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1 Introduction

Let Q0 be a cube in Rn. Let Q be another cube in Rn, with sides parallel
to those of Q0, centered at a point of Q0 and side length l(Q) less than that
of Q0, then the intersection of both cubes contains another cube with side
length at least l(Q)

2n .
This geometric property is actually valid for the family of balls defined by

a norm in Rn. Not just for ‖x‖∞ = sup{|x1|, · · · , |xn|}, for which the balls are
the cubes. In fact, take a point x0 in the Euclidean space Rn and a positive
number R. Consider the Euclidean distance |x − y|, or any other norm in
Rn. Set B(x0, R) = {x ∈ Rn : |x − x0| < R}. Pick a point x ∈ B(x0, R)
and 0 < r < R. Then, B(x + r

2
x0−x
|x−x0| , r/2) ⊂ B(x0, R) ∩ B(x, r). In fact, for

y ∈ B(x + r
2

x0−x
|x−x0| ,

r
2 ) we have that |y − x| ≤ ∣∣y − x − r

2
x0−x
|x−x0|

∣∣ + r
2 < r. In

other words y ∈ B(x, r). Also |y−x0| ≤
∣∣y−x− r

2
x0−x
|x−x0|

∣∣+∣∣x−x0+ r
2

x0−x
|x−x0|

∣∣ <
r
2 +

∣∣ x−x0
|x−x0|

(|x− x0| − r
2

)∣∣ = |x− x0| < R, then y ∈ B(x0, R). Hence we have
that |B(x0, R) ∩ B(x, r)| ≥ anrn, where an depends only on the dimension
n, 0 < r < R. Here |E| is Lebesgue measure of the set E. On the other hand
|B(x0, R)∩B(x, r)| ≤ |B(x, r)| = wnrn. In other words, there exists constants
c1 and c2 such that the inequalities

c1r
n ≤ |B(x, r) ∩B(x0, R)| ≤ c2r

n

hold for every x ∈ B(x0, R) and every 0 < r < R.
The above property can be stated saying that {(B(x0, R), d, µ) : x0 ∈

Rn, R > 0} is a uniform family of n-normal spaces, where d is the restriction
of the Euclidean distance to B(x0, R) and µ is the restriction of Lebesgue
measure. Let us point out that s-normality of the balls of a given distance
implies that the Hausdorff dimension of open sets is s.

As a consequence of the above property of the family of Euclidean balls in
Rn, we have that it is a uniform family of spaces of homogeneous type.
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It was first observed by Calderón and Torchinsky [1] that this is not the
general case, even when the balls are convex sets in Rn.

Let us consider the two dimensional case n = 2. Let λ ≥ 1 be given and

set Aλ =
(

λ 0
0 1

)
. The generalized dilations induced on R2 by Aλ are given

by Tλ
t =

(
tλ 0
0 t

)
, t > 0. If ‖ ·‖ is a norm in R2 then the equation ‖Tλ

t x‖ = 1,

for x ∈ R2 − {0} and λ given has only one solution t(x) = tλ(x). The usual
case of parabolic spaces arise when λ = 2 and the norm is the Euclidean one.

The distance from x to 0 is given by 1
t(x) . In other words ρ(x) = 1

t(x) if
x 6= 0 and ρ(0) = 0. Notice that ρ depends on λ and on the particular norm
‖ · ‖ chosen.

Let us consider the case ‖x‖ = ‖x‖1 = |x1| + |x2|. Since Bρ(0, r) =
Tr(Bρ(0, 1)) = Tr(B‖·‖(0, 1)) we see that Bρ(0, r) is the rhombus centered
at the origin with vertices at the points:

Tr((1, 0)) = (rλ, 0) ; Tr((−1, 0)) = (−rλ, 0);

Tr((0, 1)) = (0, r) and Tr((0,−1)) = (0,−r).

For r large consider the ball Bρ(v, 1) = B‖‖1(v, 1) centered at the vertex
v = (rλ, 0) of Bρ(0, r). It is easy to see that the intersection of Bρ(0, r) and
Bρ(v, 1)

r

1

r
1−λ

Fig. 1. The situation for ρ1,λ

contains ρ balls of radii at most r1−λ. Hence with λ > 1 there is no chance
for the above observed property of the euclidean balls. Let us denote by ρ1,λ

this metric.
On the other hand, if instead of ‖x‖1 we use ‖x‖∞ = sup{|x1|, |x2|} we

recover for ρ∞,λ that property of Euclidean balls. In fact, the ρ∞,λ balls are
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now rectangles of the form [−rλ, rλ]× [r, r] and at no point of the boundary
such small angles occur. Moreover ρ1,λ and ρ∞,λ are equivalent. So that the
property we are looking for is not invariant by equivalence of quasi-distances.

r

1

Fig. 2. The situation for ρ∞,λ

The issue ] 32 of the preprint series “Trabajos de Matemática” published
in 1981 by the IAM (Buenos Aires), contains the preprint “A well-behaved
quasi-distance for spaces of homogeneous type” by Roberto Maćıas and Carlos
Segovia. There the authors show that it is always possible to find an equivalent
quasi-distance on a given space of homogeneous type such that balls are spaces
of homogeneous type.

The construction of Maćıas and Segovia is based on an iterative process
of composition of the neighborhoods of the diagonal of X ×X.

In this paper we aim to explore the relationship between quasi-distances
on X and properties of families of neighborhoods of the diagonal in X ×X.
We apply the construction of Maćıas and Segovia to show a somehow stronger
version of the uniform regularity of δ-balls for an adequate δ.

2 Quasi-distance on X and diagonal neighborhoods in
X × X

Let (X, d) be a quasi-metric space and let K be the triangular constant for
d. In other words, d is a nonnegative symmetric function on X ×X such that
d(x, y) = 0 if and only if x = y and d(x, z) ≤ K(d(x, y) + d(y, z)) for every
x, y, z ∈ X. We may think that the diagonal neighborhoods induced by d are
given as a function V : R+ → P(X ×X), where R+ is the set of positive real
numbers and P(X ×X) is the set of all subsets of X ×X. In fact, define

V (r) = {(x, y) ∈ X ×X : d(x, y) < r}.
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It is easy to prove from the basic properties of d that this family of sets
satisfies the following properties

(a) V (r1) ⊆ V (r2) if r1 ≤ r2;
(b) ∪r>0V (r) = X ×X;
(c) ∩r>0V (r) = ∆, the diagonal of X ×X;
(d) there exists a constant K(= 2K) such that V (r)◦V (r) ⊂ V (Kr) for every

r > 0. Here A ◦B is the composition {(x, z) ∈ X ×X : ∃y ∈ X such that
(x, y) ∈ B and (y, z) ∈ A} of A and B;

(e) each V (r) is symmetric, i.e. V (r) = V −1(r).

The main result of this section is the converse of the above remark.

Theorem 1. Let X be a set and let V : R+ → P(X×X) be a given family of
subsets of X ×X satisfying properties (a), (b), (c), (d) and (e) above. Then
there exists a quasi-distance d on X such that for every 0 < γ < 1 we have that
V (γr) ⊆ Vd(r) ⊆ V (r) for every r > 0, where Vd(r) = {(x, y) : d(x, y) < r}.
Proof. Given x and y two points in X, define

d(x, y) = inf{r : (x, y) ∈ V (r)}
From property (b) of the function V we see that d is well defined as a

function from X ×X to the set of nonnegative real numbers.
From (c) a couple of the form (x, x) belongs to every V (r), hence d(x, x) =

0. On the other hand, (c) also implies that if x 6= y then for some r > 0 the
pair (x, y) does not belong to V (r). Now, from (a), (x, y) does not belong to
any V (s) with s < r. Hence d(x, y) > 0. The symmetry of d follows from the
symmetry of each V (r). Let us check the triangular inequality. For x, y, z in
X and ε > 0 there exist r1 and r2 such that

r1 < d(x, y) + ε and (x, y) ∈ V (r1);

r2 < d(y, z) + ε and (y, z) ∈ V (r2);

Then (x, z) ∈ V (r2) ◦ V (r1) which from property (a) of the family V is con-
tained in V (r1 + r2) ◦ V (r1 + r2). Now, from (d) we have that V (r1 + r2) ◦
V (r1 + r2) ⊂ V (K(r1 + r2)). Hence (x, z) belongs to V (K(r1 + r2)), so that,
from the very definition of d we have that

d(x, z) ≤ K(r1 + r2) < K(d(x, y) + d(y, z)) + 2Kε.

Which proves the triangle inequality for d with K = K and d is a quasi-
distance on X.

Let us next show that the two families of neighborhoods of ∆, V and
Vd are equivalent. Take any 0 < γ < 1. Assume that (x, y) ∈ V (γr), then
d(x, y) ≤ γr < r and (x, y) ∈ Vd(r). On the other hand, if (x, y) ∈ Vd(r), then
d(x, y) < r so that, for some s < r, (x, y) ∈ V (s) ⊂ V (r).



Balls as subspaces of homogeneous type 5

We say, as usual, that two quasi-distances d and δ defined on X are equiv-
alent if the function d

δ is bounded above and below by positive constants on
X × X − ∆. Precisely d ∼ δ if there exist two constants 0 < c1 ≤ c2 < ∞
such that c1δ(x, y) ≤ d(x, y) ≤ c2δ(x, y) for every x, y ∈ X. Given V and
W two families of neighborhoods of the diagonal, defined as before, we say
that V and W are equivalent and we write V ≈ W if there exist constants
0 < γ1 ≤ γ2 < ∞ such that

V (γ1r) ⊆ W (r) ⊆ V (γ2r),

for every r > 0.
Given a quasi-distance d, we can assign to d a family Vd of neighborhoods

of ∆ satisfying (a) to (e) in the standard way, Vd(r) = {(x, y) : d(x, y) < r}.
On the other hand the construction given in the above theorem provides

a method to assign to every family V of neighborhoods of ∆, satisfying (a) to
(e), a quasi distance dV such that V ∼ VdV .

The next proposition contain basic properties of these equivalences. Let
us denote by V the class of all families satisfying (a) to (e) and by D the set
of all quasi distances in X.

Proposition 1.
(i) For every V ∈ V we have that V ≈ VdV ;
(ii) for every d ∈ D we have that d ∼ dVd

;
(iii) for V and W in V we have that V ≈ W if and only if dV ∼ dW ;
(iv) for d and δ in D we have that d ∼ δ if and only if Vd ≈ Vδ.

The above proposition shows that we can identify D/ ∼ and V/ ≈ through

D
Vd−→
←−
dV

V

ΠD
y

y ΠV

D/ ∼ H←→ V/ ≈

where H(d) = Vd for any d ∈ d. Here d denotes the ∼ class of d ∈ D and Vd

denotes the ≈ class of V ∈ V.
Several problems in generalized harmonic analysis are invariant under

changes of equivalent quasi-distances. For example the Hölder-Lipschitz as
BMO type spaces are the same for d and δ if d ∼ δ. The Muckenhoupt classes
do not change by changing equivalent quasi-metrics, etcetera. Even some ker-
nels like fractional integrals define equivalent operators. When a particular
property of the quasi-distance function becomes relevant for a specific prob-
lem in harmonic analysis, the question is whether or not such properties holds
for at least one representative of each class in D/ ∼.
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For example the well known result of R. Maćıas and C. Segovia [2] asserting
that each quasi-distance is equivalent to a power of a distance can be written
saying that the mapping

J
D ×R+ −→ D/ ∼

given by

(ρ, α) −→ J(ρ, α) = ρα

is onto, where D is the family of all distances in X. Notice that J can not be
one to one since ρα = (ρ1/2)2α and ρ1/2 is still a distance if ρ is.

We are interested in finding an as large as possible family of measurable
subsets Y of X such that (Y, dY , µY ) is a space of homogeneous type, where
dY is the restriction of d to Y and µY is the restriction of µ to the measurable
subsets of Y . Moreover, from the point of view of its applications in problems
of harmonic analysis, we would like to have large families F of sets Y such
that the spaces (Y, dY , µY ) are uniformly spaces of homogeneous type. If F is
such a family of subsets of X we briefly say that F has the u.s.h.t. property.
Of course the u.s.h.t. property depends of the distance d and of the measure
µ. But it is easy to check that if F satisfies the u.s.h.t. property with respect
to (X, d, µ) and δ ∼ d, then F satisfies the u.s.h.t. property with respect to
(X, δ, µ). We shall actually deal with a somehow improved version of u.s.h.t.

3 Regularization of neighborhoods of ∆

The smoothing procedure designed by Maćıas and Segovia in [2] is based in
a self-similarity argument which we proceed to describe. Let d be a quasi-
distance on X with constant K. For simplicity of notation, set U(r) = Vd(r).
In other words U(r) = {(x, y) : d(x, y) < r}; r > 0.

Pick a fixed positive number α less than 1
2K . We start by the construction

of a sequence U(r, n) in the following way
U(r, 0) = U(r)
U(r, 1) = U(ar) ◦ U(r) ◦ U(ar)
U(r, n) = U(anr) ◦ U(r, n− 1) ◦ U(anr).

Lemma 1. For every r > 0 and every n we have that

U(r) ⊂ U(r, n) ⊂ U(3k2r).

Proof. Since each U(s) contains the diagonal ∆ of X × X, then it is clear
that U(r) ⊂ U(r, n) for n = 0, 1, 2, . . .. So that, we only have to prove that
U(r, n) ⊂ U(3k2, r). Let (x, y) ∈ U(r, n). Then, there exists a finite sequence
x = x0, x1, x2, . . . , xn, yn, . . . , y2, y1, y0 = y of points in X such that
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(xn, yn) ∈ U(r) = U(r, 0),
(xj , xj+1) ∈ U(an−jr), and
(yj , yj+1) ∈ U(an−jr), j = 0, 1, . . . , n.

Let us now estimate d(x, y) by repeated use of the triangle inequality,

d(x, y) = d(x0, y0) ≤ K2[d(x0, xn) + d(xn, yn) + d(yn, y0)]

≤ K2
[∑n−1

i=0 d(xi, xi+1)Kn−i + d(xn, yn) +
∑n−1

i=0 d(yi, yi+1)Kn−i
]

< K2
[∑n−1

i=0 an−irKn−i + r +
∑n−1

i=0 an−irKn−i
]

= rK2
[
1 + 2

∑n−1
i=0 (aK)n−i

]

< 3K2r.

The inequality d(d, y) < 3K2r proves that (x, y) ∈ U(3K2r), and the
lemma is proved.

Given a positive r, define

V (r) =
∞⋃

n=0

U(r, n)

Lemma 2. The family V (r) is equivalent to the family U(r) and satisfies
properties (a) to (e) in Section 1.

Proof. Let us start by noticing that from the above lemma, for every r > 0
we have U(r) ⊂ V (r) ⊂ U(3k2r). If r1 ≤ r2, then U(ajr1) ⊆ U(ajr2). Hence
U(r1, n) ⊆ U(r2, n) and V (r1) ⊆ V (r2), which proves (a). Properties (b) and
(c) for V (r) follow from properties (b) and (c) for U(r) and from the above
lemma. The symmetric of V (r) follows from the symmetric of U(r). Let us
finally check that V (r) satisfies property (d). In fact from Lemma 1 we have
that

V (r) ◦ V (r) ⊂ U(3K2r) ◦ U(3K2r) ⊂ U(6K3r) ⊂ V (bK3r),

is (d) for V (r) with K = 6K3.

Let δ = dV . Then δ ∼ d. The basic scheme of the procedure is this

d → U = Vd → V → dV = δ.

Here the middle arrow is the regularization procedure of Maćıas and
Segovia and the other two are the canonical mappings.

Since the regularization procedure produce equivalent neighborhood sys-
tems we obtain a new quasi-distance δ which is equivalent to d.
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4 The main result

In this section we aim to prove the following result.

Theorem 2. Let (X, d) be a quasi-metric space. Then there exist a quasi-
distance δ on X and a positive constant γ such that

(i) δ ∼ d;
(ii) the δ-balls are open sets;
(iii) for every x ∈ X, every choice of r and R with 0 < r < R and every

x ∈ Bδ(x0, R) there exists a point ξ ∈ X such that

B(ξ, γr) ⊂ Bδ(x,R) ∩B(y, r).

We are using the notation Bδ for the δ-balls and B for the balls defined by
the original quasi-distance d on X. We may think of B as the testing balls for
Bδ, the tested set. Hence the family of d-balls can be changed to the family of
balls corresponding to any other quasi-distance equivalent to d. In particular
by the δ-balls.

Let us first notice that it is enough to prove the theorem for the case of a
distance ρ on X instead of a general quasi-distance d. In fact, given d on X
there exists ρ a distance on X and α ≥ 1 such that d ∼ ρα. Let us assume
that we know the result for ρ. In other words, there exist a quasi-distance δρ

and γρ > 0 with δρ ∼ ρ, the δρ-balls open sets and, for every x ∈ X every
0 < s < S and every y ∈ Bδρ(x, S) we have that for some ξ ∈ X, that

Bρ(ξ, γρs) ⊂ Bδρ(x, S) ∩Bρ(y, s).

Take δ = δα
ρ ∼ ρα ∼ d. Since Bδ(z, r) = Bδρ(z, r1/α) we see that δ-balls

are open sets. Notice also that Bρα(z, r) = Bρ(Z, r1/α). Take now x ∈ X, 0 <
r < R and y ∈ Bδ(x,R). Then, with s = r1/α, S = R1/α we have that
y ∈ Bδρ(x, S), hence from our assumption, we get

B(ξ, cγα
ρ r) ⊂ Bρα(ξ, γα

ρ r) = Bρ(ξ, γρs)

⊆ Bδρ(x, S)
⋂

Bρ(y, s) ⊆ Bδ(x,R)
⋂

B(y, cr).

From now on we shall assume that d is a distance on X, i.e. K = 1. One
more reduction of Theorem ()is in order. Assume that we can prove that there
exists a positive λ such that for every distance d on X there exists a quasi-
distance δ on X satisfying (i), (ii) and (iii) with R = 1. Then the theorem
follows. In fact, if d is a distance so is µd for µ > 0. Since λ does not depend
on the given distance, the scaling argument is clear. To obtain our main result
we only have to prove the following statement.

Proposition 2. There exists a positive constant λ such that, for every metric
metric space (X, d), there exists a quasi-distance δ on X, equivalent to d, such
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that the δ-balls are open sets and for every x ∈ X, 0 < r < 1 and y ∈ Bδ(x, 1)
there exists ξ ∈ X such that

B(ξ, λr) ⊂ Bδ(x, 1) ∩B(y, r).

For a metric space the result of Lemma 1 reads

U(r) ⊂ U(r, n) ⊂ U(3r),

for every r > 0 and every n ∈ N if U(r) = {(x, y) : d(x, y) < r}. For fixed
n ∈ N the family Un = {U(r, n) : r > 0} satisfies properties (a) to (e). Then

δn(x, y) = inf{r > 0 : (x, y) ∈ U(r, n)}
is a quasi-distance on X, equivalent to d. Moreover, since U(r) ⊂ U(r, n) ⊂
U(3r) for every n, the equivalence constants are independent of n. Also the
triangular constants are uniformly bounded above. In fact, if x, y, z ∈ X and
ε > 0, pick r1 and r2 such that r1 < δn(x, y) + ε and r2 < δn(y, z) + ε with
(x, y) ∈ U(r1, n) and (y, z) ∈ U(r2, n). Thus

(x, y) ∈ U(r1, n) ◦ U(r2, n) ⊆ U(r1 + r2, n) ◦ U(r1 + r2, n)

⊆ U(3(r1 + r2)) ◦ U(3(r1 + r2))

⊆ U(6(r1 + r2)),
which proves that δn(x, z) ≤ 6(δn(x, y) + δn(y, z)). Since U(r, n) ⊂ V (r) for
every r > 0 and every n ∈ N we have that δn(x, y) ≥ δ(x, y). On the other
hand, since V (r) =

⋃
n U(r, n) we have the pointwise convergence of δn(x, y)

to δ(x, y).

Lemma 3. For every x ∈ X and every r > 0 we have that

Bδn(x, r) = {y : (x, y) ∈ U(r, n)}
and that

Bδ(x, r) = {y : (x, y) ∈ V (r)} =
⋃
n

Bδn(x, r).

Proof. Applying the argument used in Section 3 for the case of a distance d, we
can take the number a to be 1

4 . Hence U(r, 0) = U(r) = {(x, y) : d(x, y) < r}
and U(r, n) = U( r

4n ) ◦ U(r, n− 1) ◦ U( r
4n ) for n ∈ N.

If y ∈ Bδn(x, r), then δn(x, y) < r, so that (x, y) ∈ U(s, n) for some s < r
and (x, y) ∈ U(r, n). Take now (x, y) ∈ U(r, n), then there exists a chain of
points in X

x0 = x, x1, x2, · · · , xn−1, xn; yn, yn−1, · · · , y2, y1, y0 = y
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such that d(xn, yn) < r; d(xn−j+1, xn−j) < r4−j ; and d(yn−j+1, yn−j) < r4−j

for j = 0, 1, · · · , n.
Since we have a finite number of strict inequalities we certainly have that

for some s < r we must also have that d(xn, yn) < s; d(xn−j+1, xn−j) <
s4−j ; and d(yn−j+1, yn−j) < s4−j ; for j = 0, 1, 2, · · · , n. This fact proves that
(x, y) ∈ U(s, n) for some s < r, then δn(x, y) ≤ s < r. Hence y ∈ Bδn

(x, r).

Notice also that since d is a distance the sets U(r) and U(r, n) are open
sets in X ×X. The same is true for each V (r). Hence their sections Bδn and
Bδ are open sets in X.

The proof of Proposition 2 is then reduced to the proof of the next result

Proposition 3. Let (X, d) be a metric space. Then, for every n ∈ N, for
every i ∈ {1, · · · , n} for every x ∈ X and for every y ∈ Bδn

(x, 1), there exists
a point ξ ∈ X such that

B(ξ, 4−i−1) ⊆ Bδn
(x, 1) ∩B(y, 4−i).

Also B(y, 4−i) ⊆ B(ξ, 4−i+1).

Proof. Since y ∈ Bδn(x, 1), then δn(x, y) < 1. From the definition of δn we
know that there exists s ∈ (0, 1) such that (x, y) ∈ U(s, n). In other words,
there exists s ∈ (0, 1) and a finite sequence in X

C : x = x0, x1, x2, · · · , xn−1, xn; yn, yn−1, · · · , y2, y1, y0 = y

such that d(xn, yn) < s, d(xn−j+1, xn−j) < s4−j and d(yn−j+1, yn−j) < s4−j

for j = 0, 1, 2, · · · , n.
Fix now i in {1, · · · , n}. The proposition is valid with ξ = yn−i if we prove

(A) B(yn−i, 4−i−1) ⊆ Bδn(x, 1);

(B) B(y, 4−i) ⊆ B(yn−i, 4−i+1);

(C) B(yn−i, 4−i−1) ⊆ B(y, 4−i).

Proof of (A): Take z ∈ B(yn−i, 4−i−1). From Lemma 3, in order to show
that z ∈ Bδn(x, 1) we only need to check that (z, x), or (x, z), is an element
of U(1, n). Let us use some points in the chain C to produce another chain
C ′ joining x to z,

C ′ : x = x0, x1, x2, · · · , xn−1, xn; yn, yn−1, · · · , yn−i, z, z, · · · , z︸ ︷︷ ︸
n− i

Let us see that C ′ is an admissible chain to show that (x, z) ∈ U(1, n),
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d(xn, yn) < s,
d(xn−j+1, xn−j) < s4−j , j = 0, · · · , n
d(yn−j+1, yn−j) < s4−j , j = 0, · · · , i
d(yn−i, z) < 4−i−1, since z∈ B(yn−i, 4−i−1)
d(z, z) = 0.
Since s < 1 we have that C ′ satisfies the required condition for (x, z) ∈

U(1, n).

Proof of (B): Take z ∈ B(y, 4−i). Then

d(z, yn−i) ≤ d(z, 0) + d(y, yn−i)

< 4−i + d(y0, yn−i)

≤ 4−i +
∑n

j=i+1 d(yn−j+1, yn−j)

< 4−i + s
∑n

j=i+1 4−j < 4−i+1.

Proof of (C):Take z ∈ B(yn−i, 4−i−1), then
d(z, y) ≤ d(z, yn−i) + d(yn−i, y)

< 4−i−1 + s
34−i < 4−i

Let us finally point out that, even when the preceding proof is essentially
the given in [2], Theorem 2 is giving more information than doubling. If for
example (X, d, µ) is a s-normal space then the family of δ-balls is a uniform
family of s-normal subspaces.
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