = hrS";rS�i 8 � 2 V(�); (2.3)D~V ; ~'E� hV; ~' � ~�i = 0 8 ~' 2 ~V(�): (2.4)We �rst note that the relations (2.2) and (2.4) between s
alars and ve
torsare imposed weakly and not pointwise; this allows for the 4 unknowns to be 
on-tinuous whereas ~� is dis
ontinuous. This is a distin
tive aspe
t of our approa
h.Se
ondly, we see that taking � = 1 in (2.3) yields volume 
onservation:Z�n V n+1 = 0 8 0 � n � N � 1: (2.5)Sin
e the integral in 
omputed over �n, and not �n+1, the volume 
hangesslightly due to trun
ation error. The 
hange relative to the initial volume neverex
eeds 1.3% in our simulations, some rather singular (see Figure 5.11). Wethirdly establish a result 
on
erning the un
onditional stability of the s
heme,whi
h mimi
s the area de
rease expression (1.3) for " = 0.Theorem 2.1 (Un
onditional Stability). Let (V n; �n; ~V n; ~�n)Nn=1 be the solu-tion of either the semidis
rete equations (1.6) or of the fully dis
rete equations(2.1){(2.4) and let �n be the 
orresponding embedded surfa
es. Then for all1 � m � N we havej�mj+ 12 m�1Xn=0 �n Z�n jrS�n+1j2 � j�0j+ 12 m�1Xn=0 �n Z�n jrS"(tn)j2: (2.6)Proof. We start by testing (2.3) with � = �n+1, thereby obtaining
V n+1; �n+1� = 
rS�n+1;rS�n+1�+ 
rS"(tn);rS�n+1� :Combining (2.4) with ~' = ~�n+1 and (2.2) with � = V n+1, we easily arrive atD~V n+1; ~�n+1E = 
V n+1; ~�n+1 � ~�n� = 
�n+1; V n+1� ;when
e D~V n+1; ~�n+1E = 
rS�n+1;rS�n+1�+ 
rS"(tn);rS�n+1� : (2.7)
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e Di�usion 7On the other hand, testing (2.1) with ~' = �n~V n+1 and observing that, a

ordingto (1.5), �n~V n+1 = ~Xn+1 � ~Xn yields�n D~V n+1; ~�n+1E+ DrS ~Xn+1;rS( ~Xn+1 � ~Xn)E = 0: (2.8)Multiplying (2.7) by �n and substituting into (2.8) we infer thatDrS ~Xn+1;rS( ~Xn+1 � ~Xn)E+ �n 
rS�n+1;rS�n+1� = ��n 
rS"(tn);rS�n+1�Applying Lemma 2.2 below, we 
an further estimatej�n+1j � j�nj+ �n Z�n jrS�n+1j2 � �n Z�n jrS"(tn)j2:Summing up over n, from 0 to m� 1, yields the asserted result.Lemma 2.2 (Area inequality [2℄). Let d = 2; 3 and � be a d� 1{dimensional,
losed, regular C0;1{manifold embedded in Rk , k 2 N. Moreover let ~Y : � !rg(�) � IRk be a homeomorphism with D~Y ; (D~Y )�1 2 L1. Then, if ~X denotesthe position ve
tor of the integration variable, the following inequality holds:Z� rS ~Y � rS(~Y � ~X) � j~Y (�)j � j�j:The proof of the above lemma is rather te
hni
al and 
an be found in [2℄.3 Matrix FormulationWe now turn our attention to an equivalent matrix formulation to the fullydis
rete problem (2.1){(2.4). Given the matrix entriesMij := h�i; �ji ; ~Mij :=Mij ~Id; ~Nij := 
�i; �j�k�dk=1 ; (3.1)Aij := hrS�i;rS�ji ; ~Aij := Aij ~Id; (3.2)with ~Id 2 Rd�d being the identity matrix and (~ek)dk=1 the 
anoni
al basis of Rd ,the mass and sti�ness matri
es areM := (Mij)Ii:j=1; ~M := ( ~Mij)Ii:j=1; ~N := ( ~Nij)Ii:j=1; (3.3)A := (Aij)Ii:j=1; ~A := ( ~Aij)Ii:j=1: (3.4)We point out that ~M; ~A and ~N possess matrix-valued entries and therefore thematrix-ve
tor produ
t is understood in the following sense~M ~V = � IXj=1 ~Mij ~Vj�Ii=1;
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h 
omponent ~Vi of ~V , as well as ea
h of ~M ~V , is itself a ve
tor in Rd .We use the 
onvention that a ve
tor of nodal values of a �nite elementfun
tion is written in bold fa
e: V = (Vi)Ii=1 2 V := RI is equivalent toV = PIi=1 Vi�i 2 V(�). We introdu
e the subspa
e X (�) of V(�) of fun
tionswith mean value zero, and the 
orresponding subspa
e X of V of ve
tors Vsatisfying V �M1 = 0 with 1 := (1)Ii=1. We then note thatV = IXi=1 Vi�i 2 X (�) , V = (Vi)Ii=1 2 X: (3.5)We are now in a position to write the matrix formulation of (2.1){(2.4).Upon expanding the unknown s
alar fun
tions V 2 X (�); � 2 V(�) and ve
torfun
tions ~V 2 ~V(�); ~� 2 ~X (�) in terms of the basis fun
tions and setting � = �iand ~' = �~ek, we easily arrive at(2.1)  � ~A~V + ~M ~K = � ~A ~X; (3.6)(2.2)  MK � ~NT ~K = 0; (3.7)(2.3)  �AK +MV = E; (3.8)(2.4)  ~M ~V � ~NV = ~0; (3.9)where E = (hrS�i;rS"i)Ii=1. This system 
an be written equivalently in blo
k-matrix form as follows: �nd ~V 2 ~V;K 2 V; ~K 2 ~X;V 2 X su
h that2664� ~A 0 ~M 00 �A 0 M~M 0 0 � ~N0 M � ~NT 0 37752664 ~VK~KV 3775 = 2664� ~A ~XE~00 3775 : (3.10)We dis
uss the solvability of (3.10) and propose an algorithm for its solution inx4. We point out that the mesh T 
an be suitably graded and the polynomialdegree k � 1 is arbitrary, even though we restri
t ourselves to pie
ewise linearsin the simulations of x5. This 
exibility is quite important to handle 
ompli
atedgeometries and possible pin
h-o� singularities. We also stress that ~A, ~M neednot be formed and stored in pra
ti
e sin
e they 
an be easily obtained from A,M .4 S
hur Complement Approa
hConsider the following generi
 ve
tor equation with a (possibly singular) squareblo
k A: �A BC D��UQ� = �FG� :Let A be symmetri
 with (nontrivial) kernel ker(A). Then the range Y of Ais the orthogonal 
omplement of ker(A). Let S : Y ! Y be the inverse of A
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ted to Y: SA = AS = Id on Y. If P denotes the orthogonal proje
tiononto ker(A), we haveSAV = V � PV = (Id� P )V 8V 2 RI = V; (4.1)where Id � P is the orthogonal proje
tion onto Y. The S
hur 
omplementequation for Q then reads(�CSB +D)Q+ CPU =G� CSF : (4.2)Solvability of this system depends on the stru
ture of the two terms on the lefthand-side of (4.2). We intend to apply this splitting to (3.10), whi
h involvesdealing with the upper left blo
k 
ontaining ~A and A on the diagonal.Sin
e the kernel Z of A in (3.4) is the one dimensional subspa
e of V =RI spanned by 1 = (1)Ii=1, then the range Y = Z? of A is the orthogonal
omplement of Z with respe
t to the standard Eu
lidean inner produ
t in RI .If X denotes the spa
e de�ned in (3.5), X and Y are related as follows:V 2 X , MV 2 Y: (4.3)Let S : Y ! Y be the inverse of A restri
ted to Y, and let P : V ! Z be theorthogonal proje
tion into Z, thereby satisfying (4.1) withPV = 11T11TV 1 = 1
 1I V 8 V 2 V: (4.4)We now would like to apply (4.2) to (3.10) with ve
tors U = [~V ;K℄Tand Q = [ ~K;V ℄T . Let us assume momentarily that there exists a solution[~V ;K; ~K;V ℄T to (3.10). Then from (4.2) ~V , K, ~K, V satisfy� 1� ~M ~S ~M ~N~NT �MSM� � ~KV � = �� 1� ~M ~S ~A ~X + ~M ~P ~VMPK �MSE � : (4.5)We observe that both ~S ~A ~X and SE make sense be
ause ~A ~X 2 ~Y and E =(hrS�i;rS"i)Ii=1 2 Y; this 
ould be viewed as a 
ompatibility 
ondition. Multi-plying (3.6) and (3.8) by ~1 and 1, respe
tively we see that both 
omponents ofQ satisfy ~K 2 ~X and V 2 X or, in view of (4.3),~M ~K 2 ~Y; MV 2 Y: (4.6)Sin
e the upper left blo
k of (4.5), ~M ~S ~M : ~X ! ~M~Y, is nonsingular withinverse ~M�1 ~A ~M�1, we 
an apply (4.2) again to arrive at�� ~NT ~M�1 ~A ~M�1 ~N +MSM�V +MPK = � ~NT ~M�1 ~A ~X +MSE: (4.7)To de
ouple (4.7) we �rst eliminate the term MPK whi
h a
ts like a La-grange multiplier to the 
onstraint V 2 X. We a
hieve this by the orthogonalproje
tion � onto X: � = Id� M1
M1M1T �M1 : (4.8)
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e Di�usion 10Sin
e MPK 2 spanfM1g = X?, upon multiplying (4.7) by � we obtain the�nal form of the S
hur 
omplement, namely the redu
ed equation��� ~NT ~M�1 ~A ~M�1 ~N +MSM��V = ��� ~NT ~M�1 ~A ~X +MSE�; (4.9)be
ause �V = V . This reasoning leads to the following solvability result.Theorem 4.1 (Solvability). There exists a unique solution [~V ;K; ~K;V ℄T ofsystem (3.10), the 
omponents of whi
h 
an be obtained by sequentially solvingthe following (uniquely solvable) systems:V 2 X : ��� ~NT ~M�1 ~A ~M�1 ~N +MSM��V = �F ; (4.10)~V 2 V : ~M ~V = ~NV ; (4.11)~K 2 V : ~M ~K = � ~A ~X � � ~A~V ; (4.12)K 2 V : MK = ~NT ~K; (4.13)where F = � ~NT ~M�1 ~A ~X +MSE.Proof. By the argument pre
eding the statement of the theorem we 
on
ludethat if [~V ;K; ~K;V ℄T is a solution to (3.10) then ~V , K, ~K, V are solutionsto (4.10){(4.13), respe
tively.The re
ipro
al part of the proof 
onsists of proving that systems (4.10){(4.13) have unique solutions and they 
onstitute a solution of (3.10).Let us �rst 
he
k the solvability of systems (4.10){(4.13). It is easy to verifythat the operator �MSM� : X ! X is symmetri
 and positive de�nite, and� ~NT ~M�1 ~A ~M�1 ~N� : X! X is symmetri
 and positive semide�nite. Thereforethe matrix ensuing from (4.10) is positive de�nite and sin
e the right handside of the equation belongs to X, this symmetri
 system has a unique solutionV 2 X. Systems (4.11){(4.13) involve mass matri
es, whi
h are positive de�nitein V = RI , existen
e and uniqueness are thus ensured.Let us now verify that the solutions to (4.10){(4.13) 
onstitute a solutionto (3.10). Sin
e �V = V , by (4.10) and (4.11) we have that�� ~NT ~M�1 ~A~V +�MSMV = ��� ~NT ~M�1 ~A ~X +MSE�;or �MSMV = ��� ~NT ~M�1� ~A ~X + � ~A~V �+MSE�:Hen
e (4.12) implies �MSMV = �� ~NT ~K +MSE�, and (4.13) yields�MSMV = �M�K + SE�:Sin
e � is the proje
tion onto X, MSMV �M�K + SE� 2 X? = spanfM1g,we infer thatM�1(MSMV �M�K + SE�) = SMV � �K + SE� 2 Y? = spanf1g:
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e Y? = ker(A),A�SMV � �K + SE�� =MV �AK �E = 0;whi
h 
oin
ides with the se
ond equation in (3.10). The rest of the equationsin (3.10) are immediately dedu
ed from (4.11){(4.13).The method a
tually implemented in ALBERT 
onsists of �rst solving forV using (4.10), next solving (4.11) for ~V and �nally updating ~X via ~X + � ~V .5 Implementation and SimulationsIn this se
tion we des
ribe the implementation of (2.1){(2.4) together with sev-eral enhan
ements. The latter are mesh regularization, spa
e-time adaptivityand 
ontrol of element angles. They are motivated through examples showingthe ne
essity of ta
kling su
h issues, and the bene�
ial e�e
t of our approa
hto solving them. Throughout this se
tion, we take " � 0 in the simulations,be
ause for the time being we are mainly interested in the e�e
t of plain surfa
edi�usion. Computations with given ", as well as the 
oupling with elasti
ity inthe bulk 
, will be the subje
t of future work.5.1 ImplementationThe implementation was performed within the �nite element toolbox ALBERT[22, 23℄, after adding suitable data stru
tures to handle surfa
es in R3 and 
urvesin R2 . The basi
 algorithm 
onsists of the following steps:Algorithm 5.1 (Basi
 Algorithm).1. Take a mesh representing the initial surfa
e2. Choose a timestep �3. Build the matri
es A, M and ~N ( ~A, and ~M are notreally ne
essary)4. Solve (4.10) and (4.11)5. Update ~X  ~X + � ~V .6. Go to step 3Noti
e that the matri
es need to be re-built in ea
h timestep be
ause theydepend on the 
urrent surfa
e. In step 4 we solve the following linear systems:V 2 X : ��� ~NT ~M�1 ~A ~M�1 ~N +MSM��V = �� ~NT ~M�1 ~A ~X;~V 2 RI : ~M ~V = ~NV :We solve both of them by a 
onjugate gradient (CG) method. Solving these
ond one is trivial sin
e we only have to invert a mass matrix whi
h has
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ondition number. To solve the �rst one, in ea
h iteration of CGwe have to 
ompute a matrix-ve
tor produ
t for the matrix ensuing from thissystem, namely ��� ~NT ~M�1 ~A ~M�1 ~N +MSM��, where the matrix S is theinverse of A restri
ted to ker(A)?. We do not 
ompute this inverse expli
itly,but we solve a system of the form A� = b using another CG iteration (innerloop). Sin
e A is a dis
retization of a Lapla
e operator, we use a hierar
hi
albasis pre
onditioner whi
h greatly improves the performan
e of the inner loop.The design and study of e�e
tive pre
onditioners for the full system is still openand we leave it for a forth
oming arti
le. This issue is 
ru
ial to speed up the
omputations.As a �rst example we show in Figure 5.1 the evolution of a unit 
ube towarda ball with the same volume. As 
an be seen in Figure 5.1 the geometri
 
ow by
t = 0 t = 2� 10�4 t = 4� 10�4 t = 8� 10�4 t = 16� 10�4Figure 5.1: Evolution of a unit 
ube by surfa
e di�usion. All the surfa
es are repre-sented by 768 triangles and 386 verti
es. The (uniform) timestep used in the 
ompu-tations is � = 1� 10�4.surfa
e di�usion is not as gentle as the 
orresponding mean 
urvature 
ow [16℄,and leads to severe mesh distortions. Even if our formulation of x2 allows 
ornersand edges, whi
h are rather singular for surfa
e di�usion, they give rise to fastnode motion and mesh distortion. This is illustrated by the 
reation of ears
t = 0 t = 2� 10�4 t = 4� 10�4 t = 8� 10�4 t = 16� 10�4Figure 5.2: Pathologi
al ear formation in the evolution of a unit 
ube by surfa
edi�usion. All the surfa
es are represented by 3072 triangles and 1538 verti
es. Earformation is the fatal manifestation of mesh distortion and is 
aused by 
lustering ofnodes, 
rossing of element sides and folding, and is due to an inadequate tangentialmotion. It is 
ured with mesh regularization and timestep 
ontrol. The (uniform)timestep � = 1� 10�4 used in the 
omputations is too large for the underlying mesh.during the evolution of the same 
ube when represented with a �ner mesh; seeFigures 5.2 and 5.3. This is 
learly a numeri
al artifa
t and 
annot be 
ured bymesh re�nement and/or 
oarsening.
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t = 0 t = 1� 10�4 t = 2� 10�4 t = 3� 10�4 t = 4� 10�4Figure 5.3: Steps toward the pathologi
al formation of ears. Zoom into a vertex ofthe initial 
ube. After 6 timesteps some triangles 
ollapse into points and others intosegments, thereby making the mesh degenerate and produ
ing numeri
al artifa
ts. Thesurfa
es are represented by 3072 triangles and 1538 verti
es. The (uniform) timestep� = 1�10�4 used in the 
omputations is too large for the underlying mesh resolution.There are two reasons that 
ontribute to mesh distortion: 
lustering of nodesin regions of high velo
ity (along with 
rossing of elements sides and folding),and large timesteps. The �rst issue is due to the absen
e, in our formulation ofx 2, of a geometri
 law for tangential 
ow to maintain mesh quality; the 
ureis thus mesh regularization and is dis
ussed in x5.2. On the other hand, largetimesteps yield 
hanges of nodal positions tangential to the surfa
e whi
h mayex
eed the lo
al meshsize and also lead to mesh distortion; a 
ure is timestep
ontrol and is dis
ussed in x5.3.5.2 Mesh RegularizationMesh regularization is a pro
edure to maintain mesh quality, namely to keepall angles on element stars approximately of the same size; a star !z is thesupport of a basis fun
tion 
orresponding to node z. It is known that goodapproximability of the surfa
e and the PDE on it hinges on avoiding meshdistortion. Mesh regularization is thus a redistribution of nodes on the surfa
e,whi
h entails a tangential 
ow and does not a�e
t the normal motion.Sin
e surfa
e di�usion is a geometri
 evolution that preserves the volume ofthe bulk 
(t) en
losed by �(t), we present a volume preserving mesh regular-ization algorithm whi
h 
onsists of a Gauss-Seidel type iteration:Algorithm 5.2 (Regularization sweep).For ea
h node z of the mesh do the following:1. Compute a normal ~�z to the node z.2. Compute a weighted average ẑ of all the verti
es thatbelong to the star 
entered at z.3. Consider the line that passes through ẑ in thedire
tion of the normal ~�z. Repla
e the node z by theonly point belonging to this line that keeps un
hangedthe volume of the bulk.We now des
ribe ea
h step of this pro
edure in detail. In the �rst step, wetake the normal to the node to be the weighted average of the normals of the
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e Di�usion 14elements sharing that node. The weight is given by the size jT j of the elementover the size of the star. That is, for ea
h node z, the normal ~�z is de�ned by~�z = 1PT2Tz jT j XT2Tz ~�T jT j;where Tz denotes the set of all the elements of the mesh that 
ontain z, andthus form the star !z, and ~�T is the outer normal of the element T .In the se
ond step, we take ẑ to be the average of the bary
enters of all theelements in the star !z: ẑ = 1#(Tz) XT2Tz Pdi=1 ziTdwhere ziT denotes the i-th node of the element T . The result thus 
oin
ideswith a weighted average of all the nodes in !z.PSfrag repla
ements bulkmidpoint ofmidpoint of the elementthe element ẑ new vertex ~zvertex toupdate z dire
tion of normal ~�z
Figure 5.4: Volume preservingmesh regularization in 2d. Thearea of the shaded triangle 
o-in
ides with that of the trianglemarked with thi
k lines. Then thearea of the whole bulk remains un-
hangedThe implementation of the third step depends on the dimension. In 2dthe situation is simple. Given that the bulk is the interior of a 
losed polygonal
urve (mesh), 
onsider a node z and its two adja
ent nodes as depi
ted in Figure5.4. The dire
tion ~�z turns out to be perpendi
ular to the segment joining theadja
ent nodes. The idea is then to 
ompute the new vertex ~z = ẑ + t~�z,that will repla
e z, in su
h a way that the area of the triangles with verti
es z(triangle with thi
k lines) and ~z (shaded triangle) is the same (see Figure 5.4).To perform the third step in 3d we �rst observe the fa
t that, given a �xedpoint �z, the volume of the en
losed region is proportional to the sum of element
ontributions vT de�ned as follows:vT = (z1T � �z)� (z2T � �z) � (z3T � �z);where ziT , i = 1; 2; 3 denote the verti
es of the (surfa
e) element T followinga positive orientation with respe
t to the outer normal. The idea is now to
ompute the new vertex ~z = ẑ+ t~�z, that will repla
e z, in su
h a way that the
ontribution to the volume of the modi�ed star is the same as that of the originalstar. We take �z := ẑ in the de�nition of vT above, and number the verti
es ofea
h element in su
h a way that z = z1T . Then the volume 
ontributions of theold and the new star will be equal ifXT2Tz(z � ẑ)� (z2T � ẑ) � (z3T � ẑ) = XT2Tz(~z � ẑ)� (z2T � ẑ) � (z3T � ẑ):
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e Di�usion 15Sin
e ~z � ẑ = t~�z, this equation will hold fort = PT2Tz (z � ẑ)� (z2T � ẑ) � (z3T � ẑ)PT2Tz ~�z � (z2T � ẑ) � (z3T � ẑ) :The bene�
ial e�e
t of this mesh regularization is re
e
ted in the simulationdepi
ted in Figure 5.5, whi
h displays the evolution of the unit 
ube representedinitially by the same �ne mesh of Figure 5.2. No ear formation is now observed.
t = 0 t = 2� 10�4 t = 4� 10�4 t = 8� 10�4 t = 16� 10�4Figure 5.5: Evolution of a unit 
ube by surfa
e di�usion using mesh regularization.After ea
h timestep, the mesh regularization sweep is applied twi
e to the surfa
e to
ure mesh distortions. All the surfa
es are represented by 3072 triangles and 1538verti
es. The timestep used in the 
omputations is � = 1� 10�4, as in Figure 5.2.This simple minded mesh smoothing algorithm has some intrinsi
 meritswhi
h, in parti
ular, make it instrumental for mesh improvement and updateeven in dealing with the volume en
losed by �n (the bulk).5.3 Timestep ControlThe timestep 
ontrol is twofold. First it is meant to prevent large timesteps forwhi
h the position 
hange of a node, tangential to the surfa
e and relative to thatof neighboring nodes, is larger than the element size. This may be responsiblefor mesh distortion and even node 
rossing. The se
ond obje
tive is to allowlarge timesteps when the normal velo
ity does not exhibit large variations, andto for
e small timesteps otherwise. The very disparate time s
ales that 
anbe observed in all the evolutions presented in this se
tion, whi
h are typi
al offourth order problems, suggest that timestep 
ontrol represents an importantimprovement in a

ura
y while maintaining a moderate number of timesteps.To determine a 
riterion for timestep 
ontrol, we argue as follows. Let z0be a generi
 node and let z be an adja
ent node, both belonging to an elementT . In view of (1.5), their relative position 
hange is �(~V (z0) � ~V (z)). If ~�T isany unit tangent ve
tor to T , then the relative position 
hange tangential to �is given by � ��(~V (z0)� ~V (z)) � ~�T �� � C�hT jrS ~VT j;with C > 0 a mesh independent 
onstant. We would like this quantity not toex
eed a fra
tion of the lo
al meshsize hT , whi
h thereby leads to� jrS ~VT j � �t 8 T 2 T :
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t = 0 t = 0:784 � 10�5 t = 0:3496 � 10�4

t = 0:26722 � 10�3 t = 0:26168 � 10�2 t = 0:47378 � 10�1
t = 0:10891 t = 0:17272 t = 0:25706Figure 5.6: Evolution of a 4�1�1 prism toward a ball with equal volume using meshregularization and timestep 
ontrol. Solutions obtained every 9 adaptive timesteps.All the surfa
es are represented by 2304 triangles and 1154 verti
es. The mesh reg-ularization sweep was run two times after ea
h timestep, and the parameters of thetimestep 
ontrol routine were �t = 0:1, �min = 1� 10�7, �max = 5� 10�3.This gives rise to the following algorithm, whi
h uses input parameters �t; �minand �max > 0 (in all our simulations �t = 10�1; �min = 10�7; �max = 5� 10�3).Algorithm 5.3 (Timestep Control).1. Compute the quantity � = �tmax jrS ~V j2. If � � � update ~X  ~X + � ~V3. Otherwise negle
t the 
omputation and keep ~X as is.4. In any 
ase let the 
andidate for � be�� = (� if 0:9� � � � �0:9� otherwise5. Set � =8><>:�min if �� < �min�� if �min � �� � �max�max if �max < ��:In Figure 5.6 we show the 
ombined e�e
t of mesh regularization together
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e Di�usion 17with timestep 
ontrol in the evolution of a 4 � 1 � 1 prism. The pi
tures 
or-respond to the solution obtained every 9 adaptive timesteps. It is apparentfrom the pi
tures that the timestep 
ontrol not only prevented mesh distortion,but also allowed for big timesteps where the evolution was slow, and for
edsmall timesteps at the beginning, when the surfa
e was too rough and thetimes
ale very fast. Sin
e the pi
tures 
orrespond to the solution obtainedevery 9 timesteps, we observe that the timestep 
ontrol me
hanism was able to
apture the very disparate times
ales present due to the fourth order nature ofthis problem.On the other hand, Figure 5.6 reveals unne
essary 
lustering of nodes insmooth regions and la
k of resolution in other regions. This is ta
kled by spa
eadaptivity and is dis
ussed next.5.4 Spa
e AdaptivityIn this se
tion we present a method for re�ning/
oarsening meshes that de�ne asurfa
e �, with the purpose of having an a

urate representation of � in the sensethat the density of nodes should 
orrelate with the lo
al variation (regularity) of�. We 
annot rely on parametrizations to quantify regularity of � be
ause this
on
ept would not be invariant under reparametrization. Therefore, we need anintrinsi
 measure of regularity su
h as the se
ond fundamental form rS~� andnot just its tra
e, namely the mean 
urvature � whi
h is at our disposal.We thus argue as follows. Let T1; T2 2 T be two adja
ent elements with unitnormals ~�1; ~�2, whi
h share the side (node in 2d) S. We 
ould 
ompute rS~� as��rS~��� � ��~�1 � ~�2��hS � �ShS ;where hS stands for the lo
al meshsize at S and �S for the angle between ~�1 and~�2. Sin
e the pointwise a

ura
y of the mesh in representing � is proportionalto h2S jrS~���, we end up with the following test for mesh qualityhS�S � �s;where �s is a given parameter. If we add re�nement and 
oarsening parameters
R; 
C > 0, we end up with the following algorithm.Algorithm 5.4 (Mesh Adaptation).1. Compute all �S and let AT :=PS�T hS�S, 8T 2 T .2. Let Amax be the maximum AT.3. If Amax > �s, mark for refinement all the elements Thaving AT > 
RAmax.4. Perform d� 1 bise
tions to every marked element.5. Mark for 
oarsening all the elements T havingAT < 
C Amax.6. Coarsen the marked elements.7. If the mesh was modified go to step 1.
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e Di�usion 18The e�e
t of mesh adaptation is twofold: �rst, it helps us get a betterresolution 
lose to edges and angles, and se
ondly, it redu
es the 
omputingtime by de
reasing the number of degrees of freedom in smooth regions. InFigure 5.7 we show the evolution of the 4� 1� 1 prism presented before usingnow this adaptation routine; we took �s = 0:1, 
C = 0:3, 
R = 0:7. The initialmesh is that of Figure 5.6 after applying Algorithm 5.4. We used the same meshregularization and timestep 
ontrol as before. Additionally, after ea
h timestep,we ran the adaptation algorithm followed by two mesh regularizations. Thesaving in spatial degrees of freedom is apparent by 
omparing Figure 5.7 withFigure 5.6, for whi
h 1154 verti
es were employed throughout.
t = 0 (1250) t = 0:09710�10�3 (1090) t = 0:72838 � 10�3 (634)

t = 0:02079 (1178) t = 0:16740 (754) t = 0:31914 (520)Figure 5.7: Evolution of a 4 � 1 � 1 using timestep 
ontrol, mesh regularizationand mesh re�nement/
oarsening. Between parentheses we indi
ate the number ofdegrees of freedom (verti
es) used to represent the surfa
e and should be 
omparedwith 1154 for Figure 5.6 without spa
e adaptivity. The parameters for the meshre�nement/
oarsening routine were �s = 0:1, 
C = 0:3, 
R = 0:7.To further investigate the nonlinear dynami
s of surfa
e di�usion we 
om-pute the evolution of a longer prism, and we verify numeri
ally that surfa
edi�usion 
an lead to pin
h-o� depending on the aspe
t ratio of the initial sur-fa
e, see Figures 5.8{5.10. During the evolution toward this topology 
hange ofthe surfa
e, some elements degenerate, espe
ially those 
lose to the pin
h-o�,produ
ing in turn some loss of a

ura
y. Sin
e it is known that wide angles areresponsible for loss of a

ura
y, we introdu
e in x5.5 a pro
edure to 
ontrol wideangles.5.5 Angle Width ControlThe routine for 
ontrolling the size of the widest angles is very simple, and it
onsists of a single splitting of those elements with angles wider than a 
ertainthreshold �max, followed by nMR mesh regularization sweeps.
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t = 0 (2178) t = 0:39501 (1624)

t = 0:6487 � 10�4 (1906) t = 0:40762 (1528)
t = 0:00129 (2170) t = 0:41316 (1528)
t = 0:12536 (1962) t = 0:41346 (1200)
t = 0:30538 (1632) t = 0:41349 (1004)Figure 5.8: Pin
h-o� in �nite time. Evolution of an 8 � 1 � 1 prism at various timeinstants leading to a dumbbell and 
usp formation (between parentheses we indi
atethe number of verti
es used to represent the surfa
e.) The evolution was 
omputedusing timestep 
ontrol, mesh regularization, mesh re�nement/
oarsening, and a routinefor 
ontrolling wide angles.
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e Di�usion 20Algorithm 5.5 (Angle Width Control).1. Mark all the elements having at least one angle biggerthan �max.2. If there are elements marked,(a) Halve (one bise
tion) all the marked elements.(b) Perform nMR regularization sweeps.(
) Go to 1.3. If there are no elements marked, 
ontinue.Here, �max, nMR are �xed parameters. The element halving is done follow-ing the newest-vertex bise
tion rule, whi
h keeps the number of elements in astar uniformly bounded, but may not ne
essarily split the widest angle. Thesubsequent mesh regularization takes 
are of this issue. It is important to pointout that only one bise
tion is done to the elements at this stage: two bise
-tions would lead to elements having the same angles as the original! Figure 5.9shows a detailed view of the evolution of the 8� 1� 1-prism when approa
hingthe pin
h-o�. The 
ontrol of wide angles, 
oupled with mesh regularization,re�nement and 
oarsening produ
e very good meshes, even very 
lose to thepin
h-o�.
t = 0:399123(1568) t = 0:411839(1512) t = 0:413154(1528) t = 0:413400(1368) t = 0:413464(1200)Figure 5.9: Detailed view of the pin
h-o� for the 8 � 1 � 1 prism. The 
ontrol ofwide angles, 
oupled with mesh regularization, re�nement and 
oarsening 
ure meshdistortion until the very moment of pin
h-o�, when the elements are rather elongatedbut not degenerate. An angle is 
onsidered to be wide when bigger than 120o.5.6 Full Adaptive AlgorithmWe start this se
tion by des
ribing the �nal version of our adaptive algorithmfor surfa
e di�usion.
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t = 0 (4034)

t = 0:000248 (3434)
t = 0:098140 (4074)
t = 0:444604 (3608)
t = 0:634604 (3556)
t = 0:663204 (3156)
t = 0:668743 (2486)Figure 5.10: Evolution of a 16�1�1 prism toward two simultaneous 
usps revealingthat the number of singularities depends on the aspe
t ratio of the initial prism. Allthe parameters used for this simulation are the same as those for the 8� 1� 1 prism.
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e Di�usion 22Algorithm 5.6 (Final Version of Surfa
e Di�usion).1. Start with an initial mesh, and let ~X be the ve
torof 
oordinates. Let � be the initial timestep.2. Set the values for the following parameters:Mesh regularization: nMR 2 Z+ (number of sweeps)Timestep 
ontrol: 0 < �min < �max, �t > 0Spa
e adaptivity: �s > 0, 0 < 
C < 
R < 1Control of angles width: 60o < �max < 180o.3. Perform nMR regularization sweeps (Algorithm 5.2).4. Run the mesh adaptation routine (Algorithm 5.4).5. If d = 3, run the routine for 
ontrolling wide angles(Algorithm 5.5).6. Solve (4.10) for V and (4.11) for ~V .7. Apply timestep 
ontrol and update ~X (Algorithm 5.3).8. Go to 3
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Volume AreaFigure 5.11: Relative volume and surfa
e area with respe
t to the initial values vs.normalized time (t=T�nal). The 
omputations were performed with the full adaptivealgorithm (Algorithm 5.6).In order to obtain quantitative information of our algorithm we 
omparedthe behavior using the full adaptive algorithm in four test 
ases: a 
ube, a4 � 1 � 1-prism, an 8 � 1 � 1-prism, and a 16 � 1 � 1-prism. In all of theexperiments we used the same parameters:� Mesh regularization: nMR = 2 (number of sweeps).� Timestep 
ontrol: �t = 0:1 (toleran
e), �min = 1�10�7 (minimum timestep),�max = 5� 10�3 (maximum timestep).� Spa
e adaptivity: �s = 0:1 (toleran
e), 
R = 0:7 (re�nement threshold),
C = 0:3 (
oarsening threshold).� Control of angles width: �max = 120o (widest angle allowed).
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e Di�usion 23Figure 5.11 shows volume and surfa
e area vs. time. Volume 
hange isminimal (less than 1.3%), and thus 
onsistent with (2.5). Surfa
e areas arealways de
reasing with t as predi
ted by (2.6).Figure 5.12 provides information about the behavior of the timesteps due tothe timestep 
ontrol routine: it shows histograms with the number of timestepsused in every tenth of the whole time interval. In all the experiments, and dueto the sharp sides of the initial prisms, whi
h imply a fast motion of points,the timestep size was �min at the beginning. This situation 
hanges due to thesmoothing e�e
t of surfa
e di�usion. For the 
ases where singularities o

ur(8� 1� 1- and 16� 1� 1-prism) the timesteps are again very small at the enddue to the in�nite velo
ity of those points of the surfa
e whi
h are 
lose to thepin
h-o�.
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Figure 5.12: Timestep 
ontrol: Number of timesteps used in ea
h tenth of the wholetime interval of 
omputation. In all the experiments, and due to the sharp sides ofthe initial prisms, the timestep size was �min at the beginning. For the 
ases wheresingularities o

ur (8� 1� 1- and 16� 1� 1-prism) the timesteps are again very smallat the end due to the in�nite velo
ity of the points of the surfa
e 
lose to the pin
h-o�.To end this se
tion we present in Figure 5.13 the evolution of the 
ornerof a 
ube using natural boundary 
onditions. Here we 
an observe in detailthe evolution of sharp edges that, being rather singular for surfa
e di�usion arehandled transparently by our method.
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t = 0 t = 0:113 � 10�5 t = 0:932 � 10�5
t = 0:4300 � 10�4 t = 0:35039 � 10�3 t = 0:31211 � 10�2

t = 0:02545 t = 0:07545 t = 0:12545Figure 5.13: Evolution of the 
orner of a 
ube using the full adaptive algorithm andnatural boundary 
onditions.
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e Di�usion 255.7 Simulations of Curves in R2We �nally illustrate the behavior of 
urves in R2 . Figure 5.14 shows the evolu-
t = 0 t = 0:685� 10�5 t = 0:235� 10�4 t = 0:580� 10�4

t = 0:120� 10�3 t = 0:232� 10�3 t = 0:406� 10�3 t = 0:710� 10�3
t = 0:112� 10�2 t = 0:143� 10�2 t = 0:165� 10�2 t = 0:197� 10�2Figure 5.14: Bubble formation during the evolution of a 
urve by surfa
e di�usion.Solution obtained every 60 adaptive timestesps. The 
urve de�nes initially an almostslit domain, next develops a mushroom shape before sel�nterse
ting and 
rossing, and�nally opens up. It is important to observe the very disparate time s
ales of thisevolution. This purely geometri
 motion might be a me
hanism for the 
reation ofin
lusions (or islands).tion of a 2� 2-square from whi
h a very thin re
tangle (0:02� 1:8) is missing;we 
all it an almost slit domain. We observe here a pin
h-o�, followed by a
urve 
rossing, whi
h in 
ontrast to 3d does not 
reate a problem be
ause bothparts of the 
urve are evolving separately and do not see ea
h other. The �gure�nally evolves to a 
ir
le, the stable asymptoti
 
on�guration in 2d.In Figure 5.15 we show the evolution of a four-leafed rose, whi
h was 
om-puted previously by Es
her et. al. using a �nite di�eren
e s
heme [18℄. We plotthe solutions obtained with our full adaptive algorithm for our values of t 
los-est to those shown in [18℄. The qualitative agreement of both 
omputations isex
ellent.
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t = 0 t = 0:01965 t = 0:05017 t = 0:07517Figure 5.15: Evolution of the rose given in polar 
oordinates by r(�) = sin(2�).The stable asymptoti
 limit is a 
ir
le on whi
h the 
urve winds three times. Thequalitative agreement with the results presented in [18℄ is ex
ellent.6 Con
lusionsWe have devised and implemented a new FEM for the purely geometri
 motionof parametri
 surfa
es (or 
urves) by surfa
e di�usion. The s
heme hinges on� an operator splitting into se
ond and zero order equations;� dealing with both 
ontinuous s
alar and ve
tor velo
ities and 
urvatures,whi
h relate weakly with the dis
ontinuous unit normals;� a semi-impli
it time dis
retization, whi
h leads to linear PDE to be solvedat ea
h time step, allows for relatively large time steps, and requires noexpli
it parametrization of the surfa
e;� an e�e
tive S
hur 
omplement approa
h for the solution of the ensuinglinear systems;� mesh smoothing to avoid mesh distortions, as well as spa
e adaptivity andtimestep 
ontrol to optimize the 
omputational e�ort.We do
umented the performan
e of the new FEM with an extensive list ofsimulations, some exhibiting pin
h-o�, 
rossing, and mushroom formation in�nite time. The algorithm is well suited for the study of surfa
e di�usion aswell as the 
oupling of it with other physi
al pro
esses su
h as elasti
ity. In thepresent paper we restri
ted ourselves to 
onsidering 
losed surfa
es or naturalboundary 
onditions. The 
exibility of �nite elements, however, allows for otherboundary 
onditions via slight 
hanges in the implementation. Animations ofthe 
omputational results presented above 
an be found inhttp://www.math.umd.edu/~rhn/SurfDiff/MoviesWemention [3, 4℄ whi
h uses the 2d version of our s
heme for island dynami
swith adatom di�usion and adsorption-desorption, where the dynami
s of theisland boundaries is governed by a two-sided 
ux together with surfa
e di�usion.
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