
ON BESOV REGULARITY OF TEMPERATURES

HUGO AIMAR, IVANA GÓMEZ, AND BIBIANA IAFFEI

Abstract. We prove space-time parabolic Besov regularity in terms of inte-
grability of Besov norms in the space variable for solutions of the heat equation
on cylindrical regions based on Lipschitz domains.

1. Introduction and statement of the result

In [JK] Jerison and Kenig prove that, for harmonic functions on Lipschitz do-
main, some Besov norms are equivalent to Sobolev norms. On the other hand
(see [DD]), estimates in Besov norms for solutions of elliptic problems on Lipschitz
domains, become an important tool for the study of the rate of convergence for
nonlinear approximation methods. In [AGI] the authors prove that for a tempera-
ture u, a weighted Lp norm in space-time is bounded by a mixed norm of the type
Lp in time and Besov in space on a cylindrical domain with Lipschitz section.

In this note we investigate the simultaneous, in space and time, Besov regularity
of solutions of the heat equation in terms of the Lp integrability in time of space
Besov regularity. A temperature on a cylindrical set Ω = D × (0, T ), with D a

domain on IRd, is a solution of the heat equation ∂u
∂t

= ∆u, where ∆ is the Laplace

operator on D ⊂ IRd. The space of all temperatures u in Ω shall be denoted by
Θ(Ω). Our main result is contained in the following statement.

Theorem 1.1. Let D be a Lipschitz domain in IRd and T > 0. Then

Θ(Ω) ∩ Lp((0, T ); Bλ
p (D)) ⊆ IBλ−ε

p (Ω),

for every 0 < λ < 1, 1 < p < ∞ and every 0 < ε < λ.

Here IBα
p (Ω) is a parabolic Besov space which involves Besov regularity of or-

der α in space variables and α
2 in time. The precise definition that we shall give

by interpolation, is contained in Section 2. There are some other approaches to
anisotropic Besov spaces such us the one contained in [JM]. Even in general set-
tings like spaces of homogeneous type, which contains the parabolic case, a theory
of Besov regularity is quite developed, see for example [HS]. Let us point out that
extensions of Theorem 1.1 for the case λ ≥ 1 can be deduced from the action of
derivatives on both scales of Besov spaces involved.

We would like to observe that this result can be seen as another manifestation
of the regularizing property of diffusions. Of course without the restriction to the
set of temperatures the inclusion of Lp((0, T ); Bλ

p (D)) in IBλ−ε
p (Ω) is not true. In
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fact, for λ large enough, and ε small, the functions in IBλ−ε
p (Ω) are continuous in

Ω.

Section 2 is devoted to briefly introduce the spaces of regularity considered here.
Section 3 contains localizations of the main result in [AGI] which provide Lp(Ω)
estimates for gradients of temperatures in terms of mixed Lebesgue-Besov norms in
space-time. In Section 4 we give the proof of Theorem 1.1. The proof is, as in [JK],
an application of the trace method of interpolation, taking care of the different
types of points in the parabolic boundary of Ω.

2. Parabolic Besov spaces

In the statement of Theorem 1.1 two classes of Besov spaces are involved. By
Bα

p (D) we denote the standard elliptic Besov space Bα
p,p(D). By IBα

p (Ω) we denote
a parabolic Besov space that we shall define precisely in this section.

The full scale of Besov spaces on the free space IRd, usually denoted by Bα
p,q(IR

d),
is well known and several equivalent characterizations are possible. Given an open
subset D in IRd one can define Bα

p,q(D) as the linear space of all the restrictions

to D of the functions in Bα
p,q(IR

d). We shall only deal with the case p = q and
for simplicity, we shall write Bα

p (D) instead of Bα
p,p(D). An intrinsic approach

to Bα
p (D) is also possible. Under the assumption in Theorem 1.1, regarding the

regularity of D, both approaches to Bα
p (D) are equivalent.

From the PDE’s point of view, perhaps the most natural approach is the one pro-
vided by real interpolation between Lebesgue and Sobolev spaces. More precisely,
we have that, for 0 < α < 1 and 1 ≤ p ≤ ∞, the space Bα

p (D) coincides with the

α-interpolated between Lp(D) and W 1
p (D), usually denoted by [Lp(D), W 1

p (D)]α,p

(see [BS], [Pe]). When dealing with the parabolic spaces it will be convenient to
realize that we can also get Bα

p (D) for 0 < α < 1 as α
2 -interpolated between Lp(D)

and W 2
p (D). In other words

(2.1) Bα
p (D) = [Lp(D), W 2

p (D)]α
2 ,p

for 0 < α < 1.
Less standard are the parabolic Besov spaces. Even when a full scale of aniso-

tropic Sobolev and Besov spaces can be considered we shall only introduce those
which are strictly necessary for the proof our main result. As usual ∇ denotes the
gradient in space variables. By ∇2,1 we shall denote the vector valued differential
operator which applied to a smooth function v(x, t) defined on Ω, produces the
vector of all the second order spatial derivatives of v and its first order derivative
with respect to the time variable t. The anisotropic Sobolev space W 2,1

p (Ω) is the
closure of C∞(Ω) with respect to the norm

‖v‖W
2,1
p (Ω) = ‖v‖Lp(Ω) +

d∑

i=1

∥∥∥∥
∂v

∂xi

∥∥∥∥
Lp(Ω)

+

d∑

i=1

d∑

j=1

∥∥∥∥
∂2v

∂xi∂xj

∥∥∥∥
Lp(Ω)

+

∥∥∥∥
∂v

∂t

∥∥∥∥
Lp(Ω)

.

With this notation in mind for W 2,1
p (Ω), we may think of Lp(Ω) as W 0,0

p (Ω), because
no regularity in any variable is required. Hence we can look for the interpolated
spaces between W 0,0

p (Ω) and W 2,1
p (Ω). For 0 < α < 2 we define

B
α,

α
2

p (Ω) = [Lp(Ω), W 2,1
p (Ω)]α

2 ,p
.
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For simplicity we introduce the notation IBα
p (Ω) for the space B

α,
α
2

p (Ω). Notice

that the intersection of IBα
p (Ω) = B

α,
α
2

p (Ω) with the space of functions which do not
depend on time is, from (2.1), precisely Bα

p (D). On the other hand the intersection
of IBα

p (Ω) with the space of functions on Ω which do not depend on the space

variable, is the space B
α
2
p ((0, T )).

The only subtle point in the proof of our main result is contained in the so
called trace space method. This approach was already used by Jerison and Kenig
in the elliptic case in order to show that for harmonic functions, Besov regularity
is equivalent to Sobolev regularity. For the sake of completeness we shall briefly
describe the method for the particular case of parabolic spaces. We shall follow,
with our special function spaces, the scheme introduced in page 72 of the book
Interpolation Spaces by Bergh and Löfström (see [BL]).

Since we have to deal with the problem of proving that a temperature belongs to
a particular parabolic Besov space, we only state the sufficient conditions contained
in Corollary 3.12.3 in [BL] adapted to our particular situation.

Let A0 = W 2,1
p (Ω) and A1 = Lp(Ω). If we want to show that a function v =

v(x, t) defined on Ω belongs to the space

IBα
p (Ω) = [Lp(Ω), W 2,1

p (Ω)]α
2 ,p

= [W 2,1
p (Ω), Lp(Ω)]1−α

2 ,p
= [A0, A1]1−α

2 ,p

we only have to find an m-times differentiable function f : IR+ → W 2,1
p (Ω)+Lp(Ω)

with f(0) = v (in the sense that f(s) → v in W 2,1
p (Ω) + Lp(Ω) as s → 0), two

positive numbers η0 and η1 with η1 < m such that 1 − α
2 = η0

η0+m−η1
and the

integrals ∫ ∞

0

‖sη0f(s)‖p

W
2,1
p (Ω)

ds

s

and ∫ ∞

0

∥∥∥sη1f (m)(s)
∥∥∥

p

Lp(Ω)

ds

s

are both finite. For our particular problem we shall use only two realizations of the
above described situation. Precisely

(2.a) v ∈ IBα
p (Ω) if there exist f : IR+ → W 2,1

p (Ω) + Lp(Ω) with f(0) = v and
η0 > 0 such that

(2.2)

∫ ∞

0

‖sη0f(s)‖p

W
2,1
p (Ω)

ds

s
+

∫ ∞

0

∥∥∥s2−
α

2−α
η0f ′′(s)

∥∥∥
p

Lp(Ω)

ds

s
< ∞;

(2.b) v ∈ IBα
p (Ω) if there exist g : IR+ → W 2,1

p (Ω) + Lp(Ω) with g(0) = v and
τ0 > 0 such that

(2.3)

∫ ∞

0

‖sτ0g(s)‖p

W
2,1
p (Ω)

ds

s
+

∫ ∞

0

∥∥∥s1−
α

2−α
τ0g′(s)

∥∥∥
p

Lp(Ω)

ds

s
< ∞.

3. Gradient estimates and localizations of temperatures

In this note D is a Lipschitz domain in IRd. Let us start by stating a local version
in time of Corollary 6.2 in [AGI]. Given a bounded Lipschitz domain D in IRd and
T > 0 we shall write δ = δ(x; t) to denote the parabolic distance of (x; t) ∈ Ω =
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D × (0, T ) to the parabolic boundary of Ω, ∂parΩ = (∂D × [0, T )) ∪ (D × {0}). In

other words with ρ((x; t), (y; s)) = max
{
|x − y| ,

√
|t − s|

}

δ(x; t) = inf {ρ((x; t), (y; s)) : (y; s) ∈ ∂parΩ} .

Theorem 3.1. Let 0 < λ < 1 and 1 < p ≤ ∞ be given. There exists a constant C

depending on p, λ and D but not on T such that for every temperature u in Ω we

have the inequalities

(3.1)
∥∥δ1−λ |∇u|

∥∥
Lp(Ω)

≤ C ‖u‖Lp((0,T );Bλ
p (D)) ,

(3.2)
∥∥δ2−λ

∣∣∇2,1u
∣∣∥∥

Lp(Ω)
≤ C ‖u‖Lp((0,T );Bλ

p (D)) .

The proof is the same that the proof of Corollary 6.2 in [AGI] once a pointwise
maximal estimate of the type

(3.3) sup
0<δ<δ(x;t)

δ1−λ |∇(Kδ ∗ u)(x; t)| ≤ CM−
T [M#,λ

D u](x; t),

is proved. Here Kδ(x; t) = 1
δd+2 K

(
x
δ
; t

δ2

)
with K(x; t) = 1

4
|x|2

t2
η

(
(4πt)

1
2 e

|x|2

d4t

)

and η is a nonnegative C
∞(IR) function defined on IR supported in [0, 1] satisfying∫ 1

0
η(r)rd−1dr = d−1. On the right hand side of the above inequality M−

T is the one-
sided, one dimensional Hardy-Littlewood maximal operator on the interval [0, T ],
in other words for t ∈ [0, T ]

M−
T g(t) = sup

0<h<t

1

h

∫ t

t−h

|g(s)| ds.

On the other hand M
#,λ
D is the Calderón sharp maximal operator for the space

variable on D, precisely

M
#,λ
D f(x) = sup

0<δ<d(x)

1

|B(x, δ)|1+
λ
d

∫

B(x,δ)

|f(y) − f(x)| dy,

where d(x) = inf {|x − y| : y ∈ ∂D}. We point out that (3.3) follows from the mean
value formula for solutions of the heat equation as in the proof of Theorem 5.1 in
[AGI].

The fact that u is a temperature in Theorem 3.1 is used in the required mean
value representation and in order to obtain estimates for the partial derivative with
respect to time in terms of second order space derivatives. The next result, which
shall be used in § 4, proves that even when a smooth localization of a temperature
is not a temperature, estimates like those in (3.1) and (3.2) are still true for such
functions.

Lemma 3.2. Let u be a temperature in Ω. Let ζ ∈ C
∞(IRd+1). Then the function

v = ζu defined in Ω satisfies the inequalities

(3.4) ‖v‖Lp(Ω) ≤ C ‖u‖Lp((0,T );Bλ
p (D))

(3.5)
∥∥δ1−λ |∇v|

∥∥
Lp(Ω)

≤ C ‖u‖Lp((0,T );Bλ
p (D))

(3.6)
∥∥δ2−λ

∣∣∇2,1v
∣∣∥∥

Lp(Ω)
≤ C ‖u‖Lp((0,T );Bλ

p (D))

for some constant C which is independent of u.
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Proof. Let us first notice that (3.4) follows from the boundedness of ζ on Ω and
from the inequality ‖u‖Lp((0,T );Bλ

p (D)) ≥ ‖u‖Lp(Ω).

On the other hand, since also each derivative of ζ is bounded on Ω and from
Leibniz rule we have

∂v

∂xi

= ζ
∂u

∂xi

+
∂ζ

∂xi

u

∂2v

∂xj∂xi

= ζ
∂2u

∂xj∂xi

+ 2
∂ζ

∂xj

∂u

∂xi

+
∂2ζ

∂xj∂xi

u

∂v

∂t
= ζ

∂u

∂t
+

∂ζ

∂t
u,

in order to prove (3.5) and (3.6) it is enough to estimate the Lp(Ω) norms of the
functions δ1−λu, δ2−λu, δ2−λ |∇u| by ‖u‖Lp((0,T );Bλ

p (D)). Since D is bounded we

have that
∣∣δ1−λu

∣∣ ≤ C |u| and
∣∣δ2−λu

∣∣ ≤ C |u|. On the other hand,
∣∣δ2−λ∇u

∣∣ ≤
C
∣∣δ1−λ∇u

∣∣ and the result follows from (3.1). �

What is left of this section is devoted to produce a smooth partition of the
identity in Ω. We shall closely, and as a for as possible, follow the elliptic notation
introduced in [JK]. Precisely, the set D is a bounded and open set in IRd for which
there exists a positive number r small enough such that for each point x0 ∈ ∂D

the set D ∩ B(x0, r) is the set above the graph of a Lipschitz function ϕ of d − 1
variables x′ in some local orthogonal coordinate system (x′, y) around x0. Since ∂D

is compact there exists a constant M independent of x0 ∈ ∂D such that |∇ϕ| ≤ M .

This localization at the boundary of the elliptic domain D, induces a classi-
fication of the points in Ω = D × (0, T ) in four different types according to its
relative position with respect to the parabolic boundary of Ω. Precisely, with r > 0
given by the Lipschitz character of ∂D, we shall write OI to denote the set of points
in Ω with parabolic distance to the parabolic boundary, ∂parΩ, of Ω larger than r

2 .
In other words,

OI =
{
(x; t) ∈ Ω : ρ((x; t); ∂parΩ) > r

2

}
=
{
(x; t) ∈ Ω : d(x) > r

2 and t > r2
}

.

By OII we shall denote any of the cylindrical domains of the form B(x, r)×(r2 , T )
with x ∈ ∂D. Let

OIII =
{
(x; t) ∈ IRd+1 : x ∈ D, d(x) > r

2 and |t| < 2r2
}

.

Finally, OIV shall denote any of the cylindrical domains of the form B(x, r) ×
(−2r2, 2r2) with x ∈ ∂D.

Since ∂D is compact, the family of open sets containing OI, OIII and a finite
number of sets of type OII and type OIV provides an open covering of the parabolic
closure of Ω (Ω ∪ ∂parΩ). To precise the notation let us say that the family

{OI,OIII}∪{B(xi, r)×(−2r2, 2r2) : i = 1, . . . , i0}∪{B(xi, r)×(r2, T ) : i = 1, . . . , i0}
is a finite open covering of the parabolic closure of Ω, xi ∈ ∂D. Hence we can find
a corresponding sequence ζI, ζIII, ζi

IV and ζi
II, i = 1, . . . , i0, of C∞(IRd+1) functions

such that ζI + ζII +
∑i0

i=1

(
ζi
II + ζi

IV

)
≡ 1 on the parabolic closure of Ω. More-

over, ζIII and each ζi
IV are compactly supported on OIII and B(xi, r) × (−2r2, 2r2)

respectively. The function ζI instead, vanishes on the parabolic boundary of the
cylindrical domain OI. The same is true for each ζi

II, in other words, ζi
II ≡ 0 on
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2r2

r

O1
II O2

II

OIII

OI

O
1
IV O

2
IV

Figure 1. Decomposition for d = 1

the parabolic boundary of the cylindrical domain B(xi, r) × (r2, T ). We give an
schematic representation of this decomposition for the simple case of d = 1 and
D = (0, 1) in Figure 1.

4. Proof of Theorem 1.1

Take u a temperature in Ω such that u ∈ Lp((0, T ); Bλ
p (D)). We have to check

that u belongs to IBλ−ε
p (Ω) for every 0 < ε < λ. Notice first that since the number

of functions ζI, ζIII, ζi
IV and ζi

II is finite and depends only on D, and since

u = uζI + uζIII +

i0∑

i=1

(
uζi

II + uζi
IV

)
,

= vI + vIII +

i0∑

i=1

(
vi
II + vi

IV

)

it will be enough to prove that each one of the terms in the sum on the right hand
side above belongs to IBλ−ε

p (Ω) for 0 < ε < λ.

We shall prove that each one of the four different types vI, vIII, vi
II and vi

IV

of localizations of u belong to IBλ−ε
p (Ω). For each such a type of localization we

aim to prove the finiteness of the IBλ−ε
p (Ω) norm from the fact that u ∈ Θ(Ω) ∩

Lp((0, T ); Bλ
p (D)). For ζ of type I, since v = ζu vanishes on a neighborhood of the

parabolic boundary of Ω and u ∈ Θ(Ω), we have that v belongs to any Besov space
since it certainly belongs to W 2,1

p (Ω). For each one of the other three types (II, III
and IV) of localization functions, we shall choose an adequate function f (or g),
and adequate number η0 (or τ0) in (2.a) (or (2.b)) with α = λ− ε in order to prove

the finiteness of IBλ−ε
p (Ω).

Estimates for v = vi
II. In this case v = vi

II = uζi
II. Assume that Oi

II =
B(pi, r) × (r2, T ), with pi ∈ ∂D. Since the Laplace operator is invariant under

translations and under orthogonal transformations of IRd, there is no loss of gener-
ality by assuming that pi = 0 and that the coordinate system x = (x′, y); x′ ∈ IRd−1,
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y ∈ IR is the one for which locally, inside B(0, r), the boundary of D coincides with
the graph of the Lipschitz function ϕ.

With the above convention we have that the function v is given in this coordi-
nate system by v(x′, y; t) = ζ(x′, y; t)u(x′, y; t) where ζ is of type II. Let θ(s) be
a nonnegative C

∞ function on IR supported in (− r
4 , r

4 ) and equals to one on the

interval [− r
8 , r

8 ]. In order to show that this function v belongs to IBλ−ε
p (Ω) we shall

use (2.a) with η0 = 2 − λ + ε (0 < ε < λ), α = λ − ε and f(s) is the function on Ω
which takes the value v(x′, y + s; t)θ(s) at the point (x; t) = (x′, y; t) ∈ Ω. In other
words f(s)(x; t) = v(x′, y + s; t)θ(s). Notice that the required condition f(0) = v

clearly holds from the choice of f(s) which actually is the natural extension of the
f used in [JK] for the elliptic case. In the proof of (2.2) we shall also be proving
that f takes values in the space W 2,1

p (Ω) + Lp(Ω).
Let us start by proving the finiteness of the first term on the left hand side of

(2.2). For fixed s > 0 and T > t > 0 we shall also use the expression f(s, t) to
denote the function defined on D which takes the value f(s)(x; t) at each point
x ∈ D. Hence we shall start estimating for t and s fixed the Lp(D) norms of the
functions f(s, t), ∇f(s, t) and ∇2,1f(s, t).

Since

‖f(s, t)‖p

Lp(D) =

∫∫

D

|v(x′, y + s; t)|p θp(s) dx′dy

= θp(s)

∫∫

D

|v(x′, y + s; t)|p dx′dy

= θp(s)

∫

x′∈Bd−1(0,r)

(∫ +∞

ϕ(x′)

|v(x′, y + s; t)|p dy

)
dx′

= θp(s)

∫

x′∈Bd−1(0,r)

(∫ +∞

ϕ(x′)+s

|v(x′, y; t)|p dy

)
dx′

≤ θp(s)

∫

x′∈Bd−1(0,r)

(∫ +∞

ϕ(x′)

|v(x′, y; t)|p dy

)
dx′

= θp(s)

∫∫

D

|v|p dx,

by integration in the variable t, we get from (3.4) in Lemma 3.2 that

(4.1) ‖f(s)‖p

Lp(Ω) ≤ Cθp(s) ‖u‖p

Lp((0,T );Bλ
p (D)) .

For ∇f(s, t) if xi, i = 1, . . . , d − 1, is any one of the d − 1 components of x′ and
xd = y, we have that

∥∥∥∥
∂f

∂xi

(s, t)

∥∥∥∥
p

Lp(D)

=

∫∫

D

∣∣∣∣
∂v

∂xi

(x′, y + s; t)θ(s)

∣∣∣∣
p

dx′dy

=
θp(s)

s(1−λ)p

∫∫

D

∣∣∣∣s
1−λ ∂v

∂xi

(x′, y + s; t)

∣∣∣∣
p

dx′dy.

Now, we claim that cs ≤ d(x′, y + s) for x = (x′, y) ∈ D, where d(z) is the distance
of the point z ∈ D to the boundary ∂D of D, and c is some geometric constant. On
the other hand since the truncation function ζ is of type II, then for those values of
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t for which ζ and v do not vanish we have that d(x′, y + s) = δ(x′, y + s; t). Hence
∥∥∥∥

∂f

∂xi

(s, t)

∥∥∥∥
p

Lp(D)

≤ c
θp(s)

s(1−λ)p

∫∫

D

∣∣∣∣δ
1−λ(x′, y + s; t)

∂v

∂xi

(x′, y + s; t)

∣∣∣∣
p

dx′dy

≤ c
θp(s)

s(1−λ)p

∫∫

D

∣∣∣∣δ
1−λ ∂v

∂xi

∣∣∣∣
p

dx

for i = 1, . . . , d, s > 0 and 0 < t < T . In the last inequality an argument similar to
the one used in the proof of (4.1) can be used. After integration in the variable t

and application of (3.5) we get

(4.2) ‖|∇f(s)|‖p

Lp(Ω) ≤ C
θp(s)

s(1−λ)p
‖u‖p

Lp((0,T );Bλ
p (D)) .

For ∇2,1f(s, t), the second order space derivatives can be bounded with the same
geometric argument in the following way
∥∥∥∥

∂2f

∂xj∂xi

(s, t)

∥∥∥∥
p

Lp(D)

=

∫∫

D

∣∣∣∣
∂2v

∂xj∂xi

(x′, y + s; t)θ(s)

∣∣∣∣
p

dx′dy

=
θp(s)

s(2−λ)p

∫∫

D

∣∣∣∣s
2−λ ∂2v

∂xj∂xi

(x′, y + s; t)

∣∣∣∣
p

dx′dy

≤ c
θp(s)

s(2−λ)p

∫∫

D

∣∣∣∣δ
2−λ(x′, y + s; t)

∂2v

∂xj∂xi

(x′, y + s; t)

∣∣∣∣
p

dx′dy

≤ c
θp(s)

s(2−λ)p

∫∫

D

∣∣∣∣δ
2−λ ∂2v

∂xj∂xi

∣∣∣∣
p

dx.

For ∂f
∂t

a similar argument gives

∥∥∥∥
∂f

∂t
(s, t)

∥∥∥∥
p

Lp(D)

≤ c
θp(s)

s(2−λ)p

∫∫

D

∣∣∣∣δ
2−λ ∂v

∂t

∣∣∣∣
p

dx.

The last two inequalities together with (3.6) give, after integration with respect to
time

(4.3)
∥∥∣∣∇2,1f(s)

∣∣∥∥p

Lp(Ω)
≤ C

θp(s)

s(2−λ)p
‖u‖p

Lp((0,T );Bλ
p (D)) .

Hence from (4.1), (4.2) and (4.3) we get that
∫ ∞

0

‖sη0f(s)‖p

W
2,1
p (Ω)

ds

s

≤ C ‖u‖p

Lp((0,T );Bλ
p (D)

∫ ∞

0

s(2−λ+ε)p

(
1 +

1

s(1−λ)p
+

1

s(2−λ)p

)
θp(s)

ds

s

≤ C ‖u‖p

Lp((0,T );Bλ
p (D)

∫ r
4

0

s(2−λ+ε)p

(
1 +

1

s(1−λ)p
+

1

s(2−λ)p

)
ds

s

= C ‖u‖p

Lp((0,T );Bλ
p (D)

∫ r
4

0

(
s(2−λ+ε)p + s(1+ε)p + sεp

) ds

s
.

Since ε > 0 we get that the first term in (2.2) is finite.
In order to get an upper estimate for the second term in (2.2), let us start by

noticing that since f ′(s) is the function ∂v
∂y

(x′, y + s; t)θ(s) + v(x′, y + s; t)θ′(s) we

have that f ′′(s) is the function
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∂2v

∂y2
(x′, y + s; t)θ(s) + 2

∂v

∂y
(x′, y + s; t)θ′(s) + v(x′, y + s; t)θ′′(s).

On the other hand, with the same arguments used to prove (4.1), (4.2) and (4.3)
we obtain

(4.4) ‖v(x′, y + s; t)θ′′(s)‖p

Lp(Ω) ≤ C |θ′′(s)|p ‖u‖p

Lp((0,T );Bλ
p (D))

(4.5)

∥∥∥∥
∂v

∂y
(x′, y + s; t)θ′(s)

∥∥∥∥
p

Lp(Ω)

≤ C
|θ′(s)|p

s(1−λ)p
‖u‖p

Lp((0,T );Bλ
p (D))

(4.6)

∥∥∥∥
∂2v

∂y2
(x′, y + s; t)θ(s)

∥∥∥∥
p

Lp(Ω)

≤ C
θ(s)p

s(2−λ)p
‖u‖p

Lp((0,T );Bλ
p (D))

Hence, since θ, θ′ and θ′′ are bounded and supported in [− r
4 , r

4 ] the second term
on the left of (2.2) is bounded by

C

(∫ r
4

0

s(2− λ−ε
2−λ+ε

η0)p

(
1

s(2−λ)p
+

1

s(1−λ)p
+ 1

)
ds

s

)
‖u‖p

Lp((0,T );Bλ
p (D))

≤ C̃

(∫ r
4

0

sη0p ds

s s(2−λ)p

)
‖u‖p

Lp((0,T );Bλ
p (D))

= C̃

(∫ r
4

0

ds

s1−εp

)
‖u‖p

Lp((0,T );Bλ
p (D)) .

Estimates for v = vIII. In this case we shall use (2.b) in order to show that

v ∈ IBλ
p (Ω) which is better than the estimate obtained when v is of type II. We

shall check (2.3) with g(s)(x; t) = v(x; t + s)ω(s) for s > 0 and ω is a nonnegative

C∞ function supported in (−r2, r2) with ω ≡ 1 on [− r2

2 , r2

2 ], α = λ and τ0 = 1− λ
2 .

Let us start by estimating the first term on the left of (2.3) for the above de-
scribed choice of g, α and τ0,

‖g(s)‖p

Lp(Ω) =

∫∫

Ω

|v(x; t + s)ω(s)|p dxdt(4.7)

= ωp(s)

∫∫

Ω

|v(x; t + s)|p dxdt

= ωp(s)

∫ s+2r2

s

(∫

D

|v(x; t)|p dx

)
dt

≤ ωp(s)

∫∫

Ω

|v(x; t)|p dxdt.

In the last inequality we have used that r can be chosen so small that 3r2 < T .
Hence the contribution of the Lp(Ω) norm of g(s) to the Sobolev norm W 2,1

p (Ω) of
g(s) in the first term of (2.3) is bounded by

(∫ ∞

0

sp(1−
λ
2 )ωp(s)

ds

s

)
‖v‖p

Lp(Ω) ≤ C

(∫ r2

0

sp(1−
λ
2 ) ds

s

)
‖u‖p

Lp((0,T );Bλ
p (D))
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which is finite.
Let us now get the bound of the term corresponding to the space gradient of

g(s) in the first term of (2.3). For i = 1, . . . , d we have that
∫ ∞

0

sτ0p−1

∥∥∥∥
∂g

∂xi

(s)

∥∥∥∥
p

Lp(Ω)

ds(4.8)

≤ C

∫ r2

0

s(1−
λ
2 )p−1




∫∫

{x∈D:d(x)>
r
2 ;0<t<2r2}

∣∣∣∣
∂v

∂xi

(x; t + s)

∣∣∣∣
p

dxdt


 ds

≤ C

∫ r2

0

s(1−
λ
2 )p−1




∫∫

{x∈D:d(x)>
r
2 ;s<t<2r2+s}

∣∣∣∣
∂v

∂xi

(x; t)

∣∣∣∣
p

dxdt


 ds

≤ C

∫

{x∈D:d(x)>
r
2}

∫ 3r2

0

∣∣∣∣
∂v

∂xi

(x; t)

∣∣∣∣
p (∫ t

0

s(1−
λ
2 )p−1ds

)
dt dx

≤ C

∫

{x∈D:d(x)>
r
2}

∫ 3r2

0

∣∣∣∣t
(1−

λ
2 ) ∂v

∂xi

(x; t)

∣∣∣∣
p

dt dx

≤ C

∫∫

Ω

∣∣∣∣δ
2−λ(x; t)

∂v

∂xi

(x; t)

∣∣∣∣
p

dxdt

≤ C

∫∫

Ω

∣∣∣∣δ
1−λ(x; t)

∂v

∂xi

(x; t)

∣∣∣∣
p

dxdt,

where have used that for (x; t) in the support of v, δ(x; t) is of the order
√

t and
that r can be assumed to be less than 1. Hence from (3.5) we get

∫ ∞

0

sτ0p−1

∥∥∥∥
∂g

∂xi

(s)

∥∥∥∥
p

Lp(Ω)

ds ≤ C ‖u‖p

Lp((0,T );Bλ
p (D)) .

In order to prove that the first term in (2.3) is finite we still have to deal with
the second order space derivatives. Notice that to estimate

∫ ∞

0

sτ0p−1

∥∥∥∥
∂2g

∂xj∂xi

(s)

∥∥∥∥
p

Lp(Ω)

ds

in terms of
∫∫

Ω

∣∣∣δ2−λ(x; t) ∂2v
∂xj∂xi

(x; t)
∣∣∣
p

dxdt we can proceed exactly as in (4.8)

except for the last inequality there. The same is true for the time derivative. So
that the desired result follows from (3.6).

Let us now accomplish the analysis of the second term in (2.3) for the current
situation: g(s)(x; t) = v(x; t + s)ω(s), s > 0, α = λ and τ0 = 1 − λ

2 . Since for the
derivative of g with respect to s we have

g′(s)(x; t) =
∂v

∂t
(x; t + s)ω(s) + v(x; t + s)ω′(s)

and (1 − α
2−α

τ0)p− 1 = (1 − λ
2 )p− 1, we can proceed exactly as in (4.7) and (4.8).

Estimates for v = vi
IV. As in the case of vi

II, from the invariance of the
Laplacian we can assume that 0 = pi ∈ ∂D and that the coordinate system x =
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(x′, y) with x′ ∈ IRd−1 and y ∈ IR is such that in the space ball B(0, r), ∂D is the
graph of the Lipschitz function ϕ.

In this case we apply (2.b) with g(s)(x; t) = v(x′, y + s; t + s2)θ(s), θ as in the
case v = vi

II, α = λ − ε and τ0 = 2 − λ + ε for 0 < ε < λ.
We have to prove that for this choice of g, α and τ0 the left hand side of (2.3) is

finite. Let us start by noticing that, since 1 − α
2−α

τ0 = 1 − λ + ε and g′(s)(x; t) =
∂v
∂y

(x′, y +s; t+s2)θ(s)+2s∂v
∂t

(x′, y +s; t+s2)θ(s)+v(x′, y+s; t+s2)θ′(s), we have

to show that each one of the following seven integrals is finite,

A =

∫ r
4

0

s(2−λ+ε)p−1

∫ 2r2

0

∫

Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣v(x′, y + s; t + s2)
∣∣p dydx′dtds;

B =

∫ r
4

0

s(2−λ+ε)p−1

∫ 2r2

0

∫

Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣∣∣
∂v

∂xi

(x′, y + s; t + s2)

∣∣∣∣
p

dydx′dtds,

for i = 1, . . . , d and xd = y;

C =

∫ r
4

0

s(2−λ+ε)p−1

∫ 2r2

0

∫

Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣∣∣
∂2v

∂xj∂xi

(x′, y + s; t + s2)

∣∣∣∣
p

dydx′dtds;

D =

∫ r
4

0

s(2−λ+ε)p−1

∫ 2r2

0

∫

Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣∣∣
∂v

∂t
(x′, y + s; t + s2)

∣∣∣∣
p

dydx′dtds;

E =

∫ r
4

0

s(1−λ+ε)p−1

∫ 2r2

0

∫

Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣∣∣
∂v

∂y
(x′, y + s; t + s2)

∣∣∣∣
p

dydx′dtds;

F =

∫ r
4

0

sps(1−λ+ε)p−1

∫ 2r2

0

∫

Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣∣∣
∂v

∂t
(x′, y + s; t + s2)

∣∣∣∣
p

dydx′dtds;

G =

∫ r
4

0

s(1−λ+ε)p−1

∫ 2r2

0

∫

Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣v(x′, y + s; t + s2)
∣∣p dydx′dtds.

Since A ≤ G, D = F and B and E are similar, we only have to show that G, E,
C and D are finite.

Bound for G. Changing variables in space variable y and in time variable t we
have that

G =

∫ r
4

0

s(1−λ+ε)p−1

∫ 2r2+s2

s2

∫

Bd−1(0,r)

∫ +∞

ϕ(x′)+s

|v(x′, y; t)|p dydx′dtds

≤
∫ r

4

0

s(1−λ+ε)p−1

∫ 3r2

0

∫

Bd−1(0,r)

∫ +∞

ϕ(x′)

|v(x′, y; t)|p dydx′dtds

≤
∫ r

4

0

s(1−λ+ε)p−1ds

∫∫

Ω

|v|p dxdt

≤ C ‖u‖p

Lp(Ω)

Bound for E. Since

E =

∫ r
4

0

sεp−1

∫ 2r2

0

∫

Bd−1(0,r)

∫ ∞

ϕ(x′)

s(1−λ)p

∣∣∣∣
∂v

∂y
(x′, y + s; t + s2)

∣∣∣∣
p

dydx′dtds,
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and in the domain of integration the inequality δ(x′, y + s; t + s2) ≥ cs holds for
some constant c, after changing variables, we obtain from (3.5) that

E ≤ c

(∫ r
4

0

sεp−1ds

)(∫∫

Ω

∣∣∣∣δ
1−λ ∂v

∂y

∣∣∣∣
p

dxdt

)
≤ C ‖u‖p

Lp((0,T );Bλ
p (D)) .

Bound for C and D. Since C and D both can be written in the form

∫ r
4

0

sεp−1

∫ 2r2

0

∫

Bd−1(0,r)

∫ ∞

ϕ(x′)

s(2−λ)p
∣∣V (x′, y + s; t + s2)

∣∣p dydx′dtds,

with V = ∂2v
∂xj∂xi

for C and V = ∂v
∂t

for D, and δ(x′, y + s; t + s2) ≥ cs, we can now

use (3.6) to obtain that they are bounded by a constant times ‖u‖p

Lp((0,T );Bλ
p (D)).
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