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Abstract

We present a variational framework for shape optimization problems
that establishes clear and explicit connections among the continuous for-
mulation, its full discretization and the resulting linear algebraic systems.
Our approach hinges on the following essential features: shape differential
calculus, a semi-implicit time discretization and a finite element method
for space discretization. We use shape differential calculus to express vari-
ations of bulk and surface energies with respect to domain changes. The
semi-implicit time discretization allows us to track the domain bound-
ary without an explicit parametrization, and has the flexibility to choose
different descent directions by varying the scalar product used for the com-
putation of normal velocity. We propose a Schur complement approach
to solve the resulting linear systems efficiently. We discuss applications
of this framework to image segmentation, optimal shape design for PDE,
and surface diffusion, along with the choice of suitable scalar products in
each case. We illustrate the method with several numerical experiments,
some developing pinch-off and topological changes in finite time.
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1 Shape Optimization and Gradient Flows

Shape optimization problems are ubiquitous in science, engineering and indus-
trial applications. They can be formulated as minimization problems with re-
spect to the shape of a domain Ω in R

d. If y(Ω) is the solution of a boundary
value problem in Ω

Ly(Ω) = 0, (1)

and J(Ω, y(Ω)) is a cost functional, then we consider the minimization problem

Ω∗ ∈ Uad : J(Ω∗, y((Ω∗)) = inf
Ω∈Uad

J(Ω, y(Ω)), (2)

where Uad is a set of admissible domains in R
d. If the problem is purely geomet-

ric, namely there is no state constraint (1), then we simply denote the functional
J(Ω). We refer to the books [11, 15, 19, 21, 24] for a description of this problem
and numerous applied examples (see e.g [16, 20]). In any case, we review some
basic material in §2 and discuss three relevant examples throughout the paper.

Our main goal is to present a variational method which explicitly and clearly
leads first to design a flow Ω(t), starting from an initial configuration Ω(0) to
a relative minimum Ω(∞), that decreases the function t 7→ J(Ω(t), y(Ω(t)),
and next to discretize in time and space, thereby obtaining a natural descent
direction. Our approach hinges on three essential features:

• Shape sensitivity analysis: this allows us to express variations of bulk and
surface energies with respect to domain changes and formalize the notion of
shape derivative and thus shape gradient.

• Semi-implicit time discretization: this is crucial in order to maintain an im-
plicit computation of geometric quantities such as mean curvature and normal
velocity but not the entire geometry. This can be realized without explicit
parametrization of the domain boundary, and is sufficiently flexible to ac-
commodate several scalar products for the computation of normal velocity
depending on the application.

• Adaptive finite element method for space discretization: this is important for
the intrinsic computation of mean curvature as well as the control of local
meshsize to increase resolution.

We discuss shape sensitivity in §2, with special emphasis on our three sample
problems, and present the time and space discretization of the resulting gradi-
ent flows in §3. We finally conclude in §4 with several numerical experiments
that illustrate performance of the method, choice of scalar products, and large
domain deformations sometimes leading to pinch-off and topological change.

In the rest of the introduction we briefly describe our three basic model prob-
lems and the notion of gradient flow. We now introduce our examples: image
segmentation, optimal shape design for PDE, and surface diffusion. They are
simple models of shape optimization with quite distinct behavior and require-
ments, which can nonetheless be studied within a unified framework. We make
also explicit the concept of shape derivative of J(Ω) in the direction of a normal
velocity V , namely

dJ(Ω;V ) =

∫

Γ

GV dS, (3)
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but derive the expressions of G in §2 for each case. We then indicate how to
exploit this information to design a gradient flow. Throughout the paper we will
denote with Γ that part of the boundary of Ω which is free to deform, with κ

the sum of the principal curvatures of Γ and with ~ν the unit outer normal of Γ;
thus V := ~V · ~ν. We use the sign convention that a circle with outward normal
has positive mean curvature. The symbol 〈·, ·〉 stands for either the L2-scalar
product or a duality pairing on Γ.

1.1 Image Segmentation

Image segmentation has been one of the central problems of image processing
ever since the inception of this discipline. Given an image the goal is to identify
the ”objects” or homogeneous regions with respect to some image features, such
as image intensity, texture etc. The geodesic active contour model proposed in [9]
addresses this problem in an energy minimization context and identifies object
boundaries by a set of curves in 2D or surfaces in 3D. In the following we cast
this model within our framework.

Let I(x) : D ⊂ R
d → R be a given smoothed-out image intensity function on

an open and bounded image domain D. Since values of I(x) vary significantly
at object boundaries, the image gradient ∇I(x) gets large at these locations.
We can use this to define the edge detector function H(x) as follows

H(x) = h(|∇I(x)|), h(s) =
1

1 + s2
,

so that H(x) is small on object boundaries and H(x) ≈ 1 on smooth regions of
the image. We now associate an energy J(Ω) to a given curve Γ and enclosed
domain Ω so that object boundaries correspond to local minima of J(Ω). Such
an energy is given by the geometric functional

J(Ω) :=

∫

Γ

H(x)dS + λ

∫

Ω

H(x)dx, λ ≥ 0. (4)

Note that the first integral is minimized when Γ coincides with the object bound-
aries in the image. It is also common to include the domain integral in the
optimization process because it speeds up the convergence of the curve to the
object boundaries and helps detection of object concavities; see [5], [9] for more
details. We will see in §2.2.1 that G in (3) has the explicit form

G = (κ+ λ)H(x) + ∂νH(x). (5)

1.2 Optimal Shape Design for PDE

Motivated by the optimal shape design of a drug eluting stent, we consider an
extremely simplified problem, still presenting some of the main mathematical
difficulties one has to face in trying to solve a more realistic situation (for more
details on the mathematical modelling see e.g. [27]). A drug eluting stent is a
normal metal stent that has been coated with a drug that is known to interfere
with the process of restenosis of the artery. Roughly speaking in optimal shape
design for drug eluting stents, one is interested in optimizing some of the ge-
ometric properties of the stent in order to control the distribution of the drug
released in the arterial wall.
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In this context Ω is the cross-section of part of the arterial wall, Γ is the
boundary of the cross section of a stent wire, D is the control region for the
drug distribution and zg is some clinical data to match.

Let Ωi, i = 1, 2 be sufficiently regular open bounded sets of R
d, such that

Ω1 ⊂ Ω2. We denote by Ω = Ω2 \ Ω1 and ∂Ω = Γ ∪ Σ, where Γ = ∂Ω1 and
Σ = ∂Ω2\Γ. Finally, let D be an open bounded set of R

d such that D ⊂⊂ Ω. Let
us now define the set Uad of admissible domains in R

d: it contains all domains
obtained through a deformation of Ω by keeping Σ fixed and by moving only Γ
in such a way that Γ ∩D = ∅.

We are interested in the solution of a simple shape optimization problem of
the form (2), associated to the energy functional

J(Ω, y(Ω)) :=
1

2

∫

D

(

y(Ω) − zg

)2

dx+ γ

∫

Γ

dS, (6)

where γ > 0 is a penalization parameter for the length of the moving boundary
Γ, zg : D → R is a given function and y(Ω) is the solution of the following
elliptic problem on Ω

−∆y = 0 in Ω, y = 0 on Σ, ∂νy = 1 on Γ. (7)

We will see in §2.2.2 that G in (3) has the explicit form

G := −∇Γy∇Γp+ κp+ κγ. (8)

1.3 Surface Diffusion and Epitaxially Stressed Solids

A very simple model of epitaxially stressed thin films can be described as follows
[4, 8, 25]. Consider an elastic solid with lattice spacing different from that of
a substrate. This mismatch induces stresses in the solid. On the other hand,
material particles on the free surface Γ in contact with gas are free to move and
rearrange their position so as to minimize surface tension, thereby yielding a
plastic deformation of the solid. Phenomenological arguments lead to the four
order (highly nonlinear) PDE

V = −∆Γ(γκ+ ε), (9)

where γ is the surface tension constant and ε is the elastic energy density on
Γ. In this paper we consider a simplified situation in that elasticity is replaced
by the Laplace operator in Ω and thus ε := |∇y(Ω)|2, where y(Ω) solves the
boundary value problem

−∆y(Ω) = 0 in Ω, ∂νy(Ω) = 0 on Γ, y(Ω) = g on Σ, (10)

where Σ is that part of the boundary of Ω in contact with the substrate (to mimic
a misfit). We will see in §3.3 that the physical law (9) is the H−1-gradient flow
for the energy functional

J(Ω, y(Ω)) :=

∫

Ω

|∇y(Ω)|2 + γ

∫

Γ

dS, (11)

whereas we will show in §2.2.3 that G in (3) has the explicit form

G := |∇y(Ω)|2 + γκ. (12)
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1.4 Shape Gradient Flows

We observe that in all the examples above, the function G in (3) has the form

G = g(x,Ω)κ+ f(x,Ω). (13)

This explicit expression can be exploited to deform Ω in the direction V of
maximal decrease of the functional J(Ω, y(Ω)). To do this, we first introduce a
bilinear form b(·, ·) on Γ which induces a scalar product, and next consider the
gradient flow

b(V,W ) = −

∫

Γ

GW, ∀W, (14)

where Γ (and hence G) implicitly depend on ~V = V ~ν by means of a suitable
system of ODE describing the deformation of Ω through V . If B is a (elliptic)
operator such that 〈BV,W 〉 = b(V,W ), then (14) is equivalent to solving the
elliptic PDE on the surface Γ for the normal velocity V

BV = −G. (15)

We point out that so far we have not discretized the underlying problem but
still have been able to find a descent direction for the domain shape, the steep-
est descent direction. The next step is to discretize in time in such a manner
that we retain the implicit computation of curvature in (13), for stability pur-
poses, but not the full geometry. This linearization process is fully discussed
in §3.3 and is followed by space discretization via finite element methods in
§3.5. The ensuing variational approach is rather flexible to accommodate sev-
eral scalar products b(·, ·) depending on the application, as discussed in §3.3
and §4. Roughly speaking we can distinguish between applications where the
gradient flow has a physical meaning (e.g. surface diffusion), and where it does
not (e.g. image segmentation or optimal shape design for PDE). In the first case
the choice of the scalar product is dictated by physics, whereas in the latter case
it can be driven by issues concerning the well-posedness of (15), as discussed
in the example of optimal shape design for PDE, or by stability and rate of
convergence of the resulting numerical scheme, as described in the example of
image segmentation.

In designing a numerical scheme (e.g. gradient method) for the approx-
imation of the continuous gradient flow (14), and hence the construction of a
sequence of domains {Ωn}n≥0 aiming at convergence to Ω∗ = argminΩ∈Uad

J(Ω),
the following chief question arises:

Given a domain Ω, is it possible to choose a vector field
~V deforming Ω into Ω̃ such that J(Ω̃) < J(Ω)?

(16)

A key step in answering this question is the shape sensitivity analysis of the
mapping Ω 7→ J(Ω). This is briefly reviewed in §2.

2 Shape Sensitivity Analysis

In §2.1 we introduce some elements of shape calculus, along with related ref-
erences, necessary to properly carry out the shape sensitivity analysis of the
model problems in §2.2.
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2.1 Shape Differential Calculus

We start by briefly recalling some useful notions of differential geometry. Let
us be given h ∈ C2(Γ) and an extension h̃ of h, h̃ ∈ C2(U) and h̃|Γ = h on Γ
where U is a tubular neighborhood of Γ in R

d. Then the tangential gradient
∇Γh of h is defined as follows:

∇Γh =
(

∇h̃− ∂ν h̃ ~ν
)

|Γ,

where ~ν denotes the normal vector to Γ. For an open set of class C2 with
boundary Γ, we define the tangential divergence of ~W by

divΓ
~W =

(

div ~W − ~ν ·D ~W · ~ν
)

|Γ, (17)

where D ~W denotes the Jacobian matrix of ~W . Finally, if D2h̃ denotes the
Hessian of h̃, then the Laplace-Beltrami operator ∆Γ on Γ is defined as follows:

∆Γh = divΓ(∇Γh) =
(

∆h̃− ~ν ·D2h̃ · ~ν − κ ∂ν h̃
)

|Γ. (18)

2.1.1 The Velocity Method

We consider now a hold-all domain D, which contains Ω, and a vector field ~V

defined on D, which is used to define the continuous sequence of perturbed sets
{Ωt}t≥0, with Ω0 := Ω. Each point x ∈ Ω0 is continuously deformed by an

ODE defined by the field ~V . The parameter which controls the amplitude of
the deformation is denoted by t (a fictitious time).

We now consider the system of ODEs

dx

dt
= ~V (x(t)), ∀t ∈ I, x(0) = X, (19)

where X ∈ Ω0 = Ω. This defines the mapping

x(·, t) : X ∈ Ω → x(t,X) ∈ R
d, (20)

and also the perturbed sets

Ωt = {x(t,X) : X ∈ Ω0}. (21)

We recall that the family of perturbed sets has its regularity preserved for ~V

smooth enough [24]: if Ω0 is of class Cr, r ≤ k, then for any t ∈ I , Ωt is also of
class Cr.

2.1.2 Derivative of Shape Functionals

Let J(Ω) be a shape functional; examples of such functionals have been given in
Section 1. The Eulerian derivative, or shape derivative, of the functional J(Ω)

at Ω, in the direction of the vector field ~V is defined as the limit

dJ(Ω; ~V ) = lim
t→0

1

t

(

J(Ωt) − J(Ω)
)

. (22)

Let B be a Hilbert space of perturbating vector fields. The functional J(Ω)

is said to be shape differentiable at Ω in B if the Eulerian derivative dJ(Ω; ~V )
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exists for all ~V ∈ B and the mapping ~V → dJ(Ω; ~V ) is linear and continuous on
B. An analogous definition can be introduced for functionals J(Γ) depending
on a d− 1 manifold Γ as an independent variable.

We now recall a series of results from shape differential calculus in R
d. We

start with the shape derivative of domain and boundary integrals of functions
not depending on the geometry.

Lemma 2.1 ([24, Prop. 2.45]) Let φ ∈ W 1,1(Rd) and Ω ⊂ R
d be open and

bounded. Then the functional

J(Ω) =

∫

Ω

φdx (23)

is shape differentiable. The shape derivative of J is given by

dJ(Ω; ~V ) =

∫

Ω

div(φ~V )dx. (24)

If Γ = ∂Ω is of class C1 and V = ~V · ~ν, then

dJ(Ω; ~V ) =

∫

Γ

φV ds. (25)

Lemma 2.2 ([24, Prop. 2.50 and (2.145)]) Let ψ ∈ W 2,1(Rd) and Γ be of
class C1. Then the functional

J(Γ) =

∫

Γ

ψdS (26)

is shape differentiable and

dJ(Γ; ~V ) =

∫

Γ

(

∇ψ · ~V + ψdivΓ
~V

)

dS =

∫

Γ

(

∂νψ + ψκ
)

V dS. (27)

Let us now consider more general functionals J(Ω), which are useful when we
consider problems of optimal shape design for partial differential equations, like
the one introduced in Section 1.2. In particular we are interested in computing
sensitivities for functionals of the form

J(Ω) =

∫

Ω

φ(x,Ω)dx, or J(Γ) =

∫

Γ

ψ(x,Γ)ds, (28)

where the functions φ(·,Ω) : Ω → R and ψ(·,Γ) : Γ → R themselves depend on
the geometric variables Ω and Γ, respectively. To handle the computation of
the sensitivities of such functionals we need to take care of the derivatives of φ
and ψ with respect to Ω and Γ.
First of all we recall the notion of material derivative φ̇(Ω; ~V ) of φ at Ω in

direction ~V . It is defined as follows [24, Def. 2.71]:

φ̇(Ω; ~V ) = lim
t→0

1

t

(

φ(Ωt) ◦ x(·, t) − φ(Ω0)
)

, (29)

where the mapping x(·, t) is defined as in (20). A similar definition holds for
functions ψ(Γ, ·) which are defined on boundaries Γ instead of domains Ω.
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Let us now now recall the notion of shape derivative φ′(Ω; ~V ) of φ at Ω in the

direction ~V . It is defined to be [24, Def. 2.85]

φ′(Ω; ~V ) = φ̇(Ω; ~V ) −∇φ · ~V . (30)

Accordingly, for boundary functions ψ(Γ) : Γ → R, the shape derivative is
defined to be [24, Def. 2.88]

ψ′(Γ; ~V ) = ψ̇(Γ; ~V ) −∇Γψ · ~V |Γ. (31)

With these notions we are able to calculate the Eulerian derivatives for the
above shape functionals.

Proposition 2.1 ([24, Sect. 2.31, 2.33]) Let φ = φ(Ω, x) be so that the ma-

terial derivative φ̇(Ω; ~V ) and the shape derivative φ′(Ω; ~V ) exist. Then, the cost
functional in (28) is shape differentiable and we have

dJ(Ω; ~V ) =

∫

Ω

φ′(Ω; ~V )dx+

∫

Γ

φV dS. (32)

For boundary functions φ(Γ) we get

dJ(Γ; ~V ) =

∫

Γ

φ′(Γ; ~V )dS +

∫

Γ

κφV dS, (33)

whereas if φ(·,Γ) = ψ(·,Ω)|Γ, then we obtain

dJ(Γ; ~V ) =

∫

Γ

ψ′(Ω; ~V )|ΓdS +

∫

Γ

(

∂νψ + κψ
)

V dS. (34)

To use this Proposition we need to be able to compute the shape derivative of
solutions y(Ω) to elliptic boundary value problems. We consider now a simple
case, though sufficient for our later developments: let f, g, h be functions defined
on R

d, i.e. they do not depend on Ω, and let y(Ω) satisfy

−∆y(Ω) = f in Ω, y(Ω) = g on Σ, ∂νy(Ω) = h on Γ. (35)

Lemma 2.3 ([26],[24, Sect. 3.1 and 3.2]) The shape derivative of y(Ω) in

(35), y′ := y′(Ω, ~V ), satisfies the following boundary value problem







−∆y′ = 0, in Ω
y′ = V ∂ν(g − y(Ω)) on Σ

∂νy
′ = divΓ(V∇Γy(Ω)) + (κh+ ∂νh+ f)V on Γ.

(36)

Let us conclude this part with a Riesz representation theorem, the Hadamard-
Zolésio Theorem, that will play an important role in the sequel.

Lemma 2.4 ([24, Sect 2.11 and Th. 2.27]) The Eulerian derivative of a do-
main or boundary functional always has a representation of the form

dJ(Ω; ~V ) = 〈G, V 〉Γ, (37)

where we denote by 〈·, ·〉Γ a duality pair on Γ; that is, the Eulerian derivative is
concentrated on Γ.
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2.2 Shape Derivatives of the Model Problems

For each shape functional introduced in Section 1.2 we compute the shape
derivative and thereby obtain the explicit expressions (5), (8), and (12) of the
Riesz representative G.

2.2.1 Image Segmentation

According to Lemmas 2.1, 2.2, we can write the shape derivative of J(Ω) as
follows:

dJ(Ω;V ) =

∫

Γ

(

(κ+ λ)H(x) + ∂νH(x)
)

V dS. (38)

Then the shape gradient is

G = (κ+ λ)H(x) + ∂νH(x), (39)

and has the form (13) with g = H(x) and f = λH(x) + ∂νH(x).

2.2.2 Optimal Shape Design for PDE

Let us now compute the shape derivative of the functional

J(Ω, y(Ω)) = J1(Ω, y(Ω)) + J2(Ω) =
1

2

∫

D

(y(Ω) − zg)2dx+ γ

∫

Γ

dΓ, (40)

where y(Ω) solves the elliptic problem (7).

Let us first consider the shape derivative y′ := y′(Ω; ~V ) at Ω in the direction
~V , where we allow ~V to be non-zero only in a neighborhood of Γ (i.e. D and Σ
are both assumed to be fixed). According to Lemma 2.3, y′ is the solution of
the following elliptic problem







−∆y′ = 0 in Ω
y′ = −V ∂νy = 0 on Σ

∂νy
′ = divΓ(V∇Γy) + κV on Γ.

(41)

In order to relate the L2-norm in J1(Ω, y(Ω)) it is customary to introduce an
adjoint problem







−∆p = χD(y − zg) in Ω
p = 0 on Σ

∂νp = 0 in Γ,
(42)

whence

dJ1(Ω, V ) =

∫

D

(y − zg)y′ = −

∫

Ω

∆py′

=

∫

Ω

∇p∇y′ −

∫

Γ

∂νpy
′ −

∫

Σ

∂νpy
′

(y′ = 0 on Σ, ∂νp = 0 on Γ) = −

∫

Ω

∆y′p+

∫

Γ

∂νy
′p+

∫

Σ

∂νy
′p

(p = 0 on Σ) = −

∫

Ω

∆y′p+

∫

Γ

∂νy
′p

=

∫

Γ

(divΓ(V∇Γy) + κV )p

=

∫

Γ

(−∇Γy∇Γp+ κp)V.
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On using Lemma 2.2 we have

dJ2(Ω, V ) = γ

∫

Γ

κV dΓ. (43)

Hence Lemma 2.4 holds with the Riesz representation function

G = −∇Γy∇Γp+ κp+ κγ, (44)

which has the form (13) with g = p+ γ and f = −∇Γy∇Γp.

2.2.3 Surface Diffusion and Epitaxially Stressed Solids

We now compute the shape derivative of the functional (11), namely,

J(Ω, y(Ω)) = J1(Ω, y(Ω)) + J2(Ω) =

∫

Ω

|∇y(Ω)|2 + γ

∫

Γ

dS, (45)

with y(Ω) satisfying (10). It follows from (36) that the shape derivative y′ :=

y′(Ω; ~V ) of y(Ω) satisfies

−∆y′ = 0 in Ω, y′ = 0 on Σ, ∂νy
′ = divΓ(V∇Γy), on Γ. (46)

Consequently, using (32), we obtain

dJ1(Ω; ~V ) = 2

∫

Ω

∇y∇y′ +

∫

Γ

|∇y|2V

and
∫

Ω

∇y∇y′ = −〈∆y, y′〉 +

∫

Γ

y′∂νy = 0,

because of (10). Since the shape derivative for J2(Ω) obeys (43), we have thus
derived the expression

dJ(Ω; ~V ) =

∫

Γ

(

|∇y|2 + γκ
)

V ds.

This implies that the shape gradient G is

G = |∇y|2 + γκ,

and has the form (13) with g = γ and f = |∇y|2.

3 Discrete Gradient Flows

Now we are ready to answer the chief question (16) and provide a strategy to
build a sequence {Ωn}n≥0 such that J(Ωn+1) ≤ J(Ωn). We first consider in
§3.1 an implicit time discretization, as proposed by Luckhaus [18] and Almgren,
Taylor and Wang [1] for the Stefan problem with Gibbs-Thomson law. This
technique is also related to the idea of minimizing movements introduced by E.
De Giorgi [2, 3].

Since the resulting scheme is not practical, we then study an explicit time
linearization in §3.2, followed in §3.3 by a semi-implicit time discretization which
keeps geometric quantities such as velocity and curvature implicit but the rest
of the geometry explicit.
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3.1 Implicit Time Discretization

Let τn be a variable time-step, tn+1 = tn + τn and let the domain Ωn+1 be the
solution of the following penalized minimization problem:

argminΩn+1

(

J(Ωn+1) +
1

2τn
d2(Ωn+1,Ωn)

)

, (47)

where the ”distance term” 1
2τn

d2(Ωn+1,Ωn) penalizes the distance between Ωn+1

and Ωn. In order to specify the distance function d(·, ·), we consider ~Vn+1 :=
~V ( ~Xn+1) to be the implicit Euler approximation of (19):

~Xn+1 = ~Xn + τn~Vn+1; (48)

Note that Ωn+1 is described by the set of points ~Xn+1 and that ~Vn+1 is defined

in Ωn+1, so (48) does not specify ~Vn+1 directly.
Let Vn+1 ∈ B(Γn+1), where (B(Γn+1), bn+1(·, ·), ‖ · ‖Γn+1

) is a Hilbert space
defined on the deformable part Γn+1 of the boundary of Ωn+1, thereby measur-
ing the (boundary) smoothness of the vector fields. The natural choice

d(Ωn+1,Ωn) = ‖τnVn+1‖B(Γn+1),

converts (47) into the following minimization problem for ~Vn+1 = Vn+1~νn+1:

argmin~Vn+1

(

J(Ωn + τn~Vn+1) +
1

2τn
‖τnVn+1‖

2
B(Γn+1)

)

. (49)

The optimality condition reads as follows

dJ(Ωn+1; τn ~W ) +
1

τn
bn+1(τnVn+1, τnW ) = 0, ∀W ∈ B(Γn+1), (50)

in terms of the variation ~W = W~νn+1 of ~Vn+1. Such a condition, via Hadamard-
Zolésio Lemma 3, is equivalent to

〈Gn+1, τnW 〉Γn+1
= −

1

τn
bn+1(τnVn+1, τnW ), ∀W ∈ B(Γn+1).

This yields the following ideal equation for Vn+1

bn+1(Vn+1,W ) = −〈Gn+1,W 〉Γn+1
, ∀W ∈ B(Γn+1), (51)

which is implicit in that the domain Ωn+1 is unknown and thus part of the
problem (see also [7]). A crucial consequence of (49) important for theory is

J(Ωn+1) ≤ J(Ωn + τn~Vn+1) +
τn

2
‖Vn+1‖

2
B(Γn+1)

≤ J(Ωn), (52)

as results from taking ~Vn+1 = 0 in (49). Consequently,

J(Ωk) +
1

2

k
∑

i=1

τi‖~Vi‖
2
B(Ωi)

≤ J(Ω0), ∀k ≥ 1.

Solving the nonlinear problem (51) is unaffordable directly and would require
iteration. The following linearization technique may either replace the implicit
solve or be used as one step in an iterative process.
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3.2 Explicit Linearization

The key idea is to replace in (51) the new domain Ωn+1 and its deformable
boundary Γn+1, which are unknown, by the current ones Ωn and Γn. This gives
rise to the following elliptic PDE on Γn: find Vn+1 ∈ B(Γn) such that

bn(Vn+1,W ) = −〈Gn,W 〉Γn
, ∀W ∈ B(Γn). (53)

Then Ωn+1 results from the explicit update ~Xn+1 = ~Xn +τ ~Vn+1, but the energy
decrease property (52) is no longer valid. Nevertheless, (53) still provides a

weaker energy decrease property. In fact, if one chooses ~Vn+1 = Vn+1~νn, with
Vn+1 being the solution of

bn(Vn+1,W ) = −〈Gn,W 〉Γn
, ∀W ∈ B(Γn), (54)

then there holds that

dJ(Γn; ~Vn+1) = 〈Gn, Vn+1〉Γn
= −bn(Vn+1, Vn+1) ≤ −‖Vn+1‖

2
B(Γn), (55)

that is ~Vn+1 provides a descent direction for the energy J(Ωn) (see [10]). How-
ever, (52) may not be valid, thereby leading to the bisection of τn (backtracking)
until (52) holds. This is guaranteed by (55) which expresses the instantaneous
decrease of energy.

3.3 Semi-Implicit Time Discretization

To derive an effective algorithm, we still need to address two critical issues:

Computing geometric quantities such as curvature and normal
velocity implicitly, but most of the geometry explicitly, thereby
reaching a compromise between the schemes of §§3.1 and 3.2;

(56)

Providing a variational method to compute curvature that could
be used in unstructured meshes.

(57)

To deal with (56) we let Bn denote the linear operator defined by the scalar
product bn(·, ·) on Γn, namely,

〈BnV,W 〉 = bn(V,W ) ∀V,W ∈ B(Γn).

Recalling the special form (13) of G, we thus propose the following semi-implicit
computation of Vn+1 and κn+1:

BnVn+1 + g(Ωn)κn+1 = −f(Ωn). (58)

This relation satisfies neither (52) nor (55) but tends to (15) for τn → 0. So
backtracking must be employed to guarantee energy decrease.

To assess (57) we resort to basic differential geometry which asserts that the

Laplace-Beltrami operator ∆Γ of the position vector ~X of Γ is the vector mean
curvature ~κ of Γ, namely,

−∆Γ
~X = ~κ = κ~ν. (59)

Hereafter we use the minus sign to be consistent with the convention that a
circle with outward unit normal ~ν has positive curvature. The use of (59) for
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computation is due to Dziuk [13]. Since we need the scalar curvature κ, instead
of ~κ, we proceed as Bänsch, Morin, and Nochetto [6] and consider the four

unknowns ~κ, κ, V, ~V along with their algebraic relations:

κ = ~κ · ~ν, ~V = V ~ν. (60)

If we take Γ = Γn+1, then for consistency with (58) we enforce (59) and (60)
semi-implicitly

−∆Γn

~Xn+1 = ~κn+1, κn+1 = ~κn+1 · ~νn, ~Vn+1 = Vn+1~νn.

Finally, to close the system we must relate position ~Xn+1 of Γn+1 and velocity
~Vn+1. We impose

~Xn+1 = ~Xn + τn~Vn+1, (61)

whence we get the semi-implicit scheme: find (~κn+1, κn+1, Vn+1, ~Vn+1) such that

~κn+1 + τn∆Γn

~Vn+1 = −∆Γn

~Xn (62)

κn+1 − ~κn+1 · ~νn = 0 (63)

BnVn+1 + g(Ωn)κn+1 = −f(Ωn) (64)

~Vn+1 − Vn+1~νn = 0. (65)

3.4 Choosing the Scalar Product

Depending on the application of interest (e.g. image segmentation, optimal
shape design for PDE or surface diffusion), there are several possibilities for the
space B(Γ) and the associated scalar product b(·, ·).

A first possibility is to choose b(·, ·) to coincide with the L2(Γ) scalar product.
Then (64) takes the form

Vn+1 + g(Ωn)κn+1 = −f(Ωn), (66)

which is a backward-forward parabolic-type equation, depending on the sign of
the function g. In fact, (66) is locally backward (ill-posed) in regions where
g < 0 and forward otherwise. This issue is crucial in optimal shape design for
PDE, where the sign of g = p+ γ is unknown beforehand (see §4).

A second possibility is to choose b(·, ·) to coincide with a weighted H1(Γ)
scalar product. In this case (64) reads

−divΓn
(α∇Γn

Vn+1) + βVn+1 + g(Ωn)κn+1 = −f(Ωn), (67)

where β and α are some positive functions. In §4 we will see that this choice (for
suitable β’s and α’s) is well suited to stabilize the (ill-posed) L2 gradient flow
in the case of optimal shape design for PDE and it is helpful in increasing the
rate of convergence of the numerical scheme in the case of image segmentation.

A third option is to choose b(·, ·) to coincide with the H−1(Γ) scalar product.
If g(Ωn) = γ and f(Ωn) = |y(Ωn)|2, then (64) becomes

Vn+1 − γ∆Γn
κn+1 = ∆Γn

f(Ωn). (68)

This is the case of epitaxially stressed solids. Their dynamics is either described
by the physical law (9) or by the H−1 gradient flow of the energy functional (11).
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In this application the choice of scalar product is thus dictated by consistency
with the physics of the underlying phenomena.

To derive a weak formulation, we proceed as in the case of H−1(Γ); see
[6] for details. For the weighted H1(Γ) scalar product, we multiply by suit-
able test functions, integrate by parts −divΓn

(α∇Γn
Vn+1), and ignore boundary

terms either because Γn is closed or we assume Dirichlet boundary conditions:
−〈divΓn

(α∇Γn
Vn+1),W 〉 = 〈α∇Γn

Vn+1,∇Γn
W 〉. In the following we describe

the finite element formulation for the weighted H1(Γ) case.

3.5 Finite Element Discretization

We now discuss the finite element discretization of (62)-(65). Let T = Tn be
a shape-regular but possibly graded mesh of triangular finite elements over the
surface Γ = Γn, which, from now on, is assumed to be polyhedral. To simplify
the notations we hereafter drop the subscripts n and n + 1. Let T ∈ T be a
typical triangle and let ~νT = (νi

T )d
i=1 be the unit normal to T pointing outwards.

We denote by ~ν the outward unit normal to Γ, which satisfies ~ν|T = ~νT for
all T ∈ T , and is thus discontinuous across inter-element boundaries. Let
{φi}I

i=1 be the set of canonical basis functions of the finite element space V(Γ)
of continuous piecewise polynomials P k of degree ≤ k over T for k ≥ 1; we also
set ~V(Γ) := V(Γ)d. We thus have a conforming approximation V(Γ) of H1(Γ).

We now multiply equations (62)-(65) by test functions φ ∈ V(Γ) and ~φ ∈
~V(Γ) and integrate by parts those terms involving ∆Γ. We thus arrive at the

fully discrete problem: seek ~V ,~κ ∈ ~V(Γ), V, κ ∈ V(Γ), such that

〈~κ, ~φ〉 − τ〈∇Γ
~V ,∇Γ

~φ〉 = 〈∇Γ
~X,∇Γ

~φ〉 ∀~φ ∈ ~V(Γ), (69)

〈κ, φ〉 − 〈~κ · ~ν, φ〉 = 0 ∀φ ∈ V(Γ), (70)

〈α∇ΓV,∇Γφ〉 + 〈βV, φ〉 + 〈gκ, φ〉 = −〈f, φ〉 ∀φ ∈ V(Γ), (71)

〈~V , ~φ〉 − 〈V, ~φ · ~ν〉 = 0 ∀~φ ∈ ~V(Γ). (72)

3.6 Matrix Formulation

We turn our attention to an equivalent matrix formulation to the fully discrete
problem. Given the matrix entries

Mgi,j
:= 〈gφi, φj〉, Mβi,j

:= 〈βφi, φj〉, Mi,j := 〈φi, φj〉, ~Mi,j := Mi,j
~Id,

~Ni,j := (Nk
i,j)d

k=1 := 〈φi, φjν
k〉dk=1,

Ai,j := 〈∇Γφi,∇Γφj〉, Aαi,j := 〈α∇Γφi,∇Γφj〉, ~Ai,j := Ai,j
~Id,

with ~Id ∈ R
d×d being the identity matrix and (~ek)d

k=1 the canonical basis of
R

d, the mass and stiffness matrices are

Mg := (Mgi,j
)I
i,j=1, Mβ := (Mβi,j

)I
i,j=1, M := (Mi,j)I

i,j=1,
~M := ( ~Mi,j)I

i,j=1,

~N := ( ~Ni,j)I
i,j=1,

Aα := (Aαi,j)I
i,j=1, A := (Ai,j)I

i,j=1,
~A := ( ~Ai,j)I

i,j=1.
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We point out that ~M, ~A and ~N possess matrix-valued entries and therefore the
matrix-vector product is understood in the following sense

~M ~V =
(

I
∑

j=1

~Mi,j
~Vj

)I

i=1
, (73)

each component ~Vi of ~V, as well as each of ~M ~V, is itself a vector in R
d.

We use the convention that a vector of nodal values of a finite element function is
written in bold face: V = (Vi)

I
i=1 ∈ R

I is equivalent to V =
∑I

i=1 Viφi ∈ V(Γ).
We are now in a position to write the matrix formulation of (62)-(65). Upon
expanding the unknown scalar functions V,K ∈ V(Γ) and vector functions
~V , ~K ∈ ~V in terms of the basis functions and setting φ = φi and ~φk = φ~ek,
we easily arrive at the linear system of equations

−τ ~A~V + ~M ~K = ~A~X

MK− ~NT ~K = 0

(Aα +Mβ)V +MgK = −f

~M ~V − ~NV = ~0.

(74)

3.7 Schur Complement Approach

Let us rewrite the system (74) in the following way









~M 0 0 − ~N

0 M − ~NT 0

−τ ~A 0 ~M 0
0 Mg 0 Aα +Mβ

















~V
K
~K
V









=









0
0
~A~X
−f









, (75)

or equivalently, with obvious notation and X1 = (~V,K)T ,X2 = (~K,V)T ,

(

Z N

C Ã

) (

X1

X2

)

=

(

0
h

)

. (76)

Invoking the equalities

X1 = −Z−1NX2 (77)

(−CZ−1N + Ã)X2 = h, (78)

we see that (78) is equivalent to

(

~M −τ ~A ~M−1 ~N

MgM
−1 ~NT Aα +Mβ

) (

~K
V

)

=

(

~A~X
−f

)

. (79)

Finally the Schur complement reads as follows

(τMgM
−1 ~NT ~M−1 ~A ~M−1 ~N +Aα +Mβ)V = −f −MgM

−1 ~NT ~M−1 ~A~X. (80)
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4 Numerical Experiments

The numerical experiments presented here were implemented and carried out
within the finite element toolbox ALBERTA of Schmidt and Siebert [22]. Curve
or surface evolution of the deformable part Γ of the domain Ω is what drives
the algorithm. To solve elliptic PDE in Ω, as in §§4.3 and 4.4.2, we invoked
the 2d mesh generator TRIANGLE of Shewchuk [23], which partitions Ω into
shape regular triangles and exhibits a superior performance with respect to mesh
deformation techniques in 2D. The situation in 3D is quite different and needs
to be explored further. Finally, we used GEOMVIEW [14] for visualization.

4.1 Implementation

It is typical of surface evolution undergoing large deformations that triangles
may tangle and cross, and that their angles may become large. These mesh dis-
tortions limit resolution and approximability, as well as impair computations,
thereby leading to numerical artifacts. We have resorted to a number of geo-
metric enhancements as proposed by Bänsch, Morin and Nochetto for surface
diffusion [6]. An additional feature for curves in 2D is the capability for topo-
logical changes. We list these features below and briefly comment on them.

• Mesh Regularization: This is a procedure to maintain mesh quality, namely
to keep all angles on element stars approximately of the same size. Mesh
regularization is a redistribution of nodes on the surface, which entails a
tangential flow and does not affect the normal motion. We use the volume
preserving Gauss-Seidel type iteration of [6].

• Time Adaptivity: This is a procedure to allow large timesteps when the normal
velocity does not exhibit large variations, and to force small timesteps when
the change of position of nodes of an element may exceed the element size.
This accounts for very disparate time scales and prevent mesh distortion
and even node crossing. Following [6], we impose a geometric restriction
that limits the tangential motion of nodes: if z0, z1 are nodes belonging to a
triangle T on Γn, and ~τT is any unit tangent vector to T , then

τ
∣

∣

(

~Vn+1(z0) − ~Vn+1(z1)
)

· ~τT
∣

∣ ≤ CτhT

∣

∣∇Γ
~Vn+1|T

∣

∣ ≤ ετhT ,

with C, ε > 0 mesh independent constants.

• Backtracking: This procedure ensures energy decrease. After the timestep has
been accepted according to the previous criterion we check that J(Ωn+1) <
J(Ωn). If this is not the case, we divide the timestep by two and re-compute,
repeating if necessary until the functional value is smaller than the previous
one. The algorithm stops when the timestep necessary for functional decrease
is smaller than a pre-assigned minimum timestep.

• Space Adaptivity: This procedure keeps, via refining/coarsening, an accurate
representation of Γn with least computational cost in the sense that the node
density correlates with the local variation (regularity) of Γn. We measure
the latter intrinsically by monitoring the variation of normals ~ν. Since the
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pointwise accuracy of a mesh in representing a smooth surface is proportional
to h2

S|∇Γ~ν
∣

∣, we impose [6]

h2
S |∇Γ~ν

∣

∣ ≈ h2
S

∣

∣~ν1 − ~ν2
∣

∣

hS

≈ βShS ≤ ε;

here T1, T2 are two adjacent elements in Γn with unit normals ~ν1, ~ν2 and
common side (node in 2d) S, βS is the angle between ~ν1, ~ν2, and ε > 0 is a
given constant.

• Angle Width Control: This procedure consists of a single splitting (one bi-
section) of those elements with angles wider than a certain threshold βmax,
followed by a few mesh regularization sweeps [6]. This procedure is important
close to pinch-off where mesh distorsion increases dramatically (see Figure 10).

• Topological Changes in 2D: This procedure is a set of algorithms that carry out
topological changes, such as merging and splitting, in 2D; see [12] for details.
At each time step, we check for element intersections that signal topological
changes. If so, we adjust the time step and local resolution, reconnect elements
at the intersection location and delete superflous elements if necessary.

4.2 Image Segmentation

In this section we perform numerical experiments with a number of synthetic
images, by minimizing the geodesic active contour functional

J(Ω) :=

∫

Γ

H(x)dS + λ

∫

Ω

H(x)dx.

The process starts with an initial curve in 2D or surface in 3D, which is itera-
tively deformed to decrease its energy at each step, and should terminate at the
boundaries of the objects in the image.

4.2.1 Two Gradient Flows: L2 vs Weighted H1

In our first experiment, we have a simple image with one connected, but non-
convex, object in it and we want to compare the L2 gradient flow with the one
resulting from the following weighted H1 scalar product

b(V,W ) =

∫

Γ

α∇ΓV∇ΓW + βV W, (81)

where
α = H, β =

(

ν ·D2H · ν + (2κ+ λ)∂νH + λκH
)

+

and (·)+ = max(·, ε), ε > 0. This scalar product has been obtained in [17] by
taking the second order shape derivative into account, thereby resulting in a
Newton-type flow.

Both the L2 and weighted H1 Newton-type flows successfully detect the
object, but the latter exhibits a smaller number of iterations and thus a higher
rate of convergence (see Figure 1). In this case the choice of the “good” scalar
product has been essentially dictated by issues concerning stability and rate of
convergence of the descent method.
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k = 400 k = 600 k = 900 k = 1400

J = 11.176 J = 9.822 J = 9.240 J = 8.950

k = 30 k = 80 k = 110 k = 160

J = 12.146 J = 8.419 J = 7.545 J = 6.513

Figure 1: Detection of a simple nonconvex object via the L2 gradient descent
(top) and weighted H1 gradient descent (bottom) with λ = 30. The weighted
H1 flow is faster and more accurate than the L2 gradient flow, as reflected in the
number of iterations k, functional value J and resolution of reentrant corners.

k = 20 k = 70 k = 120 k = 290

J = 19.130 J = 10.681 J = 7.795 J = 4.860

k = 320 k = 350 k = 430 k = 480

J = 3.939 J = 3.411 J = 3.055 J = 2.830

Figure 2: Detection of multiple objects with weighted H1 flow (λ = 40), showing
splitting into several curves which recover all objects in the image.
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k = 10 k = 30 k = 40

J = 2.667 J = 1.463 J = 0.966

k = 50 k = 60 k = 110

J = 0.536 J = 0.230 J = 0.036

Figure 3: Detection of a 3D object consisting of two touching balls with weighted
H1 flow (λ = 0). Notice the mesh grading depending on surface curvature.

In the rest of this section 4.2 we present numerical experiments computed
with the weighted H1 scalar product (81). We should remark that the choice of
threshold ε is a subtle issue. Hintermüller and Ring report in [17] that a small
value suffices in general. Our experiments also show that ε = 0.1 is well-behaved
for a 100 × 100 image if we take unit interpixel distance, thereby giving rise to
a computational domain [0, 100]2. However, we prefer to take x̃ = 0.01x and
rescale the domain to [0, 1]2. This change of variables scales α by a factor 104

through D2H , ∂Hν and κ. To preserve the time scale, ε must also be replaced
with ε̃ = (0.01)−2ε = 103. This is the threshold used in our simulations.

4.2.2 Multiple Objects

In this case the image has multiple objects in it. We start with a single closed
curve that evolves and breaks into four smaller curves, which in turn eventually
converge to the boundaries of the objects (see Figure 2). The topological changes
have been handled by using numerical tools developed in [12].

4.2.3 A Simple 3D Image

We finally consider a 3D image consisting of two spheres touching each other.
The initial surface is a sphere that changes curvature as it evolves. This is
reflected in the mesh grading (see Figure 3).
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4.3 Optimal Shape Design for PDE

In this section we present some numerical experiments for the model problem
of §1.2 and §2.2.2. Here, the energy functional reads

J(Ω, y(Ω)) :=
1

2

∫

D

(

y(Ω) − zg

)2

dx

where zg is a given target function on a subdomain D of Ω. The goal is to have
the solution y(Ω) of (7) closest to zg inside D in the least squares sense. We
assume that both Ω and D are polygonal domains, and force the mesh generator
TRIANGLE to match the boundary of D exactly when solving elliptic problems
in Ω. This minimizes the quadrature error for the right-hand side evaluation in
the equations for both y = y(Ω) and p = p(Ω).

4.3.1 The choice of Scalar Product

We perform simulations with a bilinear form b(·, ·) corresponding to a weighted
H1 scalar product, which gives rise to the elliptic PDE (67) on Γn:

−divΓ(α∇ΓVn+1) + βVn+1 + g(Ωn)κn+1 = −f(Ωn), (82)

where g = p, f = −∇Γy∇Γp, and the weight functions β and α were chosen
appropriately.

The first attempt simply employs the L2(Γ) scalar product, which is obtained
by taking α = 0 and β = 1. In this case (82) reduces to

Vn+1 + pκn+1 = ∇Γy∇Γp, (83)

which is a backward-forward parabolic-type equation, depending on the sign of
the adjoint solution p. More precisely, (83) is locally backward parabolic (and
so ill-posed) in regions where p < 0 and forward otherwise. The ill-posedness
of (83) gives rise to strong oscillations on the evolving curve at the mesh level,
which can be observed in Figure 4 where p < 0 (lower left). This ruled out the
simple minded option of L2 flow because it is unstable.

The key idea behind the choice of an adequate scalar product is to set β = 1
on the whole curve Γ and take α variable to smooth out the evolution and
thereby prevent oscillations. We thus take α = 1 where p < 0 and α small
where p > 0. In order to avoid spurious singularities in the velocity we make α
vary smoothly from one element to a neighbor. This is reflected in the definition
of α, which is constant on each edge e of Γ, but such constant depends on pM :=
maxe p and pm := mine p as follows: we define the average p̄ = 1

2 (pM + pm) and
the oscillation osc = pM − pm of p over e, and let α|e be

α|e =







1, if pm < 0

1 −
p̄(1−h2

e
)

osc , if pm ≥ 0 & p̄ ≤ osc
h2

e, if pm ≥ 0 & p̄ > osc,

(84)

where he denotes the length of e. That is, in the transition region where p

changes sign, α|e is some kind of linear interpolation value between 1 and h2
e.
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k = 3 k = 6 k = 9 k = 22

J = 0.09879199 J = 0.08488141 J = 0.07282547 J = 0.03951210

Figure 4: L2 gradient flow from a non-centered ellipse to a centered circle. The
exact solution is a circle of radius one centered at the origin, and the initial
configuration is a small ellipse centered at (0.5, 0.7); see Figure 5 below. The
L2 scalar product yields a dynamics which is locally stable where p > 0 (upper
right) and locally unstable where p < 0 (lower left). The bottom row is a zoom
of the unstable region exhibiting oscillations at the mesh level.

4.3.2 Test 1: Exact Solution

In this section we present an example with a known optimal shape. To build this
example, we let zg = log 3

|x|2
be the exact solution of Laplace’s equation on the

ring {1 < |x|2 < 3} with homogeneous Dirichlet data on {|x|2 = 3}, and outer
normal derivative equal to 1 on {|x|2 = 1}. We let D = {2 ≤ |x|2 ≤ 2.5}, and
we point out that the global minimizer of J(Ω, y(Ω)) is Ω∗ := {1 < |x|2 < 3}.
The weighted H1-scalar product with α as in (84) turns out to be a reasonable
compromise between numerical stability and rate of convergence. We present a
sequence of stable computations in Figure 5 starting from a noncentered ellipse.

We also study the evolution from different initial configurations and observe
that the algorithm always reaches a local minimum, but not necessarily the
global minimizer Ω∗. In Figure 6 we show the evolution obtained from an
initial configuration consisting of two disjoint squares. This evolution leads to
merging and stops at a local minimum different from the optimal configuration
Ω∗. Nevertheless, the functional decreases several orders of magnitude which
illustrates the flat energy landscape of J(Ω, y(Ω)).

An observation common to all simulations is that the reduction of J(Ω, y(Ω)),
as well as the change of shape of Γ, is fast at the beginning but somewhat slow
close to the optimal shape. This is typical of gradient flows.

4.3.3 Test 2: Unknown Solutions

We present here two examples with unknown minimizer. The first example
consists of the same initial configuration and the same ring D as in the examples
of §4.3.2, but the objective function zg is now given in polar coordinates by

zg(r, θ) = 0.45 + 0.4 cos(6 θ).
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k = 0 k = 20 k = 40 k = 60

J = 0.10257 J = 0.05646 J = 0.02642 J = 0.00973

k = 80 k = 100 k = 120 k = 140

J = 0.00232 J = 0.000288 J = 0.0000213 J = 0.00000137

Figure 5: Weighted H1 flow from a non-centered ellipse to a centered circle.
This dynamics is stable and efficient to detect a local minimizer.

k = 0 k = 4 k = 8 k = 12

J = 0.08224 J = 0.05721 J = 0.02863 J = 0.02436

k = 24 k = 36 k = 48 k = 96

J = 0.01114 J = 0.00309 J = 0.00017 J = 0.00000222

Figure 6: Evolution of two disjoint squares merging via H1 flow. The evolution
stops at a local minimum before reaching the optimal circular configuration.

22



k = 0 k = 80 k = 160 k = 320

J = 0.43772 J = 0.36703 J = 0.35719 J = 0.35015

k = 640 k = 960 k = 1280 k = 1600

J = 0.33915 J = 0.32786 J = 0.31786 J = 0.31461

Figure 7: Evolution of a small circle towards an unknown smoothed-out triangle
via H1 flow. The goal is to have the solution y as close as possible to an
oscillating function zg in the ring D =

{

x ∈ R
2 : 2.0 < |x|2 < 2.5

}

.

That is, zg is oscillates with respect to the angle θ. This experiment is to check
whether the H1 gradient flow is able to capture geometries other than circles.

In Figure 7 we present snapshots of the approximating domains Ωk together
with values of the functional Jk. It is interesting to notice that the functional
value does not decrease as drastically as in the previous examples. However,
it is worth mentioning that the flow is able to capture the direction of energy
decrease, even when such quantity is very small in relative terms. For example,
between the fifth and sixth pictures, the energy decrease is just 0.03%, but the
method is still able to detect how the curve should be modified to get an energy
reduction.

Next, we consider a problem which resembles a real application. We take
the starting domain to be

Ω =
{

x ∈ R
2 : |x|∞ < 3, and |x|2 > 0.5

}

,

and consider homogeneous Dirichlet boundary condition on the outer boundary,
which is kept fixed, and the outer normal derivative equal to 1 in the “inner
boundary”. The objective function is now zg ≡ 0.45 in the domain D :=
{

x ∈ R
2 : 2.0 < |x|∞ < 2.5

}

. Ideally the solution y should equal 0.45 in the
(square) ring D, but this cannot happen with a harmonic function. We present
a sequence of computations in Figure 8 starting from a small centered circle
(of radius 0.5). This circle evolves first into a bigger circle, and later into a
smoothed-out square, yielding an energy reduction that goes from an initial
value of 0.97481 to a final value of 0.19826. There is again a quick energy
reduction at the beginning and a slower reduction in the end, which is typical
of gradient flows.
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k = 0 k = 50 k = 100 k = 200

J = 0.97481 J = 0.23049 J = 0.20665 J = 0.20432

k = 400 k = 600 k = 800 k = 1000

J = 0.20115 J = 0.19997 J = 0.19890 J = 0.19826

Figure 8: Evolution of a small circle towards an unknown smoothed-out square
via H1 flow. The goal is to have the solution y as close to 0.45 as possible in
the region D =

{

x ∈ R
2 : 2.0 < |x|∞ < 2.5

}

.

4.4 Surface Diffusion and Epitaxially Stressed Solids

We present a couple of simulations exhibiting pinch-off in finite time, for the
model problem of §1.3 and §2.2.3:

J(Ω, y(Ω)) =

∫

Ω

|∇y(Ω)|2 +

∫

Γ

dS.

We first consider in §4.4.1 the pure geometric motion by surface diffusion,
namely y(Ω) = 0, and next the coupled problem in §4.4.2:

V = ∆Γ(κ+ |∇Γy(Ω)|2).

We illustrate the use of space-time adaptivity as well as mesh smoothing and
angle width control, explained in §4.1, to maintain mesh quality.

4.4.1 Test 1: Surface Diffusion with Pinch-off

Let the initial surface Γ(0) be an 8 × 1 × 1 prism. This surface evolution is
geometric and, even though it is regularizing, it leads to pinch-off in finite time
as depicted in Figure 9. This is a key example for the use of mesh smoothing
and space-time adaptivity to avoid mesh distortion. However, close to the pinch-
off some elements would tend to degenerate if it were not for the angle width
control. Their combined effect is displayed in Figure 10.

4.4.2 Test 2: Formation of an Inclusion

We now couple surface diffusion of the free surface of a film with the Laplace
equation in the bulk, as explained in §§1.3 and 2.2.3. We imposed the Dirichlet
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t = 0 (2178) t = 0.39501 (1624)

t = 0.00129 (2170) t = 0.41316 (1528)

t = 0.30538 (1632) t = 0.41349 (1004)

Figure 9: Surface diffusion with pinch-off in finite time. Evolution of an 8×1×1
prism at various time instants leading to a dumbbell and cusp formation (be-
tween parentheses we indicate the number of vertices used to represent the
surface.) The evolution was computed using timestep control, mesh regular-
ization, mesh refinement/coarsening, and a routine for controlling angle width
(taken from [6]).

t = 0.399123
(1568)

t = 0.411839
(1512)

t = 0.413154
(1528)

t = 0.413400
(1368)

t = 0.413464
(1200)

Figure 10: Detailed view of the pinch-off for the 8 × 1 × 1 prism of Figure 9.
The control of wide angles, coupled with mesh regularization, refinement and
coarsening cure mesh distortion until the very moment of pinch-off, when the
elements are rather elongated but not degenerate. An angle is considered to be
wide when bigger than 120o (taken from [6]).
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boundary condition y = x on both the bottom and lateral boundary. The initial
free surface Γ(0) is a small cosine perturbation of the flat case, and its evolution
Γ(t) is periodic in x. We observe that Γ(t) retains the graph property for a while
and eventually develops into a mushroom-like shape which closes up forming an
insertion; see Figure 11.

Figure 11: Coupling surface diffusion with the Laplace operator in the bulk
leads to a mushroom-like free surface that gives rise to an inclusion in finite
time.

Acknowledgement: We would like to thank E. Bänsch for allowing us to quote
joint results from [6] in §4.4.1 and those of §4.4.2 developed in collaboration in
Oberwolfach in March 2004 within the program Research in Pairs.
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