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Abstract

In this article we prove convergence of adaptive finite element methods
for Steklov eigenvalue problems under very general assumptions for simple
as well as multiple eigenvalues starting from any initial triangulation.
We also prove the optimality of the approximations assuming Dörfler’s
Strategy for marking, when we consider simple eigenvalues.

Keywords: Steklov Eigenvalue problems; adaptive finite element meth-
ods; convergence; optimality.

1 Introduction

The main goal of this article is the study of convergence and optimality proper-
ties of adaptive finite element methods (AFEM) for Steklov eigenvalue problems.
These problems arise, for example, in the analysis of stability of mechanical os-
cillators immersed in a viscous fluid (see [6] and the references therein), or in
the study of vibration modes of a structure interacting with an incompressible
fluid [3].

Finite element approximations for these problems have been widely used
and analyzed under a general framework. Adaptive finite element methods
make an efficient use of the computational resources; for certain problems, it
is even indispensable to their numerical resolvability. The ultimate goal of
adaptive methods is to equidistribute the error and the computational effort to
obtain a sequence of meshes with optimal complexity. Historically, the first step
to prove optimality has been to understand convergence of adaptive methods.
A basic result of convergence for linear problems has been presented in [17]
where very general conditions on the linear problems and on the ingredients of
the AFEM that guarantee convergence are stated. Following these ideas, the
(plain) convergence of AFEM for elliptic eigenvalue problems was proved in [10].
Optimality of an AFEM using Dörfler’s marking strategy [8] has been proved
by Stevenson [22] and Cascón et. al. [5] for linear elliptic problems. Linear
convergence of an AFEM for elliptic eigenvalue problems has been proved in [14]
when considering the approximation of simple eigenvalues, provided the initial
mesh is sufficiently fine, and an improvement of this AFEM including optimality
is presented in [7].
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In this article we consider the Steklov eigenvalue problem that consists in
finding λ ∈ R, and u 6≡ 0 such that

−∇ · (A∇u) + c u = 0 in Ω, (A∇u) · −→n = λ ρu on ∂Ω,

where −→n is the outward unit normal vector of Ω on ∂Ω, under general assump-
tions on A, c, ρ and Ω that we state precisely in Section 2.1.

This paper contains two main results. The first one, presented in Section 3,
is a plain convergence result (without rate) of general adaptive loops (several
marking strategies), starting from any initial mesh, valid for single as well as
multiple eigenvalues. The second one, presented in Section 5, is a result on
the optimal complexity of the sequence of meshes generated by an AFEM using
Dörfler’s marking Strategy. This second result holds only for simple eigenvalues,
whereas the first one holds also for multiple eigenvalues. Both results hold
starting from any initial mesh, and with marking strategies that only use the
usual a posteriori error estimators, without need of marking due to oscillation
terms and without enforcing the so-called interior-node property.

The proof of the convergence result follows [21] and the optimality result
is based on the ideas of [22, 5, 7]. Since eigenvalue problems are non-linear it
was necessary to adapt those ideas in order to make them applicable to our
situation. For instance, a posteriori error estimates usually contain so-called
higher-order terms, which, in order to make a rigorous analysis of convergence
and optimality, have been taken into account in this article.

2 Problem statement and approximation

2.1 Setting

Let Ω ⊂ Rd be a bounded polygonal (d = 2) or polyhedral (d = 3) domain
with a Lipschitz boundary. Let a, b be the bilinear forms defined on H1(Ω) and
L2(∂Ω), respectively by

a(u, v) :=
∫

Ω

A∇u · ∇v + cuv, and b(u, v) :=
∫
∂Ω

ρuv,

where A is a W 1,∞(Ω) symmetric-matrix-valued function which is uniformly
positive definite, i.e., there exist constants a1, a2 > 0 such that

a1|ξ|2 ≤ A(x)ξ · ξ ≤ a2|ξ|2, ∀ ξ ∈ Rd, ∀ x ∈ Ω,

c ∈ L∞(Ω) is a non-negative scalar function such that
∫

Ω
c > 0, and ρ is a

scalar function such that 0 < ρmin ≤ ρ(x) ≤ ρmax a.e. in ∂Ω. Without loss of
generality, we assume

∫
∂Ω
ρ = 1.

These bilinear forms induce two norms which we denote as

‖v‖a := a(v, v)1/2, v ∈ H1(Ω), and ‖v‖b := b(v, v)1/2, v ∈ L2(∂Ω).

By the assumptions on A, c and ρ, ‖ · ‖a ' ‖·‖H1(Ω) and ‖ · ‖b ' ‖·‖∂Ω. Where,
hereafter, if A ⊂ ∂Ω or A ⊂ Ω, ‖ · ‖A denotes the L2(A)-norm, i.e.

‖v‖A :=
(∫

A

|v|2
)1/2

and ‖v‖H1(A) :=
(
‖v‖2A + ‖∇v‖2A

)1/2
.
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Furthermore, the Trace Theorem implies that there exists a constant CT > 0
such that

‖u‖b ≤ CT ‖u‖a , ∀u ∈ H1(Ω). (1)

From now on, we will write a . b to indicate that a ≤ Cb with C > 0 a constant
depending on the data of the problem (A, c, ρ, Ω), and possibly some shape
regularity of the sequence of meshes generated by the adaptive algorithm. Also
a ' b will indicate that a . b and b . a.

A weak formulation of the problem stated in the introduction is thus:

Steklov Eigenproblem. Find λ ∈ R and u ∈ H1(Ω) satisfying{
a(u, v) = λ b(u, v), ∀ v ∈ H1(Ω),
‖u‖b = 1. (2)

Under our assumptions on A, c and ρ, following the lines along [2] for a
slightly different situation, it can be proved that problem (2) has a countable
sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .↗∞

and corresponding eigenfunctions u1, u2, u3, . . . which can be assumed to satisfy

b(ui, uj) = δij :=

{
1 if i = j,

0 if i 6= j,
and a(ui, uj) =

{
λi i = j,

0 i 6= j,

where in the sequence {λj}j∈N, the λj ’s are repeated according to geometric
multiplicity.

Also, the eigenvalues can be characterized as extrema of the Rayleigh quo-
tient

Λ(u) :=
a(u, u)
b(u, u)

,

by the following Minimum-Maximum Principle:

λi = min
Vi⊂H1(Ω)\H1

0 (Ω)
dimVi=i

max
u∈Vi

Λ(u) = max
u∈span{u1,...,ui}

Λ(u), i = 1, 2, . . .

It will be important in the analysis of convergence to use the following reg-
ularity result.

Remark 2.1 (Regularity of eigenfunctions). For w ∈ L2(∂Ω), let u ∈ H1(Ω)
be the solution of the elliptic Neumann problem

a(u, v) = b(w, v), ∀ v ∈ H1(Ω). (3)

If c̄ > 0 denotes the mean value of c in Ω, then in the weak sense

−∇ · (A∇u) + c̄u = f, in Ω (A∇u) · −→n = g, on ∂Ω,

where f := −(c− c̄)u and g := ρw. As a consequence of Theorem 4 in [18] and
the Closed Graph Theorem, we have that u ∈ H1+r(Ω) for all r ∈ (0, 1/2) and

‖u‖H1+r(Ω) . ‖f‖L2(Ω) + ‖g‖L2(∂Ω).
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Since ‖f‖L2(Ω) = ‖(c − c̄)u‖L2(Ω) . ‖u‖L2(Ω) . ‖u‖a . ‖w‖b and ‖g‖L2(∂Ω) .
‖w‖b we obtain for the solution u of the elliptic Neumann problem (3) that

‖u‖H1+r(Ω) . ‖w‖b , for all r ∈ (0, 1/2). (4)

Finally, since the eigenfunctions of the Steklov eigenvalue problem (2) are
solutions of the elliptic Neumann problem (3) with w := λu, we have that they
belong to H1+r(Ω), for all r ∈ (0, 1/2). Here the constants involved in the
inequalities also depend on r, which from now on will be kept fixed at any value
in (0, 1/2).

2.2 Discrete problem

In order to define the discrete approximations to the continuous problem (2) we
will consider triangulations of the domain Ω. Let T0 be an initial conforming
triangulation of Ω, that is, a partition of Ω into d-simplices such that if two
elements intersect, they do so at a full vertex/edge/face of both elements. Let
T denote the set of all conforming triangulations of Ω obtained from T0 by
refinement using the newest vertex bisection procedure in two dimensions and
the bisection procedure of Kossaczký in three dimensions [19] which coincide
(after some re-labeling) with those presented by Stevenson [23].

For any triangulation T ∈ T, S will denote the set of sides, where by side
we mean an edge if d = 2 and a face if d = 3. Moreover, SΩ will denote the set
of interior sides and S∂Ω will denote the set of boundary sides.

Due to the processes of refinement used, the family T is shape regular, i.e.,

sup
T ∈T

sup
T∈T

diam(T )
ρT

=: κT <∞,

where diam(T ) is the diameter of T , and ρT is the radius of the largest ball
contained in it. Throughout this article, we only consider meshes T that belong
to the family T, so the shape regularity of all of them is bounded by the uniform
constant κT which only depends on the initial triangulation T0 [19]. Also, the
diameter of any element T ∈ T is equivalent to the local meshsize hT := |T |1/d,
which in turn defines the global meshsize hT := max

T∈T
hT .

Let ` ∈ N be fixed, and let VT be the finite element space consisting of
continuous functions which are polynomials of degree ≤ ` in each element of T ,
i.e,

VT := {v ∈ H1(Ω) : v|T ∈ P`(T ), ∀ T ∈ T }.
By definition, VT ⊂ H1(Ω) and if T∗ is a refinement of T , then VT ⊂ VT∗ .

We consider the following approximation of the continuous eigenvalue prob-
lem (2):

Discrete Steklov Eigenproblem. Find λT ∈ R and uT ∈ VT such that{
a(uT , vT ) = λT b(uT , vT ), ∀ vT ∈ VT ,
‖uT ‖b = 1. (5)

Analogously to the continuous problem (2), it can be proved that the discrete
problem (5) has a finite sequence of eigenvalues

0 < λ1,T ≤ λ2,T ≤ λ3,T ≤ . . . ≤ λN∂T ,T ,
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where N∂
T is the number of nodes which lie on ∂Ω, and corresponding eigen-

functions u1,T , u2,T , u3,T , . . . , uN∂T ,T , which can be assumed to satisfy

b(ui,T , uj,T ) = δij .

Moreover, we have the following Minimum-Maximum Principle:

λi,T = min
Vi,T ⊂VT \H1

0 (Ω)
dimVi,T =i

max
u∈Vi,T

Λ(u) = max
u∈span{u1,T ,...,ui,T }

Λ(u), i = 1, 2, . . . , N∂
T .

As a direct consequence of this principle, if T∗ is any refinement of T ,

λi ≤ λi,T∗ ≤ λi,T , i = 1, 2, . . . , N∂
T .

2.3 Approximation notion

Since an eigenvalue has at least two eigenfunctions, we need to define a notion of
approximation error. This notion allows us to perform an error analysis taking
into account the fact that existing codes for computing (discrete) eigenvalues
just return one eigenfunction corresponding to the desired eigenvalue, but not
necessarily the one closest to the continuous eigenfunction that we may want
to approximate. Moreover, it is usually the case that the discrete eigenvalues
corresponding to a repeated continuous eigenvalue are not equal.

From now on, we consider the approximation of a certain fixed eigenvalue
λ = λj0 of the continuous problem (2), j0 ∈ N, and let j ∈ N denote the index
that satisfies λ = λj = λj+1 = . . . = λj+R−1 < λj+R, and that λj−1 < λj , if
j > 1, i.e., λ is an eigenvalue with multiplicity R ≥ 1, and j is the smallest
index that satisfies λj0 = λ = λj . It is worth noticing that we do not assume
the knowledge of j or R for the statement of the adaptive algorithm, but we
define them in order to state and prove our results precisely.

Definition 2.2 (Eigenspaces). We denote by Eλ the R-dimensional space of
eigenfunctions of the continuous problem (2) associated to λ, i.e.,

Eλ := {u ∈ H1(Ω) | a(u, v) = λ b(u, v), ∀ v ∈ H1(Ω)},

and the R-dimensional approximation space ETλ ⊂ VT is defined by

ETλ :=
j+R−1∑
i=j

ETλi,T ,

where ETλi,T := {uT ∈ VT | a(uT , vT ) = λi,T b(uT , vT ), ∀ vT ∈ VT } is the space
of eigenfunctions of the discrete problem (5) associated to λi,T . We also define
the normalized sets

Ẽλ := {u ∈ Eλ | ‖u‖b = 1}, and ẼTλ := {uT ∈ ETλ | ‖uT ‖b = 1}.

Remark 2.3. If v ∈ H1(Ω) and u ∈ Ẽλ then the following statements are
equivalent:

(i) u = arg maxũ∈Ẽλ a(ũ, v).
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(ii) u = arg maxũ∈Ẽλ b(ũ, v).

(iii) The a-distance from v to Ẽλ is achieved by u; i.e., ‖u− v‖a = dista(v, Ẽλ).

(iv) The b-distance from v to Ẽλ is achieved by u; i.e., ‖u− v‖b = distb(v, Ẽλ).

In order to prove this remark, it is sufficient to observe that if ũ ∈ Ẽλ, then

a(ũ, v) = λ b(ũ, v), for all v ∈ H1(Ω),

a(ũ, v) ≤ a(u, v) ⇐⇒ −2a(u, v) ≤ −2a(ũ, v) ⇐⇒ ‖u− v‖a ≤ ‖ũ− v‖a ,

and

b(ũ, v) ≤ b(u, v)⇐⇒ −2b(u, v) ≤ −2b(ũ, v)⇐⇒ ‖u− v‖b ≤ ‖ũ− v‖b .

Definition 2.4. We define P̃λ : H1(Ω) → Ẽλ as the non-linear projection
operator onto Ẽλ, more precisely, for v ∈ H1(Ω), the projection P̃λv is the
element in Ẽλ satisfying

dista(v, Ẽλ) =
∥∥v − P̃λv∥∥a,

(or distb(v, Ẽλ) =
∥∥v − P̃λv∥∥b, due to Remark 2.3). Given v ∈ H1(Ω), typically

v ∈ VT for some triangulation T , dista(v, Ẽλ) will be our notion of error for the
eigenfunction.

We finish this section by noticing that the a priori error estimates stated
in [24] and [13] guarantee that if the mesh T is sufficiently fine, there holds that

0 ≤ λj+i,T − λ . h2r
T , for i = 0, 1, 2, . . . , R− 1. (6)

2.4 A posteriori error estimators

A posteriori estimates for Steklov eigenvalue problems have been recently stud-
ied by Armentano and Padra [1] for d = 2 and Zuppa [25] for d = 3. In this
section we present the residual type a posteriori estimates for eigenvalue prob-
lems and state some already known properties.

Given an interior side S ∈ SΩ, we denote by T1 and T2 the elements in T
which share S, and by −→ni the outward unit normal vector of Ti on S, for i = 1, 2.
On the other hand, if S ∈ S∂Ω is a boundary side, we denote by −→n the outward
unit normal vector on S.

For S ∈ S we define ωT (S) as the union of the elements in T sharing S. For
T ∈ T , NT (T ) := {T ′ ∈ T : T ′ ∩ T 6= ∅} denotes the set of neighbors of T in
T , and ωT (T ) :=

⋃
T ′∈NT (T ) T

′, the patch of neighbors of T in T .

Definition 2.5 (Residual, element residual and jump residual). For a generic
function v ∈ H1(Ω) \ H1

0 (Ω), we define the Residual R(v) ∈ (H1(Ω))′ (the
topological dual space of H1(Ω)) by

〈R(v), w〉 := a(v, w)− Λ(v)b(v, w), for all w ∈ H1(Ω).

For discrete functions vT ∈ VT we define the element residual R(vT ) by

R(vT )|T := −∇ · (A∇vT ) + cvT , , for all T ∈ T ,

6



and the jump residual J(vT ) by

J(vT )|S :=

{
1
2 [(A∇vT )|T1 · −→n1 + (A∇vT )|T2 · −→n2] , if S ∈ SΩ,

(A∇vT ) · −→n − Λ(vT )ρvT , if S ∈ S∂Ω.

Remark 2.6. For vT ∈ VT , the Residual R(vT ) is related to the element
residual R(vT ) and the jump residual J(vT ) through the following identity:

〈R(vT ), w〉 =
∑
T∈T

(∫
T

R(vT )w +
∫
∂T

J(vT )w
)
, ∀w ∈ H1(Ω), (7)

which is obtained integrating by parts elementwise.

Definition 2.7 (Local and global error estimator). For vT ∈ VT we define the
local error estimator ηT (vT ;T ) by

η2
T (vT ;T ) := h2

T ‖R(vT )‖2T + hT ‖J(vT )‖2∂T , for all T ∈ T ,

and the global error estimator ηT (vT ) is given by η2
T (vT ) :=

∑
T∈T η

2
T (vT ;T ).

Whenever Ξ is a subset of T , η2
T (vT ; Ξ) will denote the sum

∑
T∈Ξ η

2
T (vT ;T ).

The following upper bound for the residual can be easily proved by using
the Clément or the Scott-Zhang interpolation operator [20], details can be found
in [1].

Theorem 2.8 (Upper Bound for the Residual). If (λT , uT ) is a solution of the
discrete problem (5), then

|〈R(uT ), v〉| .
∑
T∈T

ηT (uT ;T )‖∇v‖ωT (T ), (8)

for all v ∈ H1(Ω). Moreover,

‖R(uT )‖(H1(Ω))′ := sup
0 6≡v∈H1(Ω)

〈R(uT ), v〉
‖v‖H1(Ω)

. ηT (uT ).

Definition 2.9 (Oscillation). For vT ∈ VT we define the local oscillation
oscT (vT ;T ) by

osc2
T (vT ;T ) := h2

T

∥∥R−R∥∥2

T
+ hT

∥∥J − J∥∥2

∂T
, for all T ∈ T ,

where R|T is the L2(T )-projection of R := R(vT ) onto P`, and for every side S ⊂
∂T , J |S is the L2(S)-projection of J := J(vT ) onto P`. The global oscillation
oscT (vT ) is given by

osc2
T (vT ) :=

∑
T∈T

osc2
T (vT ;T ).

Whenever Ξ is a subset of T , osc2
T (vT ; Ξ) will denote the sum

∑
T∈Ξ osc2

T (vT ;T ).

The following result states that the estimator is bounded by the discrete
solution locally and by a uniform constant independent of the mesh. This result
is weaker than the usual lower bound, but sufficient to guarantee convergence,
as first noticed by Siebert [21].
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Theorem 2.10 (Estimator’s Stability). For any T ∈ T, and uT ∈ ẼTλ

ηT (uT ;T ) . ‖uT ‖H1(ωT (T )), ∀T ∈ T , and ηT (uT ; T ) ≤ Cη,

where the uniform constant Cη > 0 depends only on data and mesh regularity.

The proof of this theorem follows the steps of the usual proof of the lower
bound through bubble functions, plus a bound for the oscillation terms, which
is a consequence of the fact that, if T ∈ T and T ∈ T , then

oscT (vT ;T ) . hT (1 + Λ(vT ))‖vT ‖H1(ωT (T )), for all vT ∈ VT .

This bound can be obtained as in [10], using the W 1,∞ regularity of A and
inverse inequalities.

3 Convergence of a general adaptive loop

This section is devoted to the proof of a plain convergence result (without rate)
of adaptive algorithms using reasonable marking strategies. The result holds
for simple as well as multiple eigenvalues, and the proof makes use of the new
ideas presented in [21]. Specifically, we consider the following

Algorithm 1. Let T0 be any initial mesh, and let k = 0.

1. (λk, uk) := SOLVE(Vk).

2. {ηk(T )}T∈Tk := ESTIMATE(λk, uk, Tk).

3. Mk := MARK({ηk(T )}T∈Tk , Tk).

4. Tk+1 := REFINE(Tk,Mk), increment k and go to step 1.

We now describe the four main steps of the algorithm. Let j0 be the index
of the eigenvalue λ of the continuous problem to be approximated. For a con-
forming triangulation Tk of Ω, the module SOLVE takes the space Vk := VTk
as input argument and outputs the j0-th eigenvalue of the discrete problem (5)
with T = Tk, i.e., λk := λj0,Tk , and a corresponding eigenfunction uk ∈ Vk.
Therefore, λk and uk satisfy{

a(uk, vk) = λk b(uk, vk), ∀ vk ∈ Vk,
‖uk‖b = 1. (9)

Given Tk and the corresponding outputs λk and uk of SOLVE, the module
ESTIMATE computes and outputs the a posteriori error estimators {ηk(T )}T∈Tk ,
i.e.,

ηk(T ) := ηTk(uk;T ).

Based upon the a posteriori error indicators {ηk(T )}T∈Tk , the module MARK
collects elements of Tk in Mk. The only requirement that we make on the
module MARK is that the set of marked elements Mk contains at least one
element of Tk holding the largest value of estimator. That is, there exists one
element Tmax

k ∈Mk such that

ηk(Tmax
k ) = max

T∈Tk
ηk(T ).
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Whenever a marking strategy satisfies this assumption, we call it reasonable,
since this is what practitioners do in order to maximize the error reduction with
a minimum effort. It is easy to check that the most commonly used marking
strategies, e.g., Maximum strategy, Equidistribution strategy, and the original
Dörfler’s strategy fulfill this condition.

The refinement procedure REFINE takes the triangulation Tk and the subset
Mk ⊂ Tk as input arguments. We require that all elements of Mk are refined
at least n times (with n ≥ 1), by using the bisection procedure described in [23]
to get a new conforming triangulation Tk+1 of Ω, which is a refinement of Tk.

Therefore, starting with an initial triangulation T0, the iteration of the
steps 1–4 generates a sequence {Tk}k∈N0 ⊂ T and the corresponding outputs
(λk, uk), {ηk(T )}T∈Tk , Mk of the modules SOLVE, ESTIMATE and MARK, re-
spectively.

The proof of convergence consists of essentially two steps. The first one
is the proof that the sequence of discrete eigenpairs {(λk, uk)}k∈N0 contains a
subsequence which converges to a limiting pair (λ∞, u∞) in R×H1(Ω); which
is a consequence of the nestedness of the meshes (see Theorem 3.1 below). The
second step consists in proving that the residual at u∞ is zero, and thus (λ∞, u∞)
is an eigenpair of the continuous problem in H1(Ω), here the assumption of
having a reasonable marking strategy plays an important role (see Theorems 3.7
and 3.8 below). Finally we prove that the whole sequence converges to Ẽλ∞ , in
the sense that limk→∞ distH1(Ω)(uk, Ẽλ∞) = 0.

In order to start the proof, we now define the limiting space V∞ := ∪Vk
H1(Ω)

,
and note that V∞ is thus a Hilbert space with the inner product inherited from
H1(Ω).

Theorem 3.1 (Convergence to a limiting pair). Let {(λk, uk)}k∈N0 be the se-
quence of computed eigenpairs given by Algorithm 1. There exist λ∞ ∈ R and
u∞ ∈ V∞ such that{

a(u∞, v) = λ∞ b(u∞, v), ∀ v ∈ V∞,
‖u∞‖b = 1. (10)

Moreover, λ∞ = lim
k→∞

λk and there exists a subsequence {ukm}m∈N0 of {uk}k∈N0

such that
ukm −→ u∞ in H1(Ω).

Proof. Since Tk+1 is always a refinement of Tk, Vk ⊂ Vk+1, and by the Minimum-
Maximum principle {λk}k∈N0 is a decreasing sequence bounded below by the
j0-th eigenvalue λ of the continuous problem (2). Therefore, there exists λ∞ > 0
such that λk ↘ λ∞.

From (9) it follows that

‖uk‖2a = a(uk, uk) = λkb(uk, uk) = λk ‖uk‖2b = λk → λ∞, (11)

and therefore {uk}k∈N0 is a bounded sequence in V∞. Then, there exists a
subsequence {ukm}m∈N0 weakly convergent in V∞ to a function u∞ ∈ V∞, so

ukm −→ u∞ weakly in H1(Ω). (12)

Since the trace mapping is compact from H1(Ω) → L2(∂Ω), we can extract a
subsequence of the last one, which we still denote {ukm}m∈N0 , such that

ukm −→ u∞ in L2(∂Ω). (13)

9



We will now prove that (λ∞, u∞) is an eigenpair in V∞, i.e., (10) holds.
Let K ∈ N0 and vK ∈ VK . For km ≥ K, since VK ⊂ Vkm we have that
a(ukm , vK) = λkmb(ukm , vK), and when m tends to infinity, we obtain that
a(u∞, vK) = λ∞b(u∞, vK). Since K ∈ N0 and vK ∈ VK are arbitrary, by the
density of

⋃
k∈N0

Vk in V∞ we have that

a(u∞, v) = λ∞b(u∞, v), ∀ v ∈ V∞. (14)

On the other hand, since ‖ukm‖b = 1, considering (13) we conclude that ‖u∞‖b =
1. Taking into account (14) we have that ‖u∞‖2a = λ∞ ‖u∞‖2b = λ∞. Finally,
from (11) it follows that ‖ukm‖

2
a = λkm −→ λ∞ = ‖u∞‖a . This, together

with (12) yields
ukm −→ u∞ (strongly) in H1(Ω).

Remark 3.2. It is important to notice that from any subsequence {(λkm , ukm)}m∈N0

of the original sequence {(λk, uk)}k∈N0 , we can extract another subsequence
{(λkmp , ukmp )}p∈N0 , such that ukmp converges in H1(Ω) to some function ũ∞ ∈
V∞ that satisfies {

a(ũ∞, v) = λ∞ b(ũ∞, v), ∀ v ∈ V∞,
‖ũ∞‖b = 1.

This fact will be used later on.

In order to prove that the residual R(u∞) vanishes, we will first prove that
R(ukm)→ 0 weakly. For this, we will classify the elements of each triangulation
Tk in two sets. This classification was first used in [21] and is simpler than the
one used in [10, 17].

Definition 3.3. Given the sequence {Tk}k∈N0 of triangulations, for each k ∈ N0

we define

T +
k := {T ∈ Tk : T ∈ Tm, ∀m ≥ k}, and T 0

k := Tk \ T +
k .

Also, we consider

Ω+
k :=

⋃
T∈T +

k

ωk(T ), and Ω0
k :=

⋃
T∈T 0

k

ωk(T ),

where ωk(T ) := ωTk(T ). In words, T +
k is the set of elements of Tk that are

not refined, and T 0
k consists of those elements which will eventually be refined.

The region Ω+
k is the one covered by the unrefined elements and their inmediate

neighbors, and Ω0
k is the one covered by the elements which will be (eventually)

refined later, and their neighbors.

We also need to introduce the following

Definition 3.4 (Meshsize function). We define hk ∈ L∞(Ω) as the piecewise
constant function

hk|T := |T |1/d, ∀ T ∈ Tk.

10



Since Tk+1 is always a refinement of Tk, for almost every x ∈ Ω there holds
that hk(x) is monotonically decreasing and bounded from below by 0. Therefore,

h∞(x) := lim
k→∞

hk(x)

is well-defined for almost all x ∈ Ω and defines a function in L∞(Ω). Moreover,
convergence is uniform, as is stated in the following lemma. (See Lemma 4.3
and Corollary 4.1 in [17]).

Lemma 3.5. The sequence {hk}k∈N0 converges to h∞ uniformly, i.e.,

lim
k→∞

‖hk − h∞‖L∞(Ω) = 0,

and if χΩ0
k

denotes the characteristic function of Ω0
k then

lim
k→∞

‖hkχΩ0
k
‖L∞(Ω) = 0.

The proof of R(u∞) = 0 will exploit Siebert’s idea [21] and is based on
proving first convergence to zero of the estimators over the marked elements,
and then the convergence of the residual R(ukm) to zero (weakly in H−1(Ω)).

Lemma 3.6 (Estimator on marked elements). Let {ukm}m∈N0 be the convergent
subsequence of {uk}k∈N0 given by Theorem 3.1. Then,

lim
m→∞

max
T∈Mkm

ηkm(T ) = 0.

Proof. In order not to clutter the notation, we still denote by {uk}k∈N0 the
subsequence {ukm}m∈N0 , and by {Tk}k∈N0 the sequence {Tkm}m∈N0 . Let Tk ∈
Mk be such that ηk(Tk) = maxT∈Mk

ηk(T ). Using Theorem 2.10, we have that

ηk(Tk) . ‖uk‖H1(ωk(Tk)) ≤ ‖uk − u∞‖H1(Ω) + ‖u∞‖H1(ωk(Tk)). (15)

Now, the first term in the right hand side of (15) tends to zero by Theorem 3.1,
and since Tk ∈Mk ⊂ T 0

k , by Lemma 3.5 we have

|ωk(Tk)| . hdTk ≤ ‖hkχΩ0
k
‖dL∞(Ω) → 0, as k →∞,

and therefore, the second term in the right hand side of (15) also tends to
zero.

Theorem 3.7 (Weak Convergence of the Residual). Let {ukm}m∈N0 be the
convergent subsequence of {uk}k∈N0 given by Theorem 3.1. Then,

lim
m→∞

〈R(ukm), v〉 = 0, for all v ∈ H1(Ω).

Proof. As in the last lemma, we denote by {uk}k∈N0 the subsequence {ukm}m∈N0 ,
and by {Tk}k∈N0 the sequence {Tkm}m∈N0 , and we prove the result for v ∈
H2(Ω). Let n ∈ N and k > n. By Definition 3.3 we have that T +

n ⊂ T +
k ⊂ Tk.

Let vk ∈ Vk be the Lagrange’s interpolant of v. Since 〈R(uk), vk〉 = 0, using (8),
and Cauchy-Schwartz’s inequality we have that

|〈R(uk), v〉| = |〈R(uk), v − vk〉| .
∑
T∈Tk

ηk(T )‖v − vk‖H1(ωk(T ))

≤
∑
T∈T +

n

ηk(T )‖v − vk‖H1(ωk(T )) +
∑

T∈Tk\T +
n

ηk(T )‖v − vk‖H1(ωk(T ))

≤ ηk(T +
n )‖v − vk‖H1(Ω+

n ) + ηk(Tk \ T +
n )‖v − vk‖H1(Ω0

n).

11



Taking into account the Estimator’s Stability (Theorem 2.10), we have that
ηk(Tk \ T +

n ) ≤ ηk(Tk) ≤ Cη, and therefore,

|〈R(uk), v〉| .
(
Cηk(T +

n ) + Cη‖hnχΩ0
n
‖L∞(Ω)

)
‖v‖H2(Ω),

due to interpolation estimates.
In order to prove that 〈R(uk), v〉 → 0 as k → ∞ we now let ε > 0 be

arbitrary. Due to Lemma 3.5, there exists n ∈ N such that

Cη‖hnχΩ0
n
‖L∞(Ω) < ε.

On the other hand, since T +
n ⊂ T +

k ⊂ Tk and the marking strategy is reasonable,

ηk(T +
n ) ≤ (#T +

n )1/2 max
T∈T +

n

ηk(T ) ≤ (#T +
n )1/2 max

T∈Mk

ηk(T ).

Now, by Lemma 3.6, we can select K > n such that Cηk(T +
n ) < ε, for all k > K.

Summarizing, we have proved that

lim
k→∞

〈R(uk), v〉 = 0, for all v ∈ H2(Ω).

Since H2(Ω) is dense in H1(Ω), this limit is also zero for all v ∈ H1(Ω).

As a consequence of the weak convergence of R(ukm) to zero, we now prove
that (λ∞, u∞) is an eigenpair of the continuous problem (2).

Theorem 3.8 (The limiting pair is an eigenpair). The limiting pair (λ∞, u∞)
of Theorem 3.1 is an eigenpair of the continuous problem (2). That is,{

a(u∞, v) = λ∞ b(u∞, v), ∀ v ∈ H1(Ω),
‖u∞‖b = 1.

Proof. We know that ‖u∞‖b = 1 due to Theorem 3.1. It remains to prove that

〈R(u∞), v〉 = a(u∞, v)− λ∞b(u∞, v) = 0, ∀ v ∈ H1(Ω).

If v ∈ H1(Ω), and {ukm}m∈N0 is the convergent subsequence of {uk}k∈N0 given
by Theorem 3.1, then

|〈R(u∞), v〉| = |〈R(u∞)−R(ukm), v〉+ 〈R(ukm), v〉|
≤ |a(u∞ − ukm , v)|+ |b(λ∞u∞ − λkmukm , v)|+ |〈R(ukm), v〉|
≤ ‖u∞ − ukm‖a ‖v‖a + ‖λ∞u∞ − λkmukm‖b ‖v‖b + |〈R(ukm), v〉|.

Since λkm → λ∞ and ukm → u∞ (in H1(Ω) and L2(∂Ω)), Theorem 3.7 implies
that the right hand side in the last inequality tends to zero when m tends to
infinity. Therefore,

〈R(u∞), v〉 = 0, for all v ∈ H1(Ω).

We now state and prove the main result of this section.

Theorem 3.9 (General Convergence Result 1). Let {(λk, uk)}k∈N0 denote the
whole sequence of computed eigenpairs obtained with Algorithm 1. Then, there
exists an eigenvalue λ of the continuous problem (2) such that

lim
k→∞

λk = λ and lim
k→∞

distH1(Ω)(uk, Ẽλ) = 0.
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Proof. By Theorem 3.1, taking λ := λ∞, we have that limk→∞ λk = λ, and
by Theorem 3.8, λ is an eigenvalue of the continuous problem (2). In order to
prove that lim

k→∞
distH1(Ω)(uk, Ẽλ) = 0 we argue by contradiction. If the result

were not true, there would exist a number ε > 0 and a subsequence {ukm}m∈N0

of {uk}k∈N0 such that

distH1(Ω)(ukm , Ẽλ) > ε, ∀ m ∈ N0. (16)

By Remark 3.2 it is possible to extract a subsequence of {ukm}m∈N0 which still
converges to some function ũ∞ ∈ V∞. By the arguments in the proof of The-
orem 3.8, ũ∞ is an eigenfunction of the continuous problem (2) corresponding
to the same eigenvalue λ. That is, a subsequence of {ukm}m∈N0 converges to an
eigenfunction in Ẽλ, this contradicts (16) and completes the proof.

We have proved that the discrete eigenvalues converge to an eigenvalue of
the continuous problem, and the discrete eigenfunctions converge to the set of
the corresponding continuous eigenfunctions. But there is still an open question:
Given that we have chosen λk as the j0-th eigenvalue of the discrete problem over
Tk, is it true that {λk}k∈N0 converges to the j0-th eigenvalue of the continuous
problem? The answer is affirmative for a large number of problems, but not
necessarily for all. There could be some pathological cases in which looking for
the j0-th eigenvalue we converge to one that is larger. We now state a sufficient
assumption on problem (2) to guarantee that convergence holds to the desired
eigenvalue/eigenfunction.

Assumption 3.1 (Non-Degeneracy Assumption). We will say that problem (2)
satisfies the Non-Degeneracy Assumption if whenever u is an eigenfunction
of (2), there is no nonempty open subset O of Ω such that u|O ∈ P`(O).

Theorem 3.10 (General Convergence Result 2). Let us suppose that the contin-
uous problem (2) satisfies the Non-Degeneracy Assumption 3.1, let {(λk, uk)}k∈N0

denote the whole sequence of computed eigenpairs obtained through Algorithm
1, and let λ denote the j0-th eigenvalue of the continuous problem (2). Then,

lim
k→∞

λk = λ and lim
k→∞

distH1(Ω)(uk, Ẽλ) = 0.

Before embarking into the proof of this theorem, we state assumptions on
the coefficients A and c which guarantee non-degeneracy of the problem. The
following lemma is a consequence of the results in [16], and the proof follows
the lines of Lemma 6.1 in [10].

Lemma 3.11. If A is continuous, and piecewise P1, and c is piecewise constant,
then problem (2) satisfies the Non-Degeneracy Assumption 3.1.

The next lemma states that under the non-degeneracy assumption, hk → 0
uniformly. It may seem confusing at first sight that this holds in general for
adaptive meshes. However, after a second thought, it is a natural consequence
of the convergence of the adaptive method, plus the nondegeneracy of the so-
lution being approximated. It is also important to emphasize that the uniform
convergence of hk to zero is not in contradiction with the spirit of adaptivity and
nonlinear approximation results, since even though the convergence is uniform,
the mesh-size function may have a strong grading around singularities. More

13



precisely, uniform convergence of mesh-size does not imply quasi-uniformity of
the meshes. This is already hinted by the explicit constructions of optimal
meshes given in [15, 11].

Lemma 3.12. Let {hk}k∈N0 denote the sequence of meshsize functions obtained
with Algorithm 1. If the continuous problem (2) satisfies the Non-Degeneracy
Assumption 3.1, then ‖hk‖L∞(Ω) → 0 as k →∞.

Proof. We argue by contradiction. If ‖hk‖L∞(Ω) does not tend to zero, there
exists k0 ∈ N0 and T ∈ Tk0 such that T ∈ Tk, for all k ≥ k0. Let {ukm}m∈N0 be
the convergent subsequence of {uk}k∈N0 given by Theorem 3.1. Since ‖ukm −
u∞‖L2(T ) → 0 as m→∞, and ukm |T ∈ P`(T ), for all m ∈ N0; using that P`(T )
is a finite dimensional space we conclude that

u∞|T ∈ P`(T ). (17)

Theorem 3.8 states that u∞ is an eigenfunction of (2) and thus (17) contradicts
the Non-Degeneracy Assumption 3.1.

It is important to notice that the convergence of hk to zero is not an as-
sumption, but a consequence of the fact that a subsequence is converging to an
eigenfunction u∞ and the Non-Degeneracy Assumption 3.1.

Proof of Theorem 3.10. In view of Theorem 3.9 it remains to prove that λk
converges to the j0-th eigenvalue of (2). By Lemma 3.12 this follows from (6).

4 Further error estimates

Up to this point we have proved convergence (without rate) for any reasonable
marking strategy. The next goal is to prove optimality. In this section we state
some results that will be essential for proving optimality in the next section.

4.1 A priori error estimates

Recall that we consider the approximation of a certain fixed eigenvalue λ = λj0
of the continuous problem (2), j ∈ N denotes the first index that satisfies λ = λj ,
and R denotes its multiplicity.

If u ∈ Ẽλ and uT ∈ ẼTλ then

a(u− uT , u− uT ) = a(u, u) + a(uT , uT )− 2a(u, uT ) = λ+ Λ(uT )− 2λ b(u, uT )

= Λ(uT )− λ+ λ
(
2− 2b(u, uT )

)
= Λ(uT )− λ+ λ b(u− uT , u− uT ),

and thus,
‖u− uT ‖2a = Λ(uT )− λ+ λ ‖u− uT ‖2b . (18)

As an immediate consequence of (18) we obtain the following

Theorem 4.1. If uT ∈ ẼTλ , then Λ(uT )− λ ≤ dist2
a(uT , Ẽλ).

We will use the next auxiliary lemma in the proofs of several results.
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Lemma 4.2. Let T ∈ T. For all uT , vT ∈ VT with ‖uT ‖b = ‖vT ‖b = 1, there
holds

‖Λ(uT )uT − Λ(vT )vT ‖b ≤
(
CTΛ(uT ) +

√
Λ(uT ) +

√
Λ(vT )

)
‖uT − vT ‖a ,

where CT is the constant from the trace inequality (1).

Proof. Let T ∈ T and uT , vT ∈ VT with ‖uT ‖b = ‖vT ‖b = 1. We have

‖Λ(uT )uT − Λ(vT )vT ‖b ≤ Λ(uT ) ‖uT − vT ‖b + |Λ(uT )− Λ(vT )| ‖vT ‖b
≤ Λ(uT ) ‖uT − vT ‖b +

(√
Λ(uT ) +

√
Λ(vT )

)
|
√

Λ(uT )−
√

Λ(vT )|

≤ Λ(uT ) ‖uT − vT ‖b +
(√

Λ(uT ) +
√

Λ(vT )
)
‖uT − vT ‖a

≤
(
CTΛ(uT ) +

√
Λ(uT ) +

√
Λ(vT )

)
‖uT − vT ‖a ,

where in the last inequality we have used the bound (1).

The proof of the following result can be found in [24].

Lemma 4.3 (Separation of eigenvalues). There exist h0 > 0 and a separation
constant ρ > 0 such that for every T , T∗ ∈ T with hT ≤ h0, and T∗ a refinement
of T ,

λj
|λi,T − λj |

≤ ρ, and
λT∗

|λi,T − λT∗ |
≤ ρ if i 6= j, j + 1, · · · , j +R− 1,

where λT∗ denotes any of the discrete eigenvalues λj,T∗ , λj+1,T∗ , . . . , λj+R−1,T∗ .

Remark 4.4. Hereafter, several statements hold under the assumption of T
being sufficiently fine (hT small enough). However, under the Non-Degeneracy
Assumption 3.1, hT will tend to zero as the adaptive algorithm iterates, and the
fineness assumption will thus eventually hold. Let us also notice that all known
optimality results are asymptotic, and so is ours. Despite the fact that estimates
will hold starting at some iteration counter k0, the algorithm converges starting
from any initial mesh, and it does so at a quasi-optimal rate.

In order to prove the main a priori estimate of Theorem 4.8 we introduce now
the elliptic projection operator and compare the error in the different norms.

Definition 4.5. Let QT denote the elliptic projection of H1(Ω) onto VT ; i.e.,
for each v ∈ H1(Ω), QT v ∈ VT satisfies a(v −QT v, wT ) = 0, for all wT ∈ VT .

Lemma 4.6. If u ∈ Ẽλ and (λi,T , ui,T ) are solutions of (5) for i = 1, 2, . . . , N∂
T ,

then,
(λi,T − λ)b(QT u, ui,T ) = λb(u−QT u, ui,T ).

Proof. Since a(QT u, ui,T ) = a(u, ui,T ) we have that λi,T b(QT u, ui,T ) = λb(u, ui,T ).
Subtracting λb(QT u, ui,T ) from both sides, we obtain the claim of this lemma.

We recall that r is a fixed number in (0, 1/2) so that the regularity esti-
mate (4) holds for the solution of the Neumann problem. The following lemma
can be proved with the usual duality trick of Aubin and Nitsche, and interpo-
lation estimates in H1+r.
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Lemma 4.7 (Aubin-Nitsche). There exists a constant CAN > 0 depending on
the shape regularity of T0, and the constant appearing in (4), such that

‖u−QT u‖b ≤ CANh
r
T ‖u−QT u‖a , for all u ∈ H1(Ω) and all T ∈ T.

The proof of the following estimate is similar to the one presented in [13, 24]
for the elliptic eigenvalue problem, but the fact that the discrete eigenfunctions
do not generate all VT must be taken into account.

Theorem 4.8 (Main a priori estimate). Let h0 and ρ be as in Lemma 4.3. If
λ = λj0 is a simple eigenvalue, then

distb(uT , Ẽλ) ≤ 2(1 + ρ)CANhrT dista(uT , Ẽλ),

for all T ∈ T with hT ≤ h0, and uT ∈ ẼTλ .

Proof. Assume that λ = λj0 is a simple eigenvalue. Let T ∈ T satisfy hT ≤ h0

and let uT ∈ ẼTλ be arbitrary. Let us take u := P̃λuT and λT := Λ(uT ). Due to
Remark 2.3, it follows that β := b(QT u, uT ) = 1

λT
a(u, uT ) is non-negative. Let

{ui,T |i = 1, 2, · · · , N∂
T } be a b-orthonormal subset of VT , such that (λi,T , ui,T )

are solutions of (5) for i = 1, 2, · · · , N∂
T , and uj0,T = uT . Thus,

QT u =
N∂T∑
i=1

b(QT u, ui,T )ui,T + vT ,

where vT ∈ VT satifies vT |∂Ω ≡ 0, and then

‖QT u− βuT ‖2b =
N∂T∑
i=1
i 6=j0

b(QT u, ui,T )2.

From Lemmas 4.6 and 4.3 and using that hT ≤ h0 it follows that

‖QT u− βuT ‖2b =
N∂T∑
i=1
i6=j0

(
λ

λi,T − λ

)2

b(u−QT u, ui,T )2 ≤ ρ2 ‖u−QT u‖2b .

By the triangle inequality ‖u− βuT ‖b ≤ ‖u−QT u‖b + ‖QT u− βuT ‖b ≤ (1 +
ρ) ‖u−QT u‖b. Since |β − 1| = |‖βuT ‖b − ‖u‖b| ≤ ‖u− βuT ‖b, we conclude
that

‖u− uT ‖b ≤ ‖u− βuT ‖b + ‖(β − 1)uT ‖b ≤ 2 ‖u− βuT ‖b ≤ 2(1 + ρ) ‖u−QT u‖b .

Finally, taking into account Lemma 4.7 and the definition of QT , we conclude

‖u− uT ‖b ≤ 2(1 + ρ)CANhrT ‖u−QT u‖a ≤ 2(1 + ρ)CANhrT ‖u− uT ‖a .

The proof is complete observing that u achieves distb(uT , Ẽλ) and dista(uT , Ẽλ).

Remark 4.9. Let h0 and ρ be as in Lemma 4.3 and let λ be a simple eigenvalue.
If T∗ is a refinement of T , the same proof of Theorem 4.8 allows us to conclude
that if hT ≤ h0

distb(uT , ẼT∗λ ) ≤ 2(1 + ρ)CANhrT dista(uT , ẼT∗λ ), for any uT ∈ ẼTλ .
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In AFEM for symmetric elliptic problems the error is bound to decrease
under mesh refinements. This result is false in general for eigenvalue problems
due to their nonlinearity. We shall show however that the increase in the error
can be controlled.

Theorem 4.10 (Error Stability). Let λ be simple. Then, there exists a positive
constant h1 ≤ h0 such that, if T ∈ T with hT ≤ h1 and T∗ ∈ T is a refinement
of T ,

dista(uT∗ , Ẽλ) . dista(uT , Ẽλ), for all uT ∈ ẼTλ and uT∗ ∈ Ẽ
T∗
λ .

Proof. Let T , T∗ be as in the assumptions, and let uT ∈ ẼTλ and uT∗ ∈ Ẽ
T∗
λ .

By Theorem 4.8
distb(uT∗ , Ẽλ) . hrT∗ dista(uT∗ , Ẽλ). (19)

Now, if λT := Λ(uT ) and λT∗ := Λ(uT∗), using (18) for T∗ instead of T , we
obtain

dist2
a(uT∗ , Ẽλ) = λT∗ − λ+ λ dist2

b(uT∗ , Ẽλ),

due to the fact that the same u ∈ Ẽλ achieves both dista(uT∗ , Ẽλ) and distb(uT∗ , Ẽλ)
(see Remark 2.3). The fact that λT∗ ≤ λT , and Theorem 4.1 imply that

dist2
a(uT∗ , Ẽλ) ≤ λT − λ+ λ dist2

b(uT∗ , Ẽλ) ≤ dist2
a(uT , Ẽλ) + λ dist2

b(uT∗ , Ẽλ).

Considering (19), we can choose h1 > 0 small enough such that the last term
on the right-hand side can be absorbed on the left whenever hT∗ ≤ h1.

4.2 Further a posteriori error estimates

In this section we will state some properties of the a posteriori error estimators
that were not needed for proving convergence but will be used for proving quasi-
optimality. We start by stating an upper bound, which can be proved as in [9].

Lemma 4.11 (Upper bound). There exists a constant C > 0, which only de-
pends on the regularity of T0, such that for all eigenpairs (λT , uT ) of the discrete
problem (5),

dista(uT , Ẽλ) ≤ CηT (uT ) +
(
λ+ λT

2

)1/2

distb(uT , Ẽλ).

The following result is a quasi-localized upper bound for the distance between
two nested solutions, and it is essential for proving optimality of adaptive FEM.
Similar results were first used by Stevenson [22] and later on in [5, 7].

Lemma 4.12 (Quasi-localized Upper Bound). Let T ∈ T, T∗ ∈ T be a re-
finement of T and let R be the set of the elements in T which are refined to
obtain T∗ (R = T \ T∗). Let (λT , uT ) and (λT∗ , uT∗) be solutions of the discrete
problem (5) in T and T∗, respectively. Then,

‖uT∗ − uT ‖a . ηT (uT ;R) + ‖uT∗ − uT ‖b .
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Proof. Let T , T∗,R, (λT , uT ) and (λT∗ , uT∗) be as in the assumptions, and let
eT∗ := uT∗ − uT . By simple calculations we have that

‖eT∗‖
2
a = −〈R(uT ), eT∗〉+

λT∗ + λT
2

‖eT∗‖
2
b . (20)

Let Ω∗ :=
⋃
T∈R T be the union of the refined elements, and V(R) := {v ∈

H1(Ω∗) : v|T ∈ P`(T ), ∀ T ∈ R} the restriction of VT to Ω∗. If PR :
H1(Ω∗)→ V(R) denotes the Scott-Zhang interpolation operator [20], then

‖eT∗ − PReT∗‖T . hT ‖∇eT∗‖ωT (T ), and ‖eT∗ − PReT∗‖∂T . h
1/2
T ‖∇eT∗‖ωT (T ),

(21)
for all T ∈ R. This operator is a projection and it preserves homogenous
boundary values. Hence, it also preserves conforming boundary values, i.e.,
PRv = v on ∂Ω∗ for v ∈ H1(Ω∗) whenever v = V on ∂Ω∗ for some V ∈ V(R).

For the error eT∗ ∈ VT∗ we construct an approximation eT ∈ VT by

eT :=

{
eT∗ in Ω \ Ω∗
PReT∗ in Ω∗.

Using (7) and taking into account that eT = eT∗ over all elements in T \R, and
the bounds (21), we obtain

−〈R(uT ), eT∗ − eT 〉 .
∑
T∈R

ηT (uT ;T )‖∇eT∗‖ωT (T ) . ηT (uT ;R) ‖eT∗‖a .

From (20) it follows that ‖eT∗‖
2
a . ηT (uT ;R) ‖eT∗‖a + ‖eT∗‖

2
b , and considering

the trace inequality (1), this proof is complete.

The next result is the global lower bound for the error, whose proof follows
the ideas given in [1].

Theorem 4.13 (Global Lower Bound). There exists a constant CL > 0 de-
pending on the data such that, if T ∈ T, then

CLη
2
T (uT ) ≤ dist2

a(uT , Ẽλ) + osc2
T (uT ), for any uT ∈ ẼTλ .

We finish this section with two theorems stating neat upper bounds (global
and localized) for meshes that are sufficiently fine and simple eigenvalues. We
show that the higher order terms in Lemmas 4.11 and 4.12 can be absorbed into
the left using the main a priori estimate (see Theorem 4.8 and Remark 4.9).

Theorem 4.14 (Global Upper Bound). Assume that λ = λj0 is simple. Then,
there exist a constant CU > 0 depending on the data and a positive constant
h2 ≤ h0 such that, if T ∈ T with hT ≤ h2, then

dist2
a(uT , Ẽλ) ≤ CUη2

T (uT ), for any uT ∈ ẼTλ .

Proof. Let T ∈ T and uT ∈ ẼTλ . From Lemma 4.11 and Theorem 4.8 it follows
that

dista(uT , Ẽλ) . ηT (uT ) + hrT dista(uT , Ẽλ),

for hT ≤ h0. The claim of this theorem follows by noticing that we can select
h2 ≤ h0 depending on the data small enough such that the second term on the
right-hand side can be absorbed into the left if hT ≤ h2.

18



Theorem 4.15 (Localized Upper Bound). Assume that λ = λj0 is simple. Let
T∗ ∈ T be a refinement of T ∈ T and let R be the set of the elements in T
which are refined to obtain T∗, i.e., R = T \T∗. There exist a constant CLU > 0
depending on the data and 0 < h3 ≤ h0 such that, if hT ≤ h3,

dist2
a(uT , ẼT∗λ ) ≤ CLUη2

T (uT ;R), for any uT ∈ ẼTλ .

Proof. Let T , T∗, and R be as in the assumptions, and let uT ∈ ẼTλ . From
Lemma 4.12 and Remark 4.9 it follows that

dista(uT , ẼT∗λ ) . ηT (uT ;R) + hrT dista(uT , ẼT∗λ ),

for hT ≤ h0. As in the last proof, we can select h3 > 0 (depending on data)
small enough in order to absorbe the second term in the right-hand side into
the left if hT ≤ h3.

4.3 Estimator and oscillation reductions

In this section we study what happens with the estimator and the oscillation
indicator when refining. We start observing that if T ∈ T and vT , wT ∈ VT ,
then

ηT (wT ;T ) =
(
h2
T ‖R(wT )‖2T + hT ‖J(wT )‖2∂T

)1/2

≤
(
h2
T ‖R(vT )‖2T + hT ‖J(vT )‖2∂T

)1/2

+
((
hT ‖R(vT )−R(wT )‖T

)2 +
(
h

1/2
T ‖J(vT )− J(wT )‖∂T

)2)1/2

≤ ηT (vT ;T ) + hT ‖R(vT )−R(wT )‖T + h
1/2
T ‖J(vT )− J(wT )‖∂T

After defining gT (vT , wT ;T ) := hT ‖R(vT )−R(wT )‖T+h1/2
T ‖J(vT )− J(wT )‖∂T ,

the last inequality reads

ηT (wT ;T ) ≤ ηT (vT ;T ) + gT (vT , wT ;T ), (22)

and analogously we obtain for all T ∈ T , and vT , wT ∈ VT ,

oscT (wT ;T ) ≤ oscT (vT ;T ) + gT (vT , wT ;T ). (23)

The quantity gT thus accounts for the difference between the error indicators
and oscillation terms of two discrete functions, and by a scaled trace theorem
and an inverse inequality, it can be bounded by

gT (vT , wT ;T ) . ‖vT −wT ‖H1(ωT (T ))+‖Λ(vT )vT −Λ(wT )wT ‖∂Ω∩∂T , for all T ∈ T .

After squaring and adding over all T ∈ T , we also obtain∑
T∈T

g2
T (vT , wT ;T ) . ‖vT − wT ‖2a + ‖Λ(vT )vT − Λ(wT )wT ‖2b . (24)

The next result quantifies the reduction of the estimator due to refinement,
and its proof makes use of Young’s inequality:

a2 ≤ (1 + δ)b2 + (1 + δ−1)c2, if 0 ≤ a ≤ b+ c, for all δ > 0.
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Proposition 4.16 (Estimator reduction). Let T ∈ T and letMT be any subset
of T . Let T∗ ∈ T be obtained from T refining at least n ≥ 1 times the elements
in MT and let c := 1 − 2−n/d > 0. Then, there exists a constant CE > 0
depending on data such that if uT ∈ ẼTλ and uT∗ ∈ Ẽ

T∗
λ

η2
T∗(uT∗) ≤ (1+δ)

{
η2
T (uT )− cη2

T (uT ;MT )
}

+(1+δ−1)CE ‖uT∗ − uT ‖
2
a , for all δ > 0.

Proof. Let T , MT and T∗ be as in the assumptions and let uT ∈ ẼTλ and
uT∗ ∈ Ẽ

T∗
λ be arbitrary. Applying Young’s inequality with parameter δ to (22)

we derive

η2
T∗(uT∗ ;T ) ≤ (1 + δ)η2

T∗(uT ;T ) + (1 + δ−1)g2
T∗(uT , uT∗ ;T ),

for T ∈ T∗. Summing over all elements T ∈ T∗, and using (24) we have that

η2
T∗(uT∗) ≤ (1 + δ)η2

T∗(uT ) + (1 + δ−1)CE ‖uT∗ − uT ‖
2
a , (25)

for some constant CE > 0, where we also have taken into account Lemma 4.2
to bound

‖Λ(uT )uT − Λ(uT∗)uT∗‖b ≤ (CTλj+R−1,T0 + 2
√
λj+R−1,T0) ‖uT − uT∗‖a .

Next, for an element T ∈ T , we set T∗,T := {T ′ ∈ T∗ : T ′ ⊂ T} and we note
that J(uT ) = 0 on the sides of T∗,T that lie in the interior of T , since uT ∈ VT .
For T ∈MT we obtain∑
T ′∈T∗,T

η2
T∗(uT ;T ′) =

∑
T ′∈T∗,T

(
h2
T ′‖R(uT )‖2T ′ + hT ′‖J(uT )‖2∂T ′

)
≤ 2−

n
d 2h2

T ‖R(uT )‖2T + 2−
n
d hT ‖J(uT )‖2∂T ≤ 2−

n
d η2
T (uT ;T ),

since refinement by bisection implies hT ′ = |T ′| 1d ≤ (2−n|T |) 1
d = 2−

n
d hT , for all

T ′ ∈ T∗,T .
Now, the last estimation for T ∈MT and the fact that

∑
T ′∈T∗,T η

2
T∗(uT ;T ′) ≤

η2
T (uT ;T ) for T ∈ T \MT imply that

η2
T∗(uT ) =

∑
T∈T \MT

∑
T ′∈T∗,T

η2
T∗(uT ;T ′) +

∑
T∈MT

∑
T ′∈T∗,T

η2
T∗(uT ;T ′)

≤
∑

T∈T \MT

η2
T (uT ;T ) +

∑
T∈MT

2−
n
d η2
T (uT ;T )

= η2
T (uT )− (1− 2−

n
d )η2
T (uT ;MT ).

Finally, inserting this bound in (25) the claim of this proposition follows.

The following result quantifies the change of the oscillation term due to
refinement.

Proposition 4.17 (Perturbation of oscillation). Let T ∈ T. If T∗ ∈ T is a
refinement of T ,

osc2
T (uT ; T ∩T∗) ≤ 2 osc2

T∗(uT∗ ; T ∩T∗)+2CE ‖uT∗ − uT ‖
2
a , for all uT ∈ ẼTλ , uT∗ ∈ Ẽ

T∗
λ .
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Proof. Let T ∈ T and T∗ ∈ T be a refinement of T . Let uT ∈ ẼTλ and uT∗ ∈ Ẽ
T∗
λ

be arbitrary. Applying Young’s inequality to (23) we derive

osc2
T∗(uT ;T ) ≤ 2 osc2

T∗(uT∗ ;T ) + 2g2
T∗(uT , uT∗ ;T ),

for all T ∈ T ∩ T∗. Using that oscT (uT ;T ) = oscT∗(uT ;T ), summing over all
elements T ∈ T ∩T∗, using (24) and Lemma 4.2 again, we obtain the claim.

The next result is a consequence of the estimation (23) and the bound (24),
and it will be used in the next section in order to prove the optimality of the
approximations (see Lemma 5.3 below).

Lemma 4.18. If T ∈ T and (λT , uT ) is a solution of the discrete problem (5),
then

osc2
T (uT ) . osc2

T (vT ) + ‖uT − vT ‖2a , for all vT ∈ VT with ‖vT ‖b = 1.

Proof. Let T ∈ T and (λT , uT ) be a solution of the discrete problem (5). Let
vT ∈ VT be such that ‖vT ‖b = 1.
1 We assume first that a(uT , vT ) ≥ 0. From (23), it follows that

osc2
T (uT ;T ) ≤ 2(osc2

T (vT ;T ) + g2
T (vT , uT ;T )), for all T ∈ T .

After adding over all the elements T ∈ T , by (24) we obtain

osc2
T (uT ) . osc2

T (vT ) + ‖uT − vT ‖2a + ‖λT uT − Λ(vT )vT ‖2b .

Therefore, it is sufficient to prove that ‖λT uT − Λ(vT )vT ‖2b . ‖uT − vT ‖2a. On
the one hand, if Λ(vT ) ≥ 1, we have that

‖λT uT − Λ(vT )vT ‖2b = λT + Λ(vT )− 2λT Λ(vT )b(uT , vT )
= λT + Λ(vT )− 2Λ(vT )a(uT , vT )

≤ λT + Λ(vT )− 2a(uT , vT ) = ‖uT − vT ‖2a .

On the other hand, if Λ(vT ) ≤ 1, Lemma 4.2 implies

‖λT uT − Λ(vT )vT ‖b ≤ (CTλT +
√
λT +

√
Λ(vT )) ‖uT − vT ‖a . ‖uT − vT ‖a .

2 If a(uT , vT ) < 0, using the first part we have that

osc2
T (uT ) . osc2

T (−vT ) + ‖uT + vT ‖2a = osc2
T (vT ) + ‖uT + vT ‖2a .

The proof is complete taking into account that ‖uT + vT ‖2a ≤ ‖uT − vT ‖
2
a.

5 Quasi-Optimality of an Adaptive Loop

In this final section we prove the optimality of the Algorithm 1 for approximating
an eigenpair corresponding to a simple eigenvalue λ = λj0 , and therefore, in this
section we assume that λ is simple. Notice that in this case, for T ∈ T we have
that ẼTλ = {uT ,−uT }. Our optimality result holds provided the refinement
is based on an efficient Dörfler’s marking strategy (see Assumptions 5.1–5.2
below), and starting from any initial mesh.
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5.1 Quasi-Optimality of the Total Error and Optimal Mark-
ing

In the next lemma we provide a bound for the mixed term that appears when
trying to obtain an orthogonality relationship, similar to the one existing for
linear problems.

Lemma 5.1. Let T ∈ T be such that hT ≤ h0. If uT ∈ ẼTλ and vT ∈ VT ,
there holds

|a(P̃λuT − uT , uT − vT )| . h2r
T
∥∥P̃λuT − uT ∥∥2

a
+
∥∥P̃λuT − uT ∥∥a∥∥P̃λuT − vT ∥∥b.

Proof. Let T ∈ T be such that hT ≤ h0. Let uT ∈ ẼTλ and λT := Λ(uT ).
Let us denote u := P̃λuT and consider vT ∈ VT arbitrary. Since a(u, uT −
vT ) = λb(u, uT − vT ) and a(uT , uT − vT ) = λT b(uT , uT − vT ), it follows from
Theorem 4.8 that

|a(u− uT , uT − vT )| = |b(λu− λT uT , uT − vT )|
≤ |b(λu− λT uT , uT − u)|+ |b(λu− λT uT , u− vT )|

=
(
λ+ λT

2

)
‖u− uT ‖2b + |b(λu− λT uT , u− vT )|

. h2r
T ‖u− uT ‖

2
a + ‖λu− λT uT ‖b ‖u− vT ‖b .

The claim of this lemma follows using that ‖λu− λT uT ‖b . ‖u− uT ‖a, which
holds due to Lemma 4.2, replacing one of the discrete functions by u.

We now state and prove a quasi-orthogonality result that is useful for proving
the Cea’s Lemma below.

Theorem 5.2. There exists h4 > 0 such that if T ∈ T satisfies hT ≤ h4, then∥∥P̃λuT − uT ∥∥2

a
+
∥∥uT − vT ∥∥2

a
.
∥∥P̃λuT − vT ∥∥2

a
, for all vT ∈ VT and uT ∈ ẼTλ .

Proof. Let T ∈ T, vT ∈ VT , uT ∈ ẼTλ , and let us denote u := P̃λuT . Then,

‖u− vT ‖2a = ‖u− uT ‖2a + ‖uT − vT ‖2a + 2a(u− uT , uT − vT ),

and by Lemma 5.1,

|a(u− uT , uT − vT )| . h2r
T ‖u− uT ‖

2
a + ‖u− uT ‖a ‖u− vT ‖b

≤ (δ + h2r
T ) ‖u− uT ‖2a +

1
δ
‖u− vT ‖2a ,

for all δ > 0, whenever hT ≤ h0. Thus,

‖u− uT ‖2a + ‖uT − vT ‖2a . ‖u− vT ‖2a + (δ + h2r
T ) ‖u− uT ‖2a +

1
δ
‖u− vT ‖2a .

Finally, we can choose δ > 0 and h4 > 0 depending on the data such that

‖u− uT ‖2a + ‖uT − vT ‖2a . ‖u− vT ‖2a , if hT ≤ h4.

The following result states that the discrete eigenfunctions uT ∈ ẼTλ are
optimal approximations (up to a constant) to the eigenspace Ẽλ from within
VT .
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Lemma 5.3 (Cea’s Lemma). Let T ∈ T with hT ≤ h4 and uT ∈ ẼTλ . Then,

dist2
a(uT , Ẽλ) + osc2

T (uT ) . inf
vT ∈VT
‖vT ‖b=1

(
dist2

a(vT , Ẽλ) + osc2
T (vT )

)
.

Proof. Let T ∈ T with hT ≤ h4, and let uT ∈ ẼTλ . Let vT ∈ VT be such that
‖vT ‖b = 1. Without loss of generality, since λ is a simple eigenvalue, we can
assume that u := P̃λvT = P̃λuT . Using Lemma 4.18 and Theorem 5.2 we have
that

dist2
a(uT , Ẽλ) + osc2

T (uT ) . ‖u− uT ‖2a + osc2
T (vT ) + ‖uT − vT ‖2a

. ‖u− vT ‖2a + osc2
T (vT )

. dist2
a(vT , Ẽλ) + osc2

T (vT ).

The following theorem states a result which is in essence a generalization
of the error orthogonality that is observed in symmetric linear problems. This
result becomes closer to an exact orthogonality relation as the mesh size hT
gets smaller, and will be instrumental for proving a contraction of the error.

Theorem 5.4 (Quasi-orthogonality). There exists a constant CO > 0 depending
on data such that, if T ∈ T satisfies hT ≤ h1 and T∗ ∈ T is a refinement of T ,
then

dist2
a(uT∗ , Ẽλ) ≤ (1 + COh

r
T ) dist2

a(uT , Ẽλ)− ‖uT∗ − uT ‖
2
a , (26)

for uT ∈ ẼTλ and uT∗ ∈ Ẽ
T∗
λ satisfying P̃λuT = P̃λuT∗ .

Proof. Let T ∈ T with hT ≤ h1 and let T∗ ∈ T be a refinement of T . If
u := P̃λuT = P̃λuT∗ , we have that ‖u− uT ‖2a = ‖u− uT∗‖

2
a + ‖uT∗ − uT ‖

2
a +

2a(u− uT∗ , uT∗ − uT ), which implies

‖u− uT∗‖
2
a ≤ ‖u− uT ‖

2
a − ‖uT∗ − uT ‖

2
a + 2|a(u− uT∗ , uT∗ − uT )|.

Since uT ∈ VT∗ , Lemma 5.1 implies that

|a(u− uT∗ , uT∗ − uT )| . h2r
T∗ ‖u− uT∗‖

2
a + ‖u− uT∗‖a ‖u− uT ‖b .

Using Theorems 4.8 and 4.10 and that hT∗ ≤ hT we have that

|a(u− uT∗ , uT∗ − uT )| . hrT ‖u− uT ‖
2
a ,

and the claim of this theorem follows.

The proof of quasi-optimality is based on the use of an efficient Dörfler’s
marking strategy.

Assumption 5.1 (Dörfler Strategy). Let θ ∈ (0, 1] be a marking parameter.
Dörfler’s marking strategy consists in selecting a minimal subset of marked
elements MT ⊂ T satisfying

ηT (uT ;MT ) ≥ θηT (uT ).

In order to be able to prove optimality, an assumption on the marking pa-
rameter θ has to be made, related to the gap in the constants appearing in the
a posteriori upper and lower bounds.
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Assumption 5.2 (The marking parameter θ). The marking parameter θ satisfies
0 < θ < θ0 with

θ2
0 :=

CL
1 + 2CLU (1 + CE)

.

The following result states the existence of a threshold ν such that, if a reduc-
tion ν is obtained in the quasi-error after some refinement of T , then the number
of refined elements is larger than the number of elements that would have been
marked by Dörfler’s marking strategy. We refer to this result as Optimal mark-
ing and it was first discovered for linear elliptic problems by Stevenson [22]
for the exact error assuming a small oscillation, and later used for a notion of
quasi-error including the oscillation terms in [5, 7].

Lemma 5.5 (Optimal marking). Let T ∈ T with hT ≤ h3. Let T∗ ∈ T be a
refinement of T and let R denote the set of the elements in T which are refined
to obtain T∗. Let Assumption 5.2 hold and let ν := 1

2

(
1− θ2

θ20

)
> 0. Let uT ∈ ẼTλ

and uT∗ ∈ Ẽ
T∗
λ such that dista(uT , ẼT∗λ ) = ‖uT − uT∗‖a. If

dist2
a(uT∗ , Ẽλ) + osc2

T∗(uT∗) ≤ ν
(

dist2
a(uT , Ẽλ) + osc2

T (uT )
)
, (27)

then
ηT (uT ;R) ≥ θηT (uT ).

Proof. Let T , T∗, R, uT , uT∗ and ν be as in the assumptions of the theorem,
with hT ≤ h3. Using (27) and the Global Lower Bound (Theorem 4.13) we
obtain

(1− 2ν)CLη2
T (uT ) ≤ (1− 2ν)

(
dist2

a(uT , Ẽλ) + osc2
T (uT )

)
≤ dist2

a(uT , Ẽλ)− 2 dist2
a(uT∗ , Ẽλ) + osc2

T (uT )− 2 osc2
T∗(uT∗).

Since ∥∥P̃λuT − uT ∥∥a ≤ ∥∥P̃λuT∗ − uT∗∥∥a + ‖uT∗ − uT ‖a ,

we have that dista(uT , Ẽλ) ≤ dista(uT∗ , Ẽλ) + ‖uT∗ − uT ‖a, and therefore,

dist2
a(uT , Ẽλ) ≤ 2 dist2

a(uT∗ , Ẽλ) + 2 ‖uT∗ − uT ‖
2
a . (28)

On the other hand, Proposition 4.17 implies

osc2
T (uT ; T ∩ T∗)− 2 osc2

T∗(uT∗ ; T ∩ T∗) ≤ 2CE ‖uT∗ − uT ‖
2
a ,

and there holds osc2
T (uT ;T ) ≤ η2

T (uT ;T ), for T ∈ R. Recalling thatR = T \T∗,
for the oscillation terms we obtain

osc2
T (uT )− 2 osc2

T∗(uT∗) ≤ 2CE ‖uT∗ − uT ‖
2
a + η2

T (uT ;R).

Now, this last inequality and (28) yield

(1− 2ν)CLη2
T (uT ) ≤ 2 ‖uT − uT∗‖

2
a + 2CE ‖uT − uT∗‖

2
a + η2

T (uT ;R),

whence the Localized Upper Bound (Theorem 4.15) implies that

(1− 2ν)CLη2
T (uT ) ≤ 2(1 + CE)CLUη2

T (uT ;R) + η2
T (uT ;R)

= (1 + 2CLU (1 + CE))η2
T (uT ;R).
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Therefore,
(1− 2ν)CL

1 + 2CLU (1 + CE)
η2
T (uT ) ≤ η2

T (uT ;R),

which implies the claim since the definition of ν implies θ2 = (1−2ν)CL
1+2CLU (1+CE) .

Following the ideas in [5, 7] we now prove that Dörlfler’s strategy yields a
contraction for the sum of energy error plus a scaled error estimator; starting
at some iterate k0.

Theorem 5.6 (A contraction property). Let us suppose that the continuous
problem (2) satisfies the Non-Degeneracy Assumption 3.1, let {(λk, uk)}k∈N0

denote the sequence of computed eigenpairs obtained through Algorithm 1, where
we consider the Dörfler’s Strategy (Assumption 5.1) for the module MARK.
Then, there exist constants γ > 0, and 0 < α < 1, depending on the data, and
k0 ∈ N, such that

dist2
a(uk+1, Ẽλ) + γη2

k+1 ≤ α2
(

dist2
a(uk, Ẽλ) + γη2

k

)
, for k ≥ k0,

where ηk := ηTk(uk) denotes the global error estimator.

Proof. We define the auxiliary sequence {wk}k∈N0 given by w0 := u0, and
wk = uk or −uk in order to satisfy P̃λwk = P̃λu0, for all k ∈ N. Notice that
dista(wk, Ẽλ) = dista(uk, Ẽλ), oscTk(wk) = oscTk(uk), and also wk and uk both
yield the same a posteriori error estimators. Therefore, we can interpret the
algorithm to have produced the sequence {wk}k∈N0 instead of {uk}k∈N0 , since
the sequence of meshes, estimators and errors would coincide.

Let u := P̃λu0. We will use the notation ek := dista(uk, Ẽλ) = dista(wk, Ẽλ) =
‖u− wk‖a, and ηk(Mk) := ηTk(uk;Mk). We combine the quasi-orthogonality
relationship (26) with Proposition 4.16 with T = Tk and T∗ = Tk+1 to write

e2
k+1 + γη2

k+1 ≤ e2
k − ‖wk+1 − wk‖2a + COh

r
Tke

2
k

+ (1 + δ)γ
{
η2
k − cη2

k(Mk)
}

+ (1 + δ−1)CEγ ‖wk+1 − wk‖2a ,

whenever hTk ≤ h1. Setting γ := 1
(1+δ−1)CE

, we have

e2
k+1 + γη2

k+1 ≤ e2
k + (1 + δ)γ

{
η2
k − cη2

k(Mk)
}

+ COh
r
Tke

2
k.

Dörfler’s strategy implies that ηk(Mk) ≥ θηk and so

e2
k+1 + γη2

k+1 ≤ e2
k + (1 + δ)γη2

k − (1 + δ)γcθ2η2
k + COh

r
Tke

2
k

≤ e2
k + (1 + δ)γη2

k − (1 + δ)γ
cθ2

2
η2
k − (1 + δ)γ

cθ2

2
η2
k + COh

r
Tke

2
k.

Now, using the Global Upper Bound (Theorem 4.14) and that γ(1 + δ) = δ
CE

we have

e2
k+1 + γη2

k+1 ≤ e2
k −

δcθ2

2CUCE
e2
k + (1 + δ)γ

(
1− cθ2

2
)
η2
k + COh

r
Tke

2
k,

if hTk ≤ min(h1,h2). If we define

α2
1(δ) :=

(
1− δcθ2

2CUCE

)
, α2

2(δ) :=
(

1− cθ2

2

)
(1 + δ),
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then
e2
k+1 + γη2

k+1 ≤ α2
1(δ)e2

k + γα2
2(δ)η2

k + COh
r
Tke

2
k.

Now, the parameter δ can be chosen such that

0 < α := max{α1(δ), α2(δ)} < 1,

and we obtain
e2
k+1 + γη2

k+1 ≤ α2(e2
k + γη2

k) + COh
r
Tke

2
k.

By Lemma 3.12, we have that hTk → 0 and thus, we can choose k0 ∈ N large
enough such that hTk0

≤ min(h1,h2) and COh
r
Tk ≤

(1−α2)
2 , for all k ≥ k0.

Redefining α2 := 1+α2

2 , we obtain

e2
k+1 + γη2

k+1 ≤ α2(e2
k + γη2

k), for all k ≥ k0.

5.2 Quasi-optimal cardinality of AFEM and Main Result

In this section we first define what we understand by quasi-optimality of AFEM
for the Steklov eigenvalue problem considered in this article, and prove the
second main result of this paper. For N ∈ N, let TN be the set of all possible
conforming triangulations generated by refinement from T0 with at most N
elements more than T0, i.e.,

TN := {T ∈ T : #T −#T0 ≤ N}.

For an eigenvalue λ of the continuous problem (2), the quality of the best ap-
proximation to the total error in the set TN is given by

σ(λ,D;N) := inf
T ∈TN

inf
vT ∈VT
‖vT ‖b=1

(
dist2

a(vT , Ẽλ) + osc2
T (vT )

) 1
2
,

where D := {A, c, ρ,Ω} is the set of problem data. For s > 0, we say that
(λ,D) ∈ As if

|(λ,D)|s := sup
N∈N

(Nsσ(λ,D;N)) <∞.

In other words, the eigenvalue belongs to the class As if its eigenfunctions can be
ideally approximated with adaptive meshes at a rate (DOFs)−s. The study of
classes of functions that will yield such rates is beyond the scope of this article.
Some results along this direction can be found in [4, 11, 12].

The following result, proved in [22, 5], provides a bound for the complexity
of the overlay of two triangulations T 1 and T 2 obtained as refinements of T0.

Lemma 5.7 (Overlay of triangulations). For T 1, T 2 ∈ T the overlay T := T 1⊕
T 2 ∈ T, defined as the smallest admissible triangulation which is a refinement
of T 1 and T 2, satisfies

#T ≤ #T 1 + #T 2 −#T0.

The next lemma is essential for proving the main result below (see Theo-
rem 5.10).
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Lemma 5.8 (Cardinality of Mk). Let us suppose that the continuous prob-
lem (2) satisfies the Non-Degeneracy Assumption 3.1, let {(λk, uk)}k∈N0 denote
the sequence of computed eigenpairs obtained through Algorithm 1, where we
consider the Dörfler’s Strategy (Assumption 5.1) for the module MARK with the
marking parameter θ satisfying Assumption 5.2. Then, if (λ,D) ∈ As, there
exists k1 ∈ N such that

#Mk . |(λ,D)|
1
s
s

(
dist2

a(uk, Ẽλ) + osc2
Tk(uk)

)− 1
2s
, for all k ≥ k1.

Proof. Let k ∈ N0 be fixed. Let ε = ε(k) > 0 be a tolerance to be determined
later. As (λ,D) ∈ As, there exist a triangulation Tε ∈ T and a function vε ∈ VTε
with ‖vε‖b = 1 such that

#Tε −#T0 ≤ |(λ,D)|
1
s
s ε
− 1
s , and dist2

a(vε, Ẽλ) + osc2
Tε(vε) ≤ ε

2.

Let T∗ := Tε ⊕ Tk be the overlay of Tε and Tk, and uT∗ ∈ ẼT∗λ such that
dista(uk, ẼT∗λ ) = ‖uk − uT∗‖a. Since vε ∈ VT∗ , we have that oscTε(vε) ≥
oscT∗(vε). By Cea’s Lemma (Lemma 5.3) we have that

dist2
a(uT∗ , Ẽλ) + osc2

T∗(uT∗) . dist2
a(vε, Ẽλ) + osc2

Tε(vε) ≤ ε
2,

if hT∗ ≤ h4. We can now select ε such that

dist2
a(uT∗ , Ẽλ) + osc2

T∗(uT∗) ≤ ν
(

dist2
a(uk, Ẽλ) + osc2

Tk(uk)
)
,

where ν is the constant given by Lemma 5.5. Thus, this lemma yields

η2
Tk(uk;R) ≥ θ2η2

Tk(uk),

whenever hTk ≤ h3, if R is the set of elements in Tk which are refined to obtain
T∗. Recalling thatMk is the minimal subset of Tk satisfying Dörfler’s property,
using Lemma 5.7 and taking into account the choice of ε we obtain that

#Mk ≤ #R ≤ #T∗ −#Tk ≤ #Tε −#T0

≤ |(λ,D)|
1
s
s ε
− 1
s . |(λ,D)|

1
s
s

(
dist2

a(uk, Ẽλ) + osc2
Tk(uk)

)− 1
2s
,

whenever hTk ≤ min(h3,h4). Since hTk → 0, we can choose k1 ≥ k0 large
enough such that hTk ≤ min(h3,h4), when k ≥ k1, and the assertion of this
lemma follows.

The next result bounds the complexity of a mesh Tk in terms of the number of
elements that were marked from the beginning of the iterative process, assuming
that all the meshes were obtained by the bisection algorithm of [23], and that
the initial mesh was properly labeled (condition (b) of Section 4 in [23]).

Lemma 5.9 (Complexity of REFINE). Let us assume that T0 satisfies the label-
ing condition (b) of Section 4 in Ref. [23], and consider the sequence {Tk}k∈N0

of refinements of T0 where Tk+1 := REFINE(Tk,Mk) with Mk ⊂ Tk. Then,
there exists a constant solely depending on T0 and the number of refinements n
performed by REFINE to marked elements, such that

#Tk −#T0 .
k−1∑
i=0

#Mi, for all k ∈ N.
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The next result will use Lemma 5.9 and is a consequence of the Global Lower
Bound (Theorem 4.13), the bound for the cardinality ofMk given by Lemma 5.8
and the contraction property of Theorem 5.6. This is the second main result of
the paper.

Theorem 5.10 (Quasi-optimal complexity). Let us suppose that the continuous
problem (2) satisfies the Non-Degeneracy Assumption 3.1, let {(λk, uk)}k∈N0 de-
note the sequence of computed eigenpairs obtained through Algorithm 1, where we
consider the Dörfler’s Strategy (Assumption 5.1) for the module MARK with the
marking parameter θ satisfying Assumption 5.2, and let k1 be as in Lemma 5.8.
Let T0 be labeled to satisfy the assumption of Lemma 5.9. If (λ,D) ∈ As, then(

dist2
a(uk, Ẽλ) + osc2

Tk(uk)
) 1

2 . |(λ,D)|s(#Tk −#Tk1)−s, for k > k1. (29)

Proof. Let k > k1. By Lemmas 5.8 and 5.9 we have

#Tk −#Tk1 .
k−1∑
i=k1

#Mi . |(λ,D)|
1
s
s

k−1∑
i=k1

(
dist2

a(ui, Ẽλ) + osc2
Ti(ui)

)− 1
2s

. |(λ,D)|
1
s
s

k−1∑
i=k1

(
dist2

a(ui, Ẽλ) + γη2
Ti(ui)

)− 1
2s , (30)

where for the last inequality we have used the Global Lower Bound (Theo-
rem 4.13). If we define z2

i := dist2
a(ui, Ẽλ) + γη2

Ti(ui), the contraction property

(Theorem 5.6) implies that zi+1 ≤ αzi and therefore, z−
1
s

i ≤ α
1
s z
− 1
s

i+1. Since
α < 1, we obtain that

k−1∑
i=k1

z
− 1
s

i ≤
∞∑
i=0

(α
1
s )iz−

1
s

k . z
− 1
s

k ,

and from (30) it follows that

#Tk −#Tk1 . |(λ,D)|
1
s
s

(
dist2

a(uk, Ẽλ) + γη2
Tk(uk)

)− 1
2s
.

Recalling that oscTk(uk) . ηTk(uk), this inequality can be written as

#Tk −#Tk1 . |(λ,D)|
1
s
s

(
dist2

a(uk, Ẽλ) + osc2
Tk(uk)

)− 1
2s ,

and we finally obtain the desired estimate raising to the s-power and reordering.

The right-hand side of (29) is not quite what we desire yet, since it appears
#Tk1 where it should appear #T0, but this can be fixed. In fact, let k2 ∈ N be
large enough such that #Tk ≥ 2#Tk1 −#T0, for all k ≥ k2. Then

#Tk−#T0 =
(
#Tk−#Tk1

)
+
(
#Tk1−#T0

)
≤ 2
(
#Tk−#Tk1

)
, for all k ≥ k2,

and therefore,

(#Tk −#Tk1

)−s ≤ 2s
(
#Tk −#T0

)−s
, for all k ≥ k2.

Finally, after possibly changing the constant the main result becomes

Corollary 5.11. Under the assumptions of Theorem 5.10, there holds(
dist2

a(uk, Ẽλ) + osc2
Tk(uk)

) 1
2 . |(λ,D)|s(#Tk −#T0)−s, for all k ∈ N.
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