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Abstract

In this article we prove that it is possible to construct, using newest-
vertex bisection, meshes that equidistribute the error in H

1-norm, when-
ever the function to approximate can be decomposed as a sum of a reg-
ular part plus a singular part with singularities around a finite number
of points. This decomposition is usual in regularity results of Partial Dif-
ferential Equations (PDE). As a consequence, the meshes turn out to be
quasi-optimal, and convergence rates for adaptive finite element meth-
ods (AFEM) using Lagrange finite elements of any polynomial degree are
obtained.

1 Introduction

Adaptive procedures for the numerical solution of partial differential equations
(PDE) started in the late 70’s and are now standard tools in science and en-
gineering. The ultimate purpose of adaptivity is to reduce the computational
cost through the automatic construction of a sequence of meshes that would
eventually equidistribute the approximation errors, leading to (quasi-)optimal
meshes. Adaptive methods for stationary problems usually consist of the loop

SOLVE → ESTIMATE → MARK → REFINE. (1)

Experience strongly suggests that, starting from a coarse mesh, such an
iteration converges within any prescribed error tolerance in a finite number of
steps, and it does so in an optimal manner, provided the a posteriori error
estimators are reliable and efficient. What is observed in fact, is that for a
large class of problems and data, the solutions uT and meshes T obtained with
adaptive methods of the form (1) satisfy

‖u− uT ‖H1 ≤ C(#T )−p/d, (2)

1

http://arXiv.org/abs/0803.3824v1


where u denotes the exact solution, p the polynomial degree of the finite el-
ement space over the mesh T , and d the dimension of the underlying space.
This is the same error bound that is obtained with uniformly refined meshes
for smooth (regular) solutions u ∈ Hp+1, by an application of classical in-
terpolation estimates [Ciarlet 1978]. The decay rate dictated by (2) —which
is also observed in practice for the so-called singular solutions belonging to
Hs(Ω) for s < 2— is usually called optimal error decay. The precise goal of
this paper is to show a broader family of functions for which this so-called
optimal decay can be obtained when using adaptive methods. We will prove
that this decay holds for functions that can be decomposed as a sum of a reg-
ular part plus singular terms, as described in classical regularity results for
PDE [Grisvard 1985, Grisvard 1992, Petzoldt 2001, Dauge 1988].

The first steps towards understanding the optimality of AFEM consisted
of studying their convergence. An analysis of (1) for linear, elliptic, and sym-
metric problems in 1d is presented in [Babuska Vogelius 1984]. The first mul-
tidimensional result is given in [Dörfler 1996], where it is proved that, after
a pre-adaptation to data, (1) reduces the error below any prescribed toler-
ance. Proper convergence without conditions on the initial grid is proved
in [Morin Nochetto Siebert 2002], requiring the so-called interior node prop-
erty and an additional marking step driven by data oscillation. The latter
work was generalized in various directions. Lately, convergence of adaptive
methods with marking strategies other than Dörfler’s, for a large class of lin-
ear problems with different a posteriori error estimators, and without requir-
ing the marking due to oscillation or the interior node property, was proved
in [Morin Siebert Veeser 2007]. The result only leads to asymptotic conver-
gence without an error reduction in every step, which seems to be essential to
prove optimality though (see [Stevenson 2006, Cascón et. al. 2007]).

Regarding complexity, an important result for an algorithm which is very
similar to (1), is proved in [Stevenson 2006]. The proof relies on techniques first
developed in [Binev Dahmen DeVore 2004] and new ideas. This result was later
improved in several aspects in [Cascón et. al. 2007]: the artificial assumptions of
interior node and marking due to data oscillation were removed, and the result
applies to more general elliptic equations.

When considering adaptive methods the notion of complexity differs from
the previous one which was based on a uniform element size h. It is now defined
in terms of the number of elements (or degrees of freedom) necessary to achieve
a certain tolerance.

In order to be more specific at this point we need to introduce some notation.
Let us assume that we have a function u ∈ H1(Ω), where Ω is a polygonal
domain in R2 (polyhedral in R3), and H1(Ω) denotes the Sobolev space of square
integrable functions with square integrable weak derivatives of first order.

We consider an initial triangulation T0 of the domain Ω into simplices, and we
let the admissible triangulations be those obtained from T0 with newest-vertex
bisection, either the iterative [Bänsch 1991] or the recursive [Kossaczky 1994]
version, without hanging nodes. For each admissible triangulation T we consider
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the Lagrange finite element space

VT =
{
v ∈ H1(Ω) : v|T ∈ P

p, ∀T ∈ T
}

,

where, for p ∈ N, Pp denotes the space of polynomials of degree ≤ p. The best
approximation error with complexity N , for N ∈ N, is defined as follows:

σp
N (u) = min

T ∈TN

inf
v∈VT

‖u− v‖H1(Ω),

where TN := {T admissible : (#T −#T0) ≤ N} that is, the minimum over T
is taken over all admissible triangulations obtained with at most N bisections.
We now define, for s > 0 the approximation classes

A
p
s =

{
v ∈ H1(Ω) : ∃C such that σp

N (v) ≤ CN−s, ∀N ∈ N
}

,

or, equivalently,

A
p
s =

{
v ∈ H1(Ω) : |v|Ap

s
<∞

}
with |v|Ap

s
:= sup

N∈N

σp
N (v)Ns.

The first complexity results for adaptive finite element methods (AFEM) are
presented in [Binev Dahmen DeVore 2004], for an algorithm that needs coars-
ening, which seems not to be necessary, at least for symmetric elliptic problems.
This, and the aforementioned papers on optimality of AFEM [Stevenson 2006,
Cascón et. al. 2007] study adaptive algorithms for approximating the solution u
to an elliptic partial differential equation. Essentially, the following fundamen-
tal result is proved: the adaptive algorithms generate a sequence {(Tk, uk)}k∈N

of triangulations and finite element approximations uk ∈ V1
Tk

that satisfy the
following:

If u ∈ A
1
s then ‖u− uk‖H1(Ω) ≤ C̃(#Tk)−s, ∀k ∈ N.

That is, the sequence of triangulations and approximate solutions have a com-
plexity with the same decay rate as the optimal ones. The interesting aspect
of those results is the fact that such a (quasi-)optimal approximation is ob-
tained through a standard adaptive loop for the elliptic problem, without a
priori knowledge of the exact solution, and with a number of operations propor-
tional to the cardinality of the meshes. Notice that a simple minded approach
to compute σp

N (u) with precise knowledge of u could lead to exponential work
in terms of N .

The question —already raised in [Cascón et. al. 2007]— that is still unan-
swered is what rate s is to be expected in different situations. From the results
just described it is clear that AFEM do a quasi-optimal job among all possible
adaptive meshes. What we present in this article, is quantitative information
about the convergence rate of AFEM. In order to do so, we relate the mem-
bership of a function to an approximation class Ap

s with its regularity, proving
rigorously, through the construction of specific meshes, that certain class of
functions is contained in Ap

s.
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In [Binev et. al. 2002] an almost characterization of these classes is obtained,
for the case p = 1 in terms of Besov regularity for Lipschitz polygonal do-
mains; the proof is based on an adaptive tree approximation algorithm. To
illustrate the applicability of this result we just mention —without giving too
much detail— that the Besov space B2

τ (Lτ (Ω)) is contained in A1
1/2 for all

τ > 1 [Binev et. al. 2002, Theorem 5.1].

The regularity of solutions to Poisson’s problem on Lipschitz domains, in
terms of Besov regularity is studied in [Dahlke DeVore 1997]. It is proved that
for Poisson’s equation −∆u = f in a Lipschitz polygonal domain Ω ⊂ R2, with
homogeneous Dirichlet boundary values, u ∈ B2

τ (Lτ (Ω)) if f ∈ H1(Ω).

Combining these two results we obtain that u ∈ A1
1/2 if f ∈ H1, but a

stronger result holds. Using Grisvard’s Sobolev regularity results [Grisvard 1985],
we have that only assuming f ∈ L2(Ω), u ∈ W 2

p (Ω), that is, all derivatives of
order up to two are in Lp(Ω), for all 1 ≤ p < 4/3. This, in turn implies that
for all 1 < τ < 4/3, u belongs to the Besov space B2

τ (Lτ (Ω)), and applying the
result [Binev et. al. 2002] this implies u ∈ A1

1/2 under the sole assumption of

f ∈ L2(Ω).

The spirit of the results that we present in this article is a combination
of [Binev et. al. 2002] and [Dahlke DeVore 1997]. However, our approach will
not hinge upon regularity in Besov terms but rather upon a decomposition of the
functions as a sum of a regular part plus singular terms, as stems from the classi-
cal regularity results for PDE like those stated in [Grisvard 1985, Grisvard 1992,
Kellogg 1975, Kellogg 1992, Petzoldt 2001, Dauge 1988]. We obtain results for
polygonal domains which are not necessarily Lipschitz (including slit domains)
and we generalize to any polynomial degree p ≥ 1; the proof is elementary, and
does not make use of sophisticated theory of Lq spaces for q < 1, as seems nec-
essary in the approach of [Binev et. al. 2002]. Moreover, our result is directly
applicable in some cases where the Besov regularity of the solutions to the PDE
is not available, but instead, a descomposition into a regular plus a singular
part is known to hold.

In [Grisvard 1985, Grisvard 1992] one can find some conditions on the el-
ement sizes relative to the distance to the points where the singularities are
located, in order to obtain an error of order N−1/2 when using linear elements
in 2d. The difference between our result and those, is that we present an al-
gorithm for constructing those meses using bisection, and thus show that those
meshes are attainable by an adaptive algorithm. Moreover, in view of the results
in [Stevenson 2006, Cascón et. al. 2007], a consequence of our result is that the
standard adaptive algorithms proposed there generate a sequence of meshes and

discrete solutions {Tk, uk}k satisfying ‖u− uk‖H1(Ω) ≤ C (#Tk)
−p/d

. A quanti-
tative answer regarding convergence rates of adaptive finite element methods is
thus obtained, for Lagrange finite elements of any polynomial degree p ≥ 1.

The rest of the article is organized as follows. In section 2 we state the main
result and present some applications to solutions of elliptic PDE in section 3. In
section 4 we propose an algorithm for constructing the desired mesh and prove
some of its properties. We conclude the proof of the main result by bounding
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the error in section 5.

2 Main Result

From now on, for any admissible triangulation T of the domain Ω, we let VT

denote the finite element space of continuous piecewise polynomials of degree
≤ p, where p is a fixed positive integer. The following is the main result of this
article, which states that a large family of functions, as those obtained when
solving elliptic and other PDE, belong to A

p
p/2.

Theorem 2.1. Let Ω ⊂ Rd be a polygonal (d = 2) or polyhedral (d = 3) domain,
not necessarily Lipschitz, let T0 be an initial triangulation of Ω and suppose that

u =

N∑

i=0

ui (3)

where:

• u0 ∈ H1(Ω), with u0|T ∈ Hp+1(T ), for all T ∈ T0;

• for i = 1, 2, . . . , N , ui can be expressed in polar coordinates around xi as

ui = ci

(
ln(ri)

)ki
rγi

i gi(
−→
θi )χi,

where:

1. ci are constants and ki are nonnegative integers.

2. {xi}Ni=1 =: N is a set of points in Ω, that are also vertices of T0;

3. ri denotes the distance to xi, and:

–
−→
θi = θi ∈ [0, 2π) is the angle coordinate of x with respect to xi

and a half line starting at xi, when d = 2;

–
−→
θi = (θi, φi) ∈ [0, 2π)× [0, π], where φi is the angle coordinate of
x with respect to xi and a half line R starting at xi, and letting
P denote the plane orthogonal to R that contains xi, θi is the
angle coordinate of the projection of x on the plane a half line S
starting at xi contained into P , when d = 3.

4. γi are positive constants;

5. the functions gi satisfy the following assumptions depending on the
dimension d:

– gi ∈W 1
∞(0, 2π), satisfies the periodicity condition gi(0) = gi(2π)

and is piecewise W p+1
∞ in the following sense: there exists a par-

tition Pi of [0, 2π] into segments such that gi|S ∈ W p+1
∞ (S) for

all S ∈ Pi, when d = 2;
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– gi ∈ W 1
∞((0, 2π) × (0, π)), satisfies the periodicity conditions

gi(0, φi) = gi(2π, φi), 0 < φi < π, and gi(0, 0) = gi(θi, 0),
gi(0, 2π) = gi(θi, 2π), 0 < θi < 2π, and is piecewise W p+1

∞ in
the following sense: there exists a partition Pi of (0, 2π)× (0, π)
into triangles such that gi|S ∈ W p+1

∞ (S) for all S ∈ Pi, when
d = 3;

6. χi are C∞(Ω) cutoff functions;

7. the jumps of ∇ui (if any) are aligned with the edges of the initial
mesh T0.

Then, for any given tolerance ε > 0, there exists a conforming triangulation T ,
obtained by newest-vertex bisection, starting from T0 such that:

inf
uT ∈VT

‖u− uT ‖1,Ω ≤ ε and #T −#T0 ≤ Cu,T0

1

εd/p
, (4)

where Cu,T0 depends on all the parameters that enter the definition of the singu-

lar part
∑N

i=1 ui, on T0, and on u through the broken seminorm |u0|Hp+1
T0

(Ω) :=
(∑

T∈T0
‖Dp+1u0‖2L2(T )

)1/2

, but not on ε. Therefore u ∈ A
p
p/d.

It is worth observing that, if u satisfies the assumptions of the theorem, then
we can only assure that u ∈ H1+ǫ(Ω) for all 0 < ǫ < min1≤i≤N γi. Uniform
global refinements would only lead to u ∈ A

p
ǫ/d, but ǫ could be very small, and

this rate is very pessimistic with respect to the one that can be obtained with
adaptivity.

Remark 2.2. In order to shed some light on the assumptions of the theorem,
we notice that they imply the following:

• If we let γ = mini γi

2 , we are able to control the singular terms through the
following bound,

Crγ
i > ln(ri)

kirγi

i . (5)

and similar ones. They imply that, for each of the singular terms ui,
i = 1, 2, . . . , N , there exists a constant C, such that

|ui| ≤ Crγ
i , |∇ui| ≤ Crγ−1

i , and |Dp+1ui| ≤ Crγ−p−1
i , (6)

the last inequality holding only in the interior of the elements of T0, and
thus also in the interior of any element of any refinement of T0. The
constant C depends on ci, ki, γi, the W p+1

∞ -norm of χi, the W 1
∞-norm of

gi, and the piecewise W p+1
∞ -norm of gi, that is, on the W p+1

∞ (S)-norm of
gi, for all S ∈ Pi.

The factor 1
2 in the definition of γ is imposed to control the logarithmic

terms. If all ki = 0, i = 1, . . . , N , then γ could be chosen equal to mini γi,
and the same bounds would hold.
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• if T is any refinement of T0, and T ∈ T with T ∩ N = ∅ then ui|T ∈
Hp+1(T ), i = 0, 1, . . . , N ;

• since p ≥ 1, and d ≤ 3, the Sobolev embedding theorem and the fact
that γi > 0 i = 1, 2, . . . , N imply that each component ui, i = 0, ..., N , is
continuous in Ω, and consequently also u is continuous;

This consequences of the assumptions are the main ingredients that will be used
in the proof of our results below.

Notation 2.3. From now on, the letter C will denote a constant, not al-
ways equal, depending on the given function u of the assumption of theo-
rem 2.1, through the H1(Ω)-norm of u0, the broken seminorm |u0|Hp+1

T0
(Ω) :=

(∑
T∈T0

‖Dp+1u0‖2L2(T )

)1/2

, and the parameters and functions defining the sin-

gular terms ui, i = 1, 2, . . . , N of u as in the second item of the previous remark.
We will reserve the notation a . b to denote a ≤ c b with a constant c depending
only on shape regularity, or the geometry of the domain. And a ≃ b will indicate
that a . b and b . a.

3 Applications

In this section we state two applications to elliptic PDE in two dimensions in
order to illustrate the applicability of our result.

3.1 Poisson Equation

Let Ω be a polygonal domain in R2, not necessarily Lipschitz. And let u be the
(weak) solution to

−∆u = f, in Ω,

u = 0, on ∂Ω,
(7)

As a consequence of Theorem 3.1 in [Kellogg 1992] (see also [Dauge 1988], or
Thm. 3.1 in [Nochetto Veeser Verani 2007]) it holds that if f ∈ Hp−1+ǫ(Ω) for
some ǫ > 0, then u can be written as in the assumptions in theorem 2.1, where
N = {xi}Ni=1 is the set of vertices of Ω, and ki = 0, i = 1, 2, . . . , N .

In the case of p = 1, ǫ can be taken to be zero, i.e. f ∈ L2(Ω), the set N
contains only the vertices of Ω with inner angle ωi greater than π (ci = 0 for
the other vertices), and gi(t) = sin(πt/ωi) for all i = 1, 2, . . . , N .

In the case of p > 1, the set N contains all the vertices of Ω. In order
to avoid the pathological cases where at least one inner angle α of Ω satisfies
αp/π ∈ N, we assume that f ∈ Hp−1+ǫ(Ω) for some ǫ > 0 instead of Hp−1(Ω),
but this is not such a big restriction in practice. Moreover, this hypothesis can
be weakened and ask that f ∈ L2(Ω) and f |T ∈ Hp−1+ǫ(T ), for all T ∈ T0.

We conclude then that if f ∈ Hp−1+ǫ(Ω) (piecewise over T0) then the solu-
tion u to Poisson’s equation (7) belongs to A

p
p/2.
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3.2 Interface Problems for the Laplacian

Let Ω be a polygonal domain, not necessarily Lipschitz, that can be decomposed
into disjoint subdomains Ωi, i = 1, . . . , nd with polygonal boundaries: Ω =
∪nd

i=1Ωi. We define the interface Γ = (∪nd

i=1(∂Ωi \ ∂Ω)).
Denote with a(x) =

∑nd

i=1 aiχΩi
(x) the global weight function, which is

constant and positive on each subdomain Ωi.
We want to solve the following problem written in variational form:

Find u ∈ V :

∫

Ω

a∇u · ∇v dx =

∫

Ω

fv dx, ∀v ∈ V, (8)

where f ∈ L2(Ω), V = H1
D(Ω) =

{
v ∈ H1(Ω) : v|ΓD

= 0
}
, ΓD ⊂ ∂Ω is the

Dirichlet boundary. This problem is usually called the interface problem for the
Laplacian and corresponds to the following strong form

−∇ ·
(
a(x)∇u

)
= f, in Ωi, i = 1, 2, . . . , nd,

u = 0, on ΓD

∂u

∂n
= 0, on ΓN = ∂Ω \ ΓD,

ai

∂u|Ωi

∂ni
= −aj

∂u|Ωj

∂nj
on ∂Ωi ∩ ∂Ωj ,

where n denotes the outer unit normal to Ω, and ni that of Ωi.
Following the original ideas from [Kellogg 1992], Petzoldt proved (see Chap-

ter 2 in [Petzoldt 2001] and references therein) that the solution u to (8) satisfies
the assumptions of theorem 2.1 for p = 1, if the mesh T0 matches the bound-
aries of the subdomains Ωi and the points on ∂Ω where the boundary condition
changes are vertices of T0. The points xℓ correspond to the vertices of the inter-
face Γ, ∂Ω, and to those points on ∂Ω where the boundary condition changes.

We conclude that if f ∈ L2(Ω) then by theorem 2.1 the solution u belongs
to A1

1/2, and the optimal error decay is recovered.
It is worth mentioning that for certain singular points xℓ, the value of γℓ

can be as close to zero as desired, depending on the values of a(x) around xℓ,
providing very singular examples for the classical theory. In order to illustrate on
this, we writedown the formulas derived by Kellogg [Kellogg 1975] to construct
an exact solution of an elliptic problem with piecewise constant coefficients and
vanishing right-hand side f ; for the particular case Ω = (−1, 1)2, a = a1 in the
first and third quadrants, and a = a2 in the second and fourth quadrants. An
exact solution u to (8) for f ≡ 0 (and non-homogeneous Dirichlet boundary-
values) is given in polar coordinates by u(r, θ) = rγµ(θ), where

µ(θ) =





cos((π/2− σ)γ) · cos((θ − π/2 + ρ)γ) if 0 ≤ θ ≤ π/2

cos(ργ) · cos((θ − π + σ)γ) if π/2 ≤ θ ≤ π

cos(σγ) · cos((θ − π − ρ)γ) if π ≤ θ < 3π/2

cos((π/2− ρ)γ) · cos((θ − 3π/2− σ)γ) if 3π/2 ≤ θ ≤ 2π

8



and the numbers γ, ρ, σ satisfy the nonlinear relations





R := a1/a2 = − tan((π/2− σ)γ) · cot(ργ)

1/R = − tan(ργ) · cot(σγ)

R = − tan(σγ) · cot((π/2− ρ)γ)

0 < γ < 2

max{0, πγ − π} < 2γρ < min{πγ, π}

max{0, π − πγ} < −2γσ < min{π, 2π − πγ}.

(9)

Choosing γ = 0.1, and solving (9) for R, ρ and σ using Newton’s method we
obtain R = a1/a2

∼= 161.4476, ρ = π/4, σ ∼= −14.92256. A smaller γ would lead
to a larger ratio R, but in principle γ may be as close to 0 as desired.

This function u belongs to the Sobolev space H1+γ(Ω), and is thus barely
in H1(Ω), but—according to our results—still in A

p
p/2 for all p ≥ 1. That is,

an adaptive finite element approximation to a solution like this, using Lagrange
finite elements of degree p will lead to a sequence of meshes and discrete solutions

{Tk, uk}k satisfying ‖u − uk‖H1(Ω) ≤ C (#Tk)−p/2. On the other hand, the
Besov regularity of the solutions to (8) is not well established, and thus the
results of [Binev et. al. 2002] are not yet applicable to the interface problem
for the laplacian. Until the Besov regularity of solutions to PDE is further
developed, our result — which is far from being a near characterization of the
class of functions that can be approximated with optimal decay N− p

d — still
provides a useful tool to investigate the convergence rate of AFEM for PDE.

4 Construction

From now on we assume that u is as in the assumptions of theorem 2.1 and
we will present an algorithm to construct via newest-vertex bisection a mesh
fulfilling the properties stated in the theorem.

Before we introduce the algorithm we will present a heuristic idea with the
ideal properties that the optimal mesh should have. This will motivate the
precise definition of the algorithm, which is rather technical, but achieves with
controlled complexity the goal of equidistribution.

4.1 Heuristic Idea

Everything in this subsection will be heuristics, and is presented here—following
the arguments in [Grisvard 1985, Liao Nochetto 2002, Babuska et. al. 1996]—
in order to motivate the properties that the optimal mesh should fulfill. The
precise, rigorous proof will be given in the following sections, after the algorithm
for constructing the mesh has been presented.

In order to introduce the basic idea consider the simplest case of a function u
written in polar coordinates as u = rγ sin(γθ) on a two dimensional domain with
a reentrant corner of inner angle π/γ at the origin. Suppose that we approximate

9



u with continuous piecewise linear finite elements (p = 1) on a mesh T . The
H1 seminorm |u− IT u|1,T of the error between u and its Lagrange interpolant
IT u on each element is bounded by h‖D2u‖L2(T ) if 0 /∈ T and by ‖Du‖L2(T ) if
0 ∈ T . These quantities (squared) also satisfy the following:

h2
T ‖D

2u‖2L2(T )
∼= h2

T r
2(γ−2)
T |T | ∼= h4

T r
2(γ−2)
T , if 0 /∈ T,

‖Du‖2L2(T )
∼=

∫ hT

0

r2(γ−1) r dr ∼= h2γ
T , if 0 ∈ T,

where rT denotes the distance of T to the origin and hT := |T |1/2 ∼= diam(T ).
In order to achieve the equidistribution of the local error bounds we then require
for the mesh T that, given a small parameter h > 0, the elements satisfy

h4
T r

2(γ−2)
T

∼= h2γ , if 0 /∈ T, and hT
∼= h, if 0 ∈ T.

Suppose now that this goal is achievable. More precisely, we can classify the
elements into rings at dyadic distance to the origin, by defining

Dk =
{
T ∈ T : 2−k−1 ≤ rT < 2−k

}
,

for k ∈ N, k < K := ⌊log2(1/h)⌋, and DK =
{
T ∈ T : rT < 2−K

}
.

Then, on the one hand, the elements T ∈ Dk, have size |T | = h2
T
∼=

hγr
−(γ−2)
T

∼= hγ2k(γ−2), and thus #Dk
∼= 2−2k

hγ2k(γ−2) = h−γ2−kγ which implies
that

#T ∼=
∑

k≤K

#Dk
∼= h−γ

∑

k

2−kγ ∼= h−γ .

On the other hand, the error satisfies

|u− uh|
2
1,Ω
∼= #T h2γ ∼= h−γh2γ = hγ ∼= (#T )−1 .

And this finally implies that |u− uh|1,Ω . (#T )
−1/2

, and thus u ∈ A1
1/2.

In the case d = 3 if u has a singularity like rγ as in the previous example,

the bound |u− uh|1,Ω . (#T )
−1/3

, would be obtained if

h5
T r

2(γ−2)
T

∼= h2γ+1, if 0 /∈ T, and hT
∼= h, if 0 ∈ T.

4.2 Algorithm

In this section we will introduce the algorithm that will achieve using newest-
vertex bisection, a mesh with the precise grading stated in the previous subsec-
tion, generalized to polynomials of degree p.

From now on we will use the notation

rX = min
xi∈N

dist(xi, X)

10



defined for X compact, typically X is a triangle T or a point x, where N
denotes the finite set where the singularities are located (as in the assumptions
of theorem 2.1).

We choose and fix γ = mini γi

2 . This choice allows us to bound the singular
terms as in (6).

Let T0 be the given initial mesh and let δ > 0 be a small parameter so that
#T0 ≤ δ−d. Later δ will be chosen such that δp ≈ ε, where ε is the error to be
achieved between u and uT , a discrete approximation to u in VT , and T the
mesh generated by the algorithm (see proof of theorem 2.1 in section 5.3). Now
let K ∈ N be such that

2−
(K+1)(2γ+d−2)

2p+d ≤ δ < 2−
K(2γ+d−2)

2p+d . (10)

Denoting for any element T the elementsize by hT = |T |1/d, the constructive
algorithm reads:

T c
0,0 ← T0

j = 0
% initial (global) refinement to control the error of u0

% FIRST LOOP

do

M0,j = {T ∈ T c
0,j : hT > δ}

T0,j+1 ← refine(T c
0,j,M0,j)

T c
0,j+1 ← complete(T0,j+1)

j ← j + 1
untilM0,j−1 = ∅
J = j
T c

1 ← T
c
0,j

ℓ = 1

% Selective refinement according to distance to singularities

% SECOND LOOP

while (ℓ < d(K + 1))

Ωℓ =
⋃
{T | T ∈ T c

ℓ ∧ rT ≤ 2−
ℓ
d }

Mℓ = {T ⊂ Ωℓ : hT > δ 2
2ℓ(γ−p−1)

d(2p+d) }
Tℓ+1 ← refine(T c

ℓ ,Mℓ)
T c

ℓ+1 ← complete(Tℓ+1)
ℓ← ℓ + 1

end

The algorithm makes use of two routines that need further explanation. The
first one,

Tnew ← refine(Told,M)

receives a mesh Told, usually admissible, and a setM of marked elements from
Told. It returns a new mesh Tnew that is obtained after bisecting once the marked

11



elements according to the newest-vertex bisection rule. The new mesh is not
necessarily admissible (it may have hanging nodes), but it clearly holds that

#Tnew = #Told + #M,

i.e., #Tnew −#Told = #M.
The second routine that is used,

T c ← complete(T )

receives a mesh T that is not necessarily admissible, and returns a new mesh T c

which is made admissible by refining the least amount of necessary elements,
again by the newest-vertex bisection rule. The study of complexity of this
routine is not as easy as that of the previous one, and it is not true that there
exists a constant C such that

#T c
ℓ+1 ≤ #T c

ℓ + C
(
#Tℓ+1 −#T c

ℓ

)
.

The complexity result that holds—regarding the spreading of refinement implied
by the completion algorithm—is the following one, which is a little bit weaker,
but fundamental and sufficient for the purposes of studying optimality of AFEM:

Theorem 4.1. Let T0 = T c
0 be an initial admissible mesh of a polygonal (poly-

hedral) domain Ω in R2 ( R3), whose elements edges are properly flagged in the
sense that whenever an interior edge is a refinement edge, it is the common
refinement edge for all adjacent elements. If the sequence {T c

ℓ }ℓ≥1 is obtained
by subsequent calls to:

Tℓ+1 ← refine(T c
ℓ )

T c
ℓ+1 ← complete(Tℓ+1),

then for k ≥ 1 we have that

#T c
k −#T0 ≤ C

( k∑

ℓ=1

(#Tℓ+1 −#T c
ℓ )

)
,

where C is a constant depending only on T0.

This result was first proved in [Binev Dahmen DeVore 2004] for triangles,
and later extended to simplicial meshes of any dimension in [Stevenson 2007].

As a consequence of this we have that if now T0,j , T c
0,j Tℓ, T c

ℓ are the meshes
obtained by our algorithm it holds that

#T c
d(K+1)−#T0 ≤ C

( d(K+1)−1∑

ℓ=1

(#Tℓ+1−#T c
ℓ )+

J−1∑

j=0

(#T0,j+1−#T c
0,j)

)
. (11)

Remark 4.2. Before proceeding to the proof of our result, some remarks are
in order:

12



• The idea of the algorithm is to achieve an equidistribution of the error
following the heuristics stated in the previous section. Since the refine-
ment is stronger closer to the singularity points, our approach considers
a sequence of regions Ωℓ around them with geometrically decreasing radii
given by 2−

ℓ
d . The denominator d in the exponent is related to the fact

that we perform only one bisection to marked elements in refine, and d
are necessary to achieve a halving of hT .

• The algorithm does not take into account the different sizes of the powers
γi, it just looks at a worst case scenario taking a unified value γ = mini γi

2 .
As we will see later, the property γ > 0 is the only one used in the proof.
In the same manner, the distance to the singularity points xi is unified
by taking the minimum distance symbolized by rT . It may look that
the simplification introduced by this unification will lead to sub-optimal
meshes, and it is true that the constant Cu,T0 in (4) may be bigger than
necessary with this approach. But this is an a priori approach where we
want to show the membership of certain functions to the spaces A

p
p/d, not

caring about the size of their norm.

• If an efficient construction of the mesh is desired, the algorithm could be
improved by marking separately according to the different strengths of the
singularities. This would lead to a better constant Cu,T0 , but the overall
theoretical result will be the same. We decided to present this unified
approach for the ease of presentation.

• One important property of the newest-vertex bisection rule is that it leads
to a sequence of meshes with a uniformly bounded shape-regularity con-
stant, which depends only on that from the initial mesh T0 and the new-
vertex flagging of the initial mesh. We thus have that all the meshes
T c

ℓ obtained by the application of our algorithm are shape-regular with a
uniform constant.

4.3 Properties of the Algorithm

In this section we will bound through a series of lemmas the complexity of the
resulting mesh T c

d(K+1), and in the next section we will relate this complexity to
the error of the best approximation to u through finite element functions over
T c

d(K+1).

The following lemma is related to the termination of the first loop of the
algorithm in a finite number of steps, and to a control on the number of elements
added. The termination of the second loop is straightforward, since it is just a
for loop in disguise.

Lemma 4.3. The first loop of the algorithm terminates after J iterations, with

13



J ≤ log2

(
maxT∈T0 |T |

δd

)
+ 1 and there exists a constant C1 = 2|Ω| such that:

J−1∑

j=0

(
#T0,j+1 −#T c

0,j

)
≤ C1δ

−d. (12)

This implies that for all T ∈ T c
1 , |T | < δd.

Proof. Observe first that if one bisects an element T ∈ T0, J times with J ≥

log2

(
maxT∈T0 |T |

δd

)
+ 1, then the measure of the resulting sub-elements will be

strictly less than δd, and the marking step will not mark them anymore. This
proves the first part of the statement.

In order to prove the bound (12) we define, for i ≥ 0

Fi =

{
T | T ∈

⋃

k

T c
0,k ∧ 2iδd ≤ |T | < 2i+1δd

}
.

It is easy to see that even though Fi contains elements belonging to different
meshes, they do not overlap, and then:

|Ω| ≥
∑

T∈Fi

|T | ≥
∑

T∈Fi

δd2i = δd2i(#Fi),

which implies that #Fi ≤ |Ω|δ
−d2−i .

Now, applying these estimates, and using that

∞⋃

i=0

Fi = {T | T ∈
J⋃

k=0

T0,k ∧ |T | ≥ δd} =
J−1⋃

j=0

M0,j ,

we obtain that

J−1∑

j=0

(#T0,j+1 −#T c
0,j) =

J−1∑

j=0

#M0,j =

∞∑

i=0

#Fi ≤ 2|Ω|δ−d,

and the claim is proved.

Remark 4.4. This proof is a little complicated due to the way the algorithm
was proposed in order to take into account any previous grading of the mesh.
Observe that in the first loop we do not refine all the elements, but only those
which are bigger than the threshold δ, instead of doing just uniform global
refinements. If we did this, the proof would be simpler, but the number of
elements in T c

1 would be unnecessarily bigger.

The following lemma is just an observation of the fact that if a point z is a
vertex of a shape-regular triangulation, then the distance of the elements to z
is an upper bound to the diameter of the element, unless of course the distance
is zero. This means that the diameter of the elements can grow at most linearly
with the distance to a point.
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Lemma 4.5. Let T be a regular mesh such that z is a node, then ∀T ∈ T with
dist(z, T ) 6= 0 we have that |T | . dist(z, T )d, or hT . dist(z, T ).

This result may be familiar to some practitioners, but it is not completely ob-
vious. A stronger result was proved in [Nochetto Paolini Verdi 1991, Lemma 5.1],
but we decided to include its proof here for the sake of completeness.

Proof. Let T be an element of T and let us define ωT =
⋃
{T̄ | T̄ ∈ T ∧ T ∩ T̄ 6=

∅}. If z /∈ ωT then by shape regularity, dist(z, T ) ≥ chT . If z ∈ ωT \T , then z is
a vertex of a neighboring element T ′ and thus dist(z, T ) ≈ hT ′ ≈ hT .

The next result implies that the desired grading of the mesh was achieved
by the algorithm.

Lemma 4.6. Let T = T c
d(K+1), then for 0 ≤ ℓ ≤ d(K+1) the following property

holds:

T ∈ T and rT < 2−
ℓ
d =⇒ |T | < δd2

2ℓ(γ−p−1)
2p+d .

Proof. We first claim that for each 0 ≤ ℓ < d(K + 1), the following holds for
the intermediate triangulations Tℓ+1:

T ∈ T c
ℓ+1 and rT < 2−

ℓ
d =⇒ |T | < δd2

2ℓ(γ−p−1)
2p+d . (13)

We prove this by induction on ℓ: By lemma 4.3 it holds for ℓ = 0. Before
proceeding, observe that: if T ′ ∈ T c

ℓ and T ∈ T c
k with k > ℓ:

T ⊂ T ′ =⇒ rT ≥ rT ′ . (14)

Suppose now that (13) holds for ℓ and let us prove it for ℓ + 1. If T ∈ T c
ℓ+2

and rT < 2−
ℓ+1

d , there exist T ′ ∈ T c
ℓ+1 such that T ⊂ T ′, whence rT ′ < 2−

ℓ
d ,

and by the inductive assumption |T ′| < δd2
2ℓ(γ−p−1)

2p+d . Now, if already |T ′| <

δd2
2(ℓ+1)(γ−p−1)

2p+d then the results holds because |T | ≤ |T ′|. Otherwise, T ′ ∈Mℓ+1

and we have that

|T | ≤
1

2
|T ′| <

δd2
2ℓ(γ−p−1)

2p+d

2
< δd2

2(ℓ+1)(γ−p−1)
2p+d

because γ > 0 and d ≥ 2. Thus (13) is proved for ℓ + 1.
We now proceed to prove the claim of the lemma: Let T ∈ T such that

rT < 2−
ℓ
d , then there exist T ′ ⊃ T , T ′ ∈ T c

ℓ+1 and then by (14), rT ′ < 2−
ℓ
d , and

by (13), |T | ≤ |T ′| < δd2
2ℓ(γ−p−1)

2p+d .

The claim of the previous lemma could have been achieved by simple uniform
refinement, but this would have destroyed the complexity of the mesh. The next
lemma shows that the number of marked elements in each iteration is reasonably
bounded in a way that the overall complexity of the final mesh is under control.
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Lemma 4.7. There exists a constant C2, depending only on shape regularity,
such that for 1 ≤ ℓ < d(K + 1):

#Mℓ = #Tℓ+1 −#T c
ℓ ≤ C2 δ−d2−

ℓ(2γ+d−2)
2p+d . (15)

Proof. Recall that in the algorithm we define Ωℓ =
⋃
{T | T ∈ T c

ℓ ∧ rT ≤ 2−
ℓ
d },

and since Tℓ+1 is obtained from T c
ℓ by refinement only, we have that Ωℓ =

⋃
{T |

T ∈ Tℓ+1 : T ⊂ Ωℓ}, whence

|Ωℓ| =
∑

T∈Tℓ+1, T⊂Ωℓ

hd
T =

∑

T∈Tℓ+1\T c
ℓ

hd
T +

∑

T∈Tℓ+1∩T c
ℓ

T⊂Ωℓ

hd
T ≥

∑

T∈Tℓ+1\T c
ℓ

hd
T .

But if T ∈ Tℓ+1\T c
ℓ , then T is half of an element T ′ ∈ Mℓ, and thus by the

definition ofMℓ in the algorithm,

2 hd
T = hd

T ′ ≥ δd2
2ℓ(γ−p−1)

2p+d ,

which in turn implies that

|Ωℓ| ≥
δd2

2ℓ(γ−p−1)
2p+d

2
(#Tℓ+1 −#T c

ℓ ) =
δd 2−ℓ 2

ℓ(2γ+d−2)
2p+d

2
(#Tℓ+1 −#T c

ℓ ).

By lemma 4.5 we have that |Ωℓ| ≤ C2−ℓ and then:

#Tℓ+1 −#T c
ℓ ≤ 2 |Ωℓ| 2

ℓ δ−d2−
ℓ(2γ+d−2)

2p+d ≤ C2 δ−d2−
ℓ(2γ+d−2)

2p+d ,

and the lemma is proved.

The next lemma makes use of the complexity result (11) of the completion
procedure for the newest-vertex bisection rule, to bound the complexity of the
final mesh.

Lemma 4.8. There exists a constant C3, depending only on shape regularity,
the polynomial degree p, the dimension d, the function u through γ, and T0, such
that:

#T c
d(K+1) −#T0 ≤ C3 δ−d. (16)

Proof. Using (11), lemmas 4.3 and 4.7 we have that

#T c
d(K+1) −#T0 ≤ C

( d(K+1)−1∑

ℓ=1

(#Tℓ+1 −#T c
ℓ ) +

J−1∑

j=0

(#T0,j+1 −#T c
0,j)

)

≤ C

( d(K+1)−1∑

ℓ=1

C2δ
−d2

−ℓ(2γ+d−2)
2p+d + C1δ

−d

)

≤ Cδ−d

(
C2

∞∑

ℓ=1

2
−ℓ(2γ+d−2)

2p+d + C1

)
.

Since γ > 0 the sum
∑∞

ℓ=1 2
−ℓ(2γ+d−2)

2p+d is finite, and the claim follows taking

C3 = C

(
C2

∑∞
ℓ=1 2

−ℓ(2γ+d−2)
2p+d + C1

)
.
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5 Error

In this section we bound the best error with finite element functions in terms
of the complexity of the mesh:

Theorem 5.1. There exist two constants A1, A2, that may depend on u through

the broken seminorm |u0|Hp+1
T0

(Ω) :=
(∑

T∈T0
‖Dp+1u0‖2L2(T )

)1/2

, ci, ki, γi, the

‖χi‖W p+1
∞ (Ω), ‖gi‖W 1

∞(Ω), and the W p+1
∞ (S)-norm of gi, S ∈ Pi, i = 1, . . . , N ,

the polynomial degree p, the dimension d, shape regularity and T0, but otherwise
independent of K and δ, such that, if T = T c

d(K+1), then

inf
uT ∈VT

‖u− uT ‖1,Ω ≤ A1δ
p, (17)

inf
uT ∈VT

‖u− uT ‖1,Ω ≤ A2(#T −#T0)
− p

d . (18)

In order to prove this theorem we will consider the regular part u0 of u and
the singular part given by

∑N
i=1 ui.

Throughout this section we will use the Lagrange interpolator IT ui of ui,
which is the finite element function that coincides with ui at all the nodes, and
is well defined for each i = 0, 1, . . . , N , since by the assumptions of theorem 4.1,
all the ui functions are continuous in Ω; see remark 2.2.

5.1 Estimation of the Regular Part

Theorem 5.2. There exist two constants C4, C5, depending on the broken

seminorm |u0|Hp+1
T0

(Ω) :=
(∑

T∈T0
‖Dp+1u0‖

2
L2(T )

)1/2

, the polynomial degree p,

shape regularity and T0, but otherwise independent of K and δ, such that, if
T = T c

d(K+1), then

|u0 − IT u0|1,Ω ≤ C4δ
p,

|u0 − IT u0|1,Ω ≤ C5(#T −#T0)
− p

d .

Proof. Since u0|T ∈ Hp+1(T ) for all T ∈ T0, and T was obtained only by
refinement, u0|T ∈ Hp+1(T ) for all T ∈ T , and standard interpolation esti-
mates [Ciarlet 1978] yield

|u0 − IT u0|
2
1,Ω =

∑

T∈T

|u0 − IT u0|
2
1,T .

∑

T∈T

h2p
T ‖D

p+1u0‖
2
L2(T )

≤ δ2p |u0|
2
Hp+1

T0
(Ω) ,

where the last inequality is a consequence of lemma 4.3 and the first loop of the
algorithm.

Then, by lemma 4.8

|u0 − IT u0|1,Ω ≤ C4δ
p ≤ C5(#T −#T0)

− p
d ,

and the theorem is proved.
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5.2 Estimation of the Singular Part

Throughout this section, we will denote with u one of the singular terms ui

defining u in (3), that is, it is defined in polar coordinates around a point xi in
Ω as

u = ci

(
ln(ri)

)ki
rγi

i gi(
−→
θi )χi, (19)

for some i = 1, 2, . . . , N and ci, ri, ki, γi, gi,
−→
θi , χi as in the assumptions of

theorem 2.1.
The three bounds of (6) are the only features of u that will be used in the

proof of the following theorem.

Theorem 5.3. There exist two constants C6, C7, that depend on the parameters
defining u in (19), shape regularity and T0, but otherwise independent of K and
δ, such that, if T = T c

d(K+1), then

|u− IT u|1,Ω ≤ C6δ
d,

|u− IT u|1,Ω ≤ C7(#T −#T0)
− p

d .

Proof. Let Dℓ =
⋃
{T | T ∈ T ∧ 2−

ℓ+1
d < dist(xi, T ) ≤ 2−

ℓ
d } for 0 ≤ ℓ <

d(K + 1) and Dd(K+1) =
⋃
{T | T ∈ T ∧ dist(xi, T ) ≤ 2−(K+1)}. Then we

obtain:

|u− IT u|21,Ω =
∑

T∈T

|u− IT u|21,T

=

d(K+1)−1∑

ℓ=0

∑

T⊂Dℓ

|u− IT u|21,T + |u− IT u|21,Dd(K+1)
. (20)

The second term in (20) can be bounded as follows:

|u− IT u|21,Dd(K+1)
≤ |u|21,Dd(K+1)

+ |IT u|21,Dd(K+1)

= |u|21,Dd(K+1)
+

∑

T⊂Dd(K+1)

xi∈T

|IT u|21,T +
∑

T⊂Dd(K+1)

xi /∈T

|IT u|21,T

=: B1 + B2 + B3

From (6) and lemma 4.5, we obtain:

B1 = |u|21,Dd(K+1)
≤ |u|21,B(xi,c2−(K+1)) ≤ 2πC

∫ c2−(K+1)

0

r2(γ−1)rd−1dr

= 2πC

∫ c2−(K+1)

0

r2γ+d−3dr ≃ C2−(K+1)(2γ+d−2).

For the term B2 we use the fact that on a reference element T̂ ,
∣∣ÎT u

∣∣
1,T̂

.
∥∥ÎT u

∥∥
L∞(T̂ )

=
∥∥IT u

∥∥
L∞(T )

. By (6), if xi ∈ T , and T ⊂ Dd(K+1),
∥∥IT u

∥∥
L∞(T )

≤
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Chγ
T . A proper scaling leads to

B2 =
∑

T⊂Dd(K+1)

xi∈T

|IT u|21,T ≈
∑

T⊂Dd(K+1)

xi∈T

hd−2
T

∣∣ ̂(IT u)|T
∣∣2
1,T̂

. C
∑

T⊂Dd(K+1)

xi∈T

h2γ+d−2
T

≤ #{T ⊂ Dd(K+1) : xi ∈ T } |Dd(K+1)|
2γ+d−2

d .

Since for these T ’s, rT = 0, lemma 4.6 leads to

B2 . #{T ⊂ Dd(K+1) : xi ∈ T }(2−d(K+1))
2γ+d−2

d . 2−(K+1)(2γ+d−2),

where we have used that the number of elements which have xi as a vertex is
bounded by a constant depending only on mesh regularity.

The term B3 can be bounded using the fact that if dist(xi, T ) > 0, then, by
lemma 4.5, dist(xi, T ) ≃ |x− xi| ∀x ∈ T and thus (6) yields

|∇IT u(x)| . C dist(xi, T )γ−1 . C|x− xi|
γ−1 ∀x ∈ T,

which implies that
∫

T
|∇IT u|2 . C

∫
T
|x− xi|2(γ−1) dx, and consequently

B3 =
∑

T⊂Dd(K+1)

xi /∈T

∫

T

|∇IT u|2 . C

∫

Dd(K+1)

|x− xi|
2(γ−1)dx

. C

∫ c2−(K+1)

0

r2(γ−1)rd−1 dr ≃ C2−(K+1)(2γ+d−2).

Combining the three estimates for B1, B2 and B3 we obtain the following bound
for the second term of (20):

|u− IT u|21,Dd(K+1)
. C2−(K+1)(2γ+d−2) ≤ Cδ2p+d. (21)

Using the usual estimates for the Lagrange interpolator and the fact that u|T ∈
Hp+1(T ), ∀T ⊂ Ω\Dd(K+1) (see remark 2.2), we can bound the first term of (20)
by:

d(K+1)−1∑

ℓ=0

∑

T⊂Dℓ

|u− IT u|21,T .

d(K+1)−1∑

ℓ=0

∑

T⊂Dℓ

h2p
T

∥∥Dp+1u
∥∥2

L2(T )
. (22)

Finally, by (6), if x ∈ T , |Dp+1u(x)| ≤ C|x−xi|γ−p−1, and thus
∥∥Dp+1u

∥∥
L2(T )2

≤

C dist(xi, T )2(γ−p−1)hd
T , by lemma 4.6, hT < δ2

2ℓ(γ−p−1)
d(2p+d) if T ∈ Dℓ, and again
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by lemma 4.5, we have that

d(K+1)−1∑

ℓ=0

∑

T⊂Dℓ

|u− IT u|21,T .

d(K+1)−1∑

ℓ=0

∑

T⊂Dℓ

h2p
T

∥∥Dp+1u
∥∥2

L2(T )

. C

d(K+1)−1∑

ℓ=0

∑

T⊂Dℓ

dist(xi, T )2(γ−p−1)h2p+d
T

. C

d(K+1)−1∑

ℓ=0

∑

T⊂Dℓ

2−
2ℓ(γ−p−1)

d δ2p+d 2
2ℓ(γ−p−1)

d

≤ Cδ2p+d

d(K+1)−1∑

ℓ=0

#Dℓ = Cδ2p+d(#T )

Summing up, by (20), (21) and (22), and by lemma 4.8

|u− IT u|21,Ω . Cδ2p+d(#T ) = Cδ2p+d((#T −#T0) + #T0)

. Cδ2p+d(δ−d + #T0)

. Cδ2p . C(#T −#T0)
− 2p

d ,

where we have used that δ was chosen so that #T0 ≤ δ−d.

5.3 Proof of Main Result

Proof of Theorem 5.1. Using the estimates of theorems 5.2 and 5.3 we obtain:

inf
uT ∈VT

‖u− uT ‖1,Ω . inf
uT ∈VT

|u− uT |1,Ω . C |u− IT u|1,Ω

= C

∣∣∣∣∣
n∑

i=0

(ui − IT ui)

∣∣∣∣∣
1,Ω

≤ C
N∑

i=0

|(ui − IT ui)|1,Ω . CNδp,

and then, using lemma 4.8, we have that

inf
uT ∈VT

‖u− uT ‖1,Ω . CN(#T −#T0)
− p

d .

Proof of Theorem 2.1. This is a corollary of theorem 5.1. It is sufficient to
choose ε = A1δ

p. This implies the claim for ε small enough, which immediately
implies the result for all ε > 0.

20



Remark 5.4. Red-Green refinement. Regarding the other well-known al-
gorithm for adaptive mesh refinement in two dimensions, namely, the so called
red-green refinement, the main result presented in this article is still open. How-
ever, the algorithm stated here can still be used for the construction of the quasi-
optimal mesh, with obvious modifications due to the fact that a red subdivision
splits the elements into four sub-elements instead of two. The only remaining
issue that needs to be solved is to determine if a complexity result bounding the
spreading of refined elements, similar to theorem 4.1 holds.
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[Babuska Vogelius 1984] I. Babuška, M. Vogelius, Feedback and adaptive fi-
nite element solution of one-dimensional boundary value problems, Numer.
Math. 44 (1984), 75–102.
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