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Abstract. We aim to prove inequalities of the form
∣∣ δk−λ(x, t)∇k u(x, t)

∣∣ ≤
CM−

R+M#,λ,k
D u(x, t) for solutions of ∂u

∂t
= ∆u on a domain Ω = D × R+,

where δ(x, t) is the parabolic distance of (x, t) to parabolic boundary of Ω,

M−
R+ is the one–sided Hardy–Littlewood maximal operator in the time vari-

able on R+, M#,λ,k
D is a Calderón–Scott type d–dimensional elliptic maximal

operator in the space variable on the domain D in Rd, and 0 < λ < k < λ+d.
As a consequence, when D is a bounded Lipschitz domain, we obtain es-
timates for the Lp(Ω) norm of δ2n−λ(∇2,1)nu in terms of some mixed norm∫∞
0 ‖u(·, t)‖p

B
λ,p
p (D)

dt for the space Lp(R+, Bλ,p
p (D)) with ‖·‖

B
λ,p
p (D)

denotes

the Besov norm in the space variable x and where ∇2,1 = (∇2, ∂
∂t

).

Introduction

The main result of this paper, which is contained in Theorem 5.4, is a pointwise
estimate for the space time gradients of a temperature u on a cylindrical domain in
terms of an iteration of two maximal operators. The result is an extension to the
parabolic setting of the elliptic inequalities proved by S. Dahlke and R. DeVore in
[2], see also D. Jerison and C. Kenig in [7]. After an improvement of the parabolic
mean value formula and the analysis of the kernel and the operator that provides
the space derivatives of temperatures, we obtain a pointwise estimate for space
gradients weighted by powers of the distance to the parabolic boundary in terms of
an iteration of two maximal operators which are well known in harmonic analysis:
the one–sided maximal Hardy–Littlewood operator M− in the time variable and
the Calderón–Scott maximal operator M#,λ,k in the space variable.

We would like to point out that these results are a part of a larger program
which looks for a parabolic theory, similar to the elliptic one developed in [2], in
order to obtain regularity improvements for temperatures in terms of adequate
Besov type norms which could help in the analysis of the rate of convergence for
nonlinear approximation methods for parabolic equations. In particular we mention
that a time localized version of Corollary 6.2 can be used to obtain, following the
interpolation technique used in [7], parabolic Besov type estimates in space and
time variables in terms of mixed Lebesgue–Besov norms. These results shall be
published elsewhere.

2000 Mathematics Subject Classification. Primary 42B25; Secondary 35B05, 35K05.
Key words and phrases. Maximal operators, Gradient estimates, Mean value formula, Heat

equation.
The authors were supported by CONICET, UNL and ANPCyT.

1
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The paper is organized as follows. In Section 1 we prove a smooth mean value
formula for temperatures and we introduce some basic notation that shall be used
in the sequel. Section 2 is devoted to obtain a distributional representation for
the space derivatives of the kernel obtained in §1. Here we also prove some ba-
sic but essential properties of that distribution. As a corollary we obtain a for-
mula for derivatives of temperatures. In section 3 we introduce the one–sided
Hardy–Littlewood maximal operator M− and the Calderón–Scott maximal opera-
tor M#,λ,k. We prove in this section a basic lemma which shall be used in §4 in
order to get the pointwise estimate on Rd+1 contained in Theorem 4.1. In §5 we
obtain basic pointwise estimates for some parabolic gradients of temperatures on
cylindrical domains. Section 6 is devoted to obtain Lp–estimates for space–time
gradients of temperatures in terms of mixed Lebesgue–Besov norms for cylindrical
domains of the form D ×R+ with D a Lipschitz domain in Rd.

1. Smooth parabolic mean value formula

In 1966 W. Fulks proves in [6] a mean value property for caloric functions
involving integration on the level surfaces of the fundamental solution Wt(x) =

(4πt)−
d
2 e−

|x|2
4t for t > 0, for the heat equation ∂u

∂t = ∆u. In 1973, N.A. Watson
gives in [12] a parabolic mean value formula in terms of d+1–volume integrals over
the heat balls defined by E(x, t; r) =

{
(y, s) ∈ Rd+1 : s ≤ t, ν(x− y, t− s) ≤ r

}

where ν(x, t) =
(
Wt(x)

)− 1
d = (4πt)

1
2 e

|x|2
4dt . Precisely,

(1.1) u(x, t) =
1

4rd

∫∫

E(x,t;r)

u(y, s)
|x− y|2
(t− s)2

dy ds

provided that E(x, t; r) is contained in the domain of the temperature u. For a
proof of (1.1) see [5]. From (1.1), by using spherical coordinates for the space
variable, taking derivatives with respect to the radial variable, we get that

(1.2) u(x, t) = − 1
2rd

∫ 0

− r2

4π

(∫

Sd−1
u(x + Rr(s)w, t + s)dw

)
Rr(s)d

s
ds,

with Rr(s) = |y| =
√
−2sd ln r2

−4πs .
Even when smooth versions of (1.1) are considered elsewhere, see [11] for in-

stance, for the sake of completeness and as a chance to write explicitly our notation
we shall state and prove in the next lemma the formula that will be used throughout
this paper.

Lemma 1.1. Let η be a C∞(R), nonnegative function supported on [0, 1] satisfying
d

∫ 1

0
η(r)rd−1dr = 1. Then for every temperature u we have that

(1.3) u(x, t) =
∫∫

Rd+1
Kδ(x− y, t− s)u(y, s)dyds

where

K(x, t) =
1
4
|x|2
t2

η (ν(x, t))

and

Kδ(x, t) =
1

δd+2
K

(
x

δ
,

t

δ2

)
,
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provided that the closure of E(x, t; δ) is contained in the domain of the temperature
u.

Proof. Let us first notice that is enough to prove formula (1.3) for (x, t) = (0, 0).
Take δ > 0 small enough in such a way that the closure of E(0, 0; δ) is contained in
the domain of the temperature u. Multiplying both sides of (1.2) by 2dη( r

δ )rd−1

and integrating with respect to r on the interval (0, δ), we get

u(0, 0)
∫ δ

0

2dη( r
δ )rd−1dr

= −d

∫ δ

0

∫ 0

− r2

4π

(∫

Sd−1
u(Rr(s)w, s)dS(w)

)
Rr(s)d

s
ds η( r

δ )
dr

r
.(1.4)

Notice now that the choice of the support of η allows us to apply Fubini’s The-
orem to interchange orders of integration on (1.4). Then for s fixed, performing
the change of variables r 7→ τ = Rr(s) and taking into account that dRr(s)

dr =
− 1

2 (Rr(s))−12sd (−4πs)
r2

2r
(−4πs) = −2sd τ−1r−1 from which dr

r = − τ
2sddτ , we get the

desired formula

2δd u(0, 0) = −d

∫ 0

− δ2

4π

1
s

∫ δ

√−4πs

∫

Sd−1
u(Rr(s)w, s)dS(w) Rr(s)d η

(
r
δ

)dr

r
ds

=
1
2

∫ 0

− δ2

4π

1
s

∫ Rδ(s)

R√−4πs(s)

∫

Sd−1
u(τw, s)dS(w)

τd+1

s
η
(

R−1
τ (s)

δ

)
dτ ds

=
1
2

∫ 0

− δ2

4π

1
s2

∫ Rδ(s)

0

τd+1

∫

Sd−1
u(τw, s)dS(w) η

(
1
δ (−4πs)

1
2 e

−τ2

4ds

)
dτ ds

=
1
2

∫ 0

− δ2

4π

∫

B(0;Rδ(s))

u(y, s) η
(

1
δ (−4πs)

1
2 e

−|y|2
4ds

) |y|2
s2

dyds,

in the third equality we have used that R√−4πs(s) = 0. Here B(0; Rδ(s)) denotes
the d–dimensional Euclidean ball centered at the origin with radius Rδ(s). ¤

2. Spatial derivatives of the caloric mean value kernel

The aim of this section is to obtain an explicit formula for spatial derivatives of
the kernel Kδ introduced in §1. We also prove here some useful structural properties
of the family of kernels which represent those derivatives.

Let us first observe that for fixed δ > 0 and t < 0 the kernel Kδ(x, t) is a
smooth function of x, actually C∞. Let us write Nα(x, t) to denote the classical
derivative ∂αK = ∂|α|

∂x
αd
d ...∂x

α1
1

K of K for fixed t and α = (α1, . . . , αd) a multi–index

of nonnegative integers (α ∈ Nd
0). Let us observe that Nα needs not generally be

an integrable function on Rd+1. In fact, for α = 1 and d = 1 for example, with
η1(s) = sη′(s) we have that

Nα(x, t) =
1
2

x3

t3
η1(ν(x, t)) + 2

x

t2
η(ν(x, t)).

It is easy to see that if for example η is a positive constant on the interval ( 1
4 , 3

4 ),
we have that

∫∫{
(x,t):

1
4<ν(x,t)<

3
4 ,x>0

} x
t2 η(ν(x, t))dxdt = +∞. On the other hand,
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since η1(s) vanishes for s ∈ ( 1
4 , 3

4 ), we see that
∫∫

{
(x,t):

1
4<ν(x,t)<

3
4 , x>0

}
|Nα(x, t)| dxdt =

∫∫

{
(x,t):

1
4<ν(x,t)<

3
4 , x>0

}
2

x

t2
η(ν(x, t))dxdt = +∞.

Since K is an L1(Rd+1) function with compact support, the derivatives of order α
of K, with α = (α1, . . . , αd), make also sense as distributions. Let us denote by
DαK the distributional derivatives of K. Even when these derivatives are generally
not functions themselves, we shall prove some integral representation formulas. The
precise result is contained in the next theorem. The angle brackets 〈·, ·〉 are used for
the distributional duality of E = C∞(Rd+1) and E ′. For a given C∞(Rd+1) function
ϕ we write Pkϕ(x, t) to denote the Taylor polynomial at x0 = 0 (MacLaurin) of
degree k for the function defined on Rd by x 7→ ϕ(x, t) for t fixed.

Theorem 2.1. For δ > 0 and α = (α1, . . . , αd) a multi–index of nonnegative
integers and for every ϕ ∈ C∞(Rd+1) we have that

(2.1) 〈Dα(Kδ), ϕ〉 = δ−|α|
∫∫

Rd+1
(Nα)δ(x, t)

[
ϕ(x, t)− P|α|−1ϕ(x, t)

]
dxdt

where the integral on the right hand side converges absolutely.

The proof of Theorem 2.1 will be a consequence of the following basic properties
of the derivatives of K. We shall use the following notation. For m ∈ N0, h(m)
equals m

2 if m is even and m−1
2 if m is odd. For a given multi–index α ∈ Nd

0 we write
h(α) to denote the d–vector of integers given by h(α) = (h(α1), h(α2), . . . , h(αd)).

Lemma 2.2. For δ > 0, a fixed multi–index α = (α1, . . . , αd) with |α| > 0, we
have
(2.2.1) for every t real K(x, t) is a C∞ function of x ∈ Rd and

(2.2) Nα(x, t) =
d∑

i=1

3∑

j=1

∑

0≤β≤h(α−(j−1)ei)

xα+(4−2j)ei+2β

t|α|−|β|+3−j
ηij

β (ν(x, t))

where ηij
β are C∞ functions of a real variable with support contained in

supp η.
(2.2.2) For ϕ ∈C∞(Rd+1) and each s ∈R the function of y given by Nα(y, s)ϕ(y, s)

belongs to L1(Rd). Moreover the function of s
∫
Rd Nα(y, s)ϕ(y, s)dy be-

longs to L1(R) and the distribution DαK is given as the iterated integral

(2.3) 〈DαK, ϕ〉 =
∫

R

{∫

Rd

Nα(y, s)ϕ(y, s) dy

}
ds.

(2.2.3) For each t, the function Nα(x, t)xβ belongs to L1(Rd) and
∫
Rd Nα(x, t)xβdx

= 0 for every 0 ≤ |β| < |α|.
(2.2.4) Nα[ϕ− P|α|−1ϕ] ∈ L1(Rd+1) for every ϕ ∈ C (Rd+1).

Let us give the proof of Theorem 2.1 assuming that Lemma 2.2 holds.

Proof of Theorem 2.1. We shall first show that the integral on the right hand side
of (2.1) is absolutely convergent. From (2.2.4) we know that this property is true
when δ = 1. On the other hand, since for any positive δ we have that P|α|−1ϕδ =
(P|α|−1ϕ)δ, the convergence of the integral for general δ follows from (2.2.4) by
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changing variables. From (2.2.2) and (2.2.3) we have, for each ϕ ∈ C∞(Rd+1),
that

〈DαK, ϕ〉 =
∫

R

{∫

Rd

Nα(x, t)[ϕ(x, t)− P|α|−1ϕ(x, t)]dx

}
dt.

Now from (2.2.4) and from Fubini–Tonelli Theorem we have (2.1) for δ = 1. Take
now any δ > 0. By the change of variables y = x

δ and s = t
δ2 , we have that

∫∫

Rd+1
δ−|α|(Nα)δ(x, t)[ϕ(x, t)− (P|α|−1ϕ)(x, t)] dxdt

= δ−|α|
∫∫

Rd+1
Nα(y, s)[ϕ(δy, δ2s)− (P|α|−1ϕ)(δy, δ2s)] dyds

= δ−|α|−d−2

∫∫

Rd+1
Nα(y, s)

[
ϕ 1

δ
(y, s)−

(
P|α|−1ϕ 1

δ

)
(y, s)

]
dyds.

Now, applying the case of δ = 1 already considered with ϕ 1
δ

instead of ϕ, we readily

see that the right hand side in (2.1) is given by

δ−|α|−d−2

〈
DαK,ϕ 1

δ

〉
=δ−|α|−d−2(−1)|α|

〈
K, ∂α

(
ϕ 1

δ

)〉
=δ−d−2(−1)|α|

〈
K, (∂αϕ) 1

δ

〉
.

Finally, since K ∈ L1(Rd+1),
∫∫

Rd+1
δ−|α|(Nα)δ(x, t)[ϕ(x, t)− (P|α|−1ϕ)(x, t)] dxdt

= (−1)|α|
∫∫

Rd+1
K(x, t)∂αϕ(δx, δ2t) dxdt

= δ−d−2(−1)|α|
∫∫

Rd+1
K

(y

δ
,

s

δ2

)
∂αϕ(y, s) dyds

= (−1)|α|
∫∫

Rd+1
Kδ(y, s)∂αϕ(y, s) dyds

= 〈Dα(Kδ), ϕ〉 .
¤

For the proof of (2.2.1) in Lemma 2.2 we shall make use of a somehow explicit
expression for the space derivatives of φ(ν(x, t)) where φ is any C∞ function of a
real variable.

Lemma 2.3. Let φ be a C∞ function of a positive real variable. Then for any
multi–index γ ∈ Nd

0 we have

∂γ(φ(ν(x, t))) =
∑

0≤β≤h(γ)

xγ−2β

t|γ|−|β|
φγ

β (ν(x, t))

where each φγ
β is a C∞ function of a positive real variable with support contained

in the support of φ.

Proof. Let us start by showing by induction on m that for each i = 1, . . . , d the
formula

(2.4)
∂m

∂xm
i

(φ(ν(x, t))) =
∑

0≤n≤h(m)

xm−2n
i

tm−n
φm

n (ν(x, t))
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holds for some smooth functions φm
n supported in the support of φ. When m = 1

(2.4) reads ∂
∂xi

(φ(ν(x, t))) = xi

t φ1
0(ν(x, t)) where φ1

0(s) = sφ′(s). Let us assume
that (2.4) holds as stated for derivatives of order m. Let us assume that m is even.
The case m odd can be handled in a similar way. Hence

∂m+1

∂xm+1
i

(φ(ν(x, t)))

=
∑

0≤n≤m
2

1
tm−n

∂

∂xi

(
xm−2n

i φm
n (ν(x, t))

)

=
1

t
m
2

dφm
m/2

ds
(ν(x, t))ν(x, t)

xi

t
+

+
∑

0≤n<
m
2

1
tm−n

[
(m− 2n)xm−2n−1

i φm
n (ν(x, t)) + xm−2n

i

dφm
n

ds
(ν(x, t))ν(x, t)

xi

t

]

=
∑

0≤n<
m
2

x
(m+1)−2(n+1)
i

t(m+1)−(n+1)
φm

n (ν(x, t)) +
∑

0≤n≤m
2

x
(m+1)−2n
i

t(m+1)−n
φ̃m

n (ν(x, t)).

Since in the case m even we have that h(m + 1) = m
2 , we only have to observe that

each term in the above two sums can be identified with some of the terms of the
following

∑

0≤k≤m
2

x
(m+1)−2k
i

t(m+1)−k
ψm+1

k (ν(x, t))

for adequate ψm+1
k with support contained in the support of φ. The desired result

for any arbitrary multi–index γ follows by iteration of (2.4). ¤

Proof of (2.2.1): From Leibniz rule, we have that

Nα(x, t) =
d∑

i=1

∂α

(
x2

i

t2
η(ν(x, t))

)

=
1
t2

d∑

i=1

∑

0≤β≤α

(
α

β

)
∂β

(
x2ei

)
∂α−β(η(ν(x, t)))

=
d∑

i=1

(
α

0

)
x2

i

t2
∂αη(ν(x, t))+

d∑

i=1

2
(

α

ei

)
xi

t2
∂α−eiη(ν(x, t))+

d∑

i=1

2
(

α

2ei

)
1
t2

∂α−2eiη(ν(x, t)).

For each one of the three derivatives in the last term above, we apply Lemma 2.3.
The first one gives the terms in (2.2) corresponding to j = 1. The second to j = 2
and the third to j = 3. ¤
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Proof of (2.2.2): Take ϕ ∈ C∞(Rd+1), and s ∈ R. If s ≥ 0, then Nα(y, s)ϕ(y, s) ≡
0 on Rd. For s < 0, the function of y defined by Nα(y, s) is bounded and has
bounded support. So that Nα(y, s)ϕ(y, s) is in L1(Rd) as a function of y ∈ Rd. On
the other hand since for s fixed K(y, s) is C∞(Rd) of y, integrating by parts, we
see that ∫

Rd

Nα(y, s)ϕ(y, s) dy = (−1)|α|
∫

Rd

K(y, s)∂αϕ(y, s) dy

Notice now that K(y, s)∂αϕ(y, s) is absolutely integrable on Rd+1 since K belongs
to L1(Rd+1), K has compact support and ∂αϕ is bounded on the support of K.
Hence from Fubini’ Theorem the function of s given by

∫
Rd K(y, s)∂αϕ(y, s) dy

belongs to L1(R). So does
∫
Rd Nα(y, s)ϕ(y, s) dy. Let us finally check (2.3). By

the same integration by parts in the integral with respect to y performed before,
∫

R

{∫

Rd

Nα(y, s)ϕ(y, s) dy

}
ds = (−1)|α|

∫

R

{∫

Rd

K(y, s)∂αϕ(y, s) dy

}
ds

= (−1)|α|
∫∫

Rd+1
K(y, s)∂αϕ(y, s) dyds

= (−1)|α| 〈K, ∂αϕ〉
= 〈DαK, ϕ〉 .

¤

Proof of (2.2.3): The integrability of ∂αK(x, t)xβ as functions of x are easy to
check. In fact, for t ≥ 0 the function of x given by ∂αK(x, t) is identically
zero. For t < 0, ∂αK(·, t) has compact support and is bounded as a function
of x. Integrating by parts, with 0 ≤ |β| < |α|, we have then

∫
Rd ∂αK(x, t)xβdx =

(−1)|α|
∫
Rd K(x, t)∂α(xβ)dx = 0. ¤

Proof of (2.2.4): Let us write ϕt to denote the function of the variable x ∈ Rd

defined by ϕt(x) = ϕ(x, t) when ϕ ∈ C∞(Rd+1). The MacLaurin polynomial for
ϕt of order |α| − 1 is given by

P|α|−1ϕt(x) =
|α|−1∑

k=0

1
k!

∑

|γ|=k

∂γϕt(0)xγ ,

and

ϕt(x)− P|α|−1ϕt(x) =
1

(|α| − 1)!

∑

|γ|=|α|
xγ

∫ 1

0

∂γϕt(σx)(1− σ)|α|−1 dσ.

In order to prove that Nα[ϕ− P|α|−1ϕ] as a function of (x, t) belongs to L1(Rd+1)
we only have to check that each function of the form xγNα(x, t), with |γ| = |α|
belongs to L1(Rd+1). On the other hand, using formula (2.2) for Nα, it will be
enough to show that each function of the form η̃(ν(x, t))xα+(4−2j)ei+2β

t|α|−|β|+3−j xγ belongs to
L1(Rd+1) when |γ| = |α|; i = 1, . . . , d; j = 1, 2, 3; 0 ≤ β ≤ h(α − (j − 1)ei) and η̃
is a bounded function of real variable with support contained in that of η. So that
it shall be enough to show that

∫∫

E∗(0,0;1)

∣∣xα+(4−2j)ei+2β+γ
∣∣

t|α|−|β|+3−j
dxdt < ∞
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for E∗(0, 0; 1) = {(x, t) : (x,−t) ∈ E(0, 0; 1)} and those values of α, β, γ, i and j.
The above integral can be estimated after an application of Fubini’s Theorem and
the introduction of spherical coordinates in Rd by an integral of the form

∫ 1

0

t−|α|+|β|−3+j

(∫ R1(−t)

0

ρ|α|+4−2j+2|β|+|γ|+d−1dρ

)
dt

= c

∫ 1

0

t−|α|+|β|−3+j
(
R1(−t)

)2|α|+4−2j+2|β|+d

dt

= c

∫ 1

0

t−|α|+|β|−3+jt|α|+2−j+|β|+d
2

(
ln 1

4πt

)|α|+2−j+|β|+d
2 dt

= c

∫ 1

0

t2|β|+
d
2−1

(
ln 1

4πt

)ε
dt

for some positive number ε. Since the last integral is finite, we are done. ¤
Since from Theorem 2.1 DαKδ is a compactly supported Schwartz distribution

on Rd+1 given by (2.1) its convolution with a C∞(Rd+1) function v(x, t) is well
defined and is nothing but the weak derivative of Kδ ∗ v.

Corollary 2.4. For any v ∈ C∞(Rd+1) we have that Dα(Kδ ∗ v)(x, t) = (DαKδ)∗
v(x, t) = δ−|α|

∫∫
Rd+1(Nα)δ(x− y, t− s)

[
v(y, s)− P|α|−1v(y, s)

]
dyds.

3. Hardy–Littlewood and Calderón–Scott maximal operators.
A technical lemma.

In this section we introduce the maximal operators that we shall use in the proof
of Theorem 4.1 of §4. We shall also review the basic boundedness properties of
those operators and we shall state and prove some technical lemmas that will be
used in §4.

The one–sided character in the time variable of the kernel K(x, t) introduced in
§1 leads us to handle the one–sided Hardy–Littlewood maximal operator

M−(g)(t) = sup
h>0

1
h

∫ t

t−h

|g(s)| ds.

defined for any g ∈ L1
loc(R)

On the other hand, since the projection on the space of the space–time heat ball
E(x, t; r) is an Euclidean ball centered at x and since in the space variable we shall
look for regularity properties of temperatures, the natural operator is given by the
sharp maximal function of order λ. For a given positive number λ and a given
L1
loc(R

d) function f , define

M#,λ(f)(x) = sup
r>0

inf
π∈P[λ]

1

|B(x; r)|1+
λ
d

∫

B(x;r)

|f(y)− π(y)| dy

where [λ] is the largest integer less than or equal to λ and Pm is the space of all
polynomials of degree at most m.

The boundedness properties of these two types of operators have been extensively
studied. Regarding the one–sided operator M−, let us only point out that since
M−(g) ≤ 2M(g) where M is the centered Hardy–Littlewood maximal operator,
then the boundedness of M− on Lp(dt) (1 < p ≤ ∞) follow from the same property
for M . On the other hand the boundedness of M− as an operator on weighted
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Lebesgue spaces has been obtained by E. Sawyer [10], see also K. Mart́ın–Reyes [8].
Actually these results provide a class of weights which is strictly larger than the
usual Muckenhoupt Ap weights which is associated to M .

Regarding the sharp maximal operator, let us mention the comprehensive treat-
ment of maximal functions measuring regularity by R. DeVore and R. Sharpley [4].
From [4] we shall borrow the following estimate which holds for any λ > 0 and any
1 ≤ p ≤ ∞, ∥∥M#,λ(f)

∥∥
Lp(Rd)

≤ c ‖f‖Bλ,p
p (Rd) ,

where ‖f‖Bλ,p
p (Rd) denotes the Besov norm with regularity exponent λ and p = q.

See [9].
We shall actually deal with the maximal operator defined for any smooth function

and k > λ > 0, with k ∈ N by

(3.1) M#,λ,k(f)(x) = sup
r>0

1

|B(x; r)|1+
λ
d

∫

B(x;r)

|f(y)− Px(y)| dy

where Px(y) is the Taylor polynomial of degree k−1 for f at x. Notice that when λ
is non integer and k = [λ]+1, this operator is the Calderón–Scott maximal operator
(see [1]).

The next lemma provides pointwise estimates in terms of the one–sided maximal
function for convolution operators which naturally appear in the proof of Theorem
4.1.

For a given L1(R) kernel κ, a given L1(R) function g and a given positive number
δ, let us define

κ∗(g)(t) = sup
δ>0

∣∣∣∣
1
δ

∫

R
κ

(s

δ

)
g(t− s) ds

∣∣∣∣ .

Lemma 3.1. Set κ(t) = tϑ
(
ln 1

t

)θ X(0,1)(t) with −1 < ϑ < 0 and θ > 0. Then,
there exists a constant C depending only on ϑ and θ such that κ∗(g)(t) ≤ CM−(g)(t)
for every integrable function g defined on R.

Proof. Let us first show following the lines of chapter 10 in [3], that if κ is a
nonnegative integrable kernel supported on R+ and nonincreasing on R+, then for
every δ > 0

(3.2)
∣∣∣∣
1
δ

∫

R
κ

(s

δ

)
g(t− s) ds

∣∣∣∣ ≤ 4
(∫

R
κ

)
M−(g)(t).

By dyadic decomposition of R+ and since κ is nonincreasing, we get∣∣∣∣
1
δ

∫

R
κ

(s

δ

)
g(t− s) ds

∣∣∣∣ ≤
∑

j∈Z

1
δ

∫

δ2j≤s<δ2j+1
κ

(s

δ

)
|g(t− s)| ds

≤
∑

j∈Z

1
δ
κ(2j)

∫

0≤s≤δ2j+1
|g(t− s)| ds

= 2
∑

j∈Z
2jκ(2j)

(
1

δ2j+1

∫

0≤s≤δ2j+1
|g(t− s)| ds

)

≤ 2


∑

j∈Z
2jκ(2j)


 M−(g)(t).
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and we also have that
∫

R+
κ(s) ds =

∑

j∈Z

∫ 2j

2j−1
κ(s) ds ≥

∑

j∈Z
κ(2j)(2j − 2j−1) =

1
2

∑

j∈Z
2jκ(2j).

Hence we obtain (3.2).
To show the integrability of the special kernel κ(t) = tϑ

(
ln 1

t

)θ X(0,1)(t) notice
that with ϑ− ε > −1 and ε > 0 we have

κ(t) = tϑ−ε · tε (
ln 1

t

)θ X(0,1)(t)

and that tε
(
ln 1

t

)θ is bounded on (0, 1]. It is easy to see for t ∈ (0, 1) that κ is
nonincreasing. ¤

4. Maximal function estimates for the convolution operator induced
by the distribution DαKδ on Rd+1

We know, see Corollary 2.4, that the derivatives of the convolution of Kδ (δ > 0)
with a C∞(Rd+1) function v is given by

(4.1) Dα(Kδ ∗ v)(x, t) =δ−|α|
∫∫

Rd+1
(Nα)δ(x−y, t−s)

[
v(y, s)−P|α|−1v(y, s)

]
dyds.

For a given positive real number λ, and k any integer larger than λ, let us define
the maximal operator

Mλ,k(v)(x, t) = sup
δ>0

δk−λ
∣∣∇k(Kδ ∗ v)(x, t)

∣∣ ,

where ∇k is the vector of all the space derivatives of order k. The main result of
this section is the following pointwise estimate for Mλ,k.

Theorem 4.1. For 0 < λ < k < λ + d and k ∈ N there exists a constant C =
C(λ, k, d) such that the inequality

(4.2) Mλ,k(v)(x, t) ≤ CM−[M#,λ,k(v)](x, t)

holds for every C∞ function v defined on Rd+1.

Let us point out that the right hand side in (4.2) is the iteration of the operators
M#,λ,k acting on x and M− acting on the time variable, precisely,

M−[M#,λ,k(v)](x, t) = sup
h>0

1
h

∫ t

t−h

M#,λ,k(v(·, s))(x) ds.

Proof of the Theorem 4.1. Take v ∈ C∞(Rd+1) and fix δ > 0. In order to estimate
∇k(Kδ ∗v) we shall consider a fixed multi–index α of length k and we shall estimate
Dα(Kδ∗v) using the representation formula (4.1). Now, from (2.2.1), the kernel Nα

splits as a finite sum
∑

i∈I Nα
i of kernels each of them bounded above in absolute

value by kernels with the following basic shape Ñα
i (x, t) = Qα

i (|x| , t)ηα
i (ν(x, t))

with ηα
i a C∞ function of a real variable with compact support and Qα

i (|x| , t) is
C∞ on Rd+1

+ =
{
(x, t) ∈ Rd+1 : t > 0

}
, and increasing as a function of |x| for t

fixed. Also the kernel Qα
i is parabolically homogeneous of degree − |α|−2, in other

words, Qα
i (µ |x| , µ2t) = µ−|α|−2Qα

i (|x| , t), µ > 0. Since in the proof of (2.2.4)
we actually show that Nα

i [ϕ − P|α|−1ϕ] is integrable for each i ∈ I, each integral∫∫
Rd+1(Nα

i )δ(x−y, t−s)
[
v(y, s)− P|α|−1v(y, s)

]
dyds is absolutely convergent and

its sum for i ∈ I gives us a representation of Dα(Kδ ∗ v)(x, t). Hence in order to
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show (4.2), we have to estimate the maximal operator induced by anyone of these
terms with kernel (Nα

i )δ. From the absolute convergence of the integral, and from
Fubini’s Theorem we have that

Mλ
i,δ(v)(x, t) := δk−λ

∣∣∣∣δ−|α|
∫∫

Rd+1
(Nα

i )δ(x− y, t− s)
[
v(y, s)− P|α|−1v(y, s)

]
dyds

∣∣∣∣

≤ δ−λ

∫ t

t− δ2

4π

∫

y∈B

(Ñα
i )δ(x− y, t− s)

∣∣v(y, s)− P|α|−1v(y, s)
∣∣ dyds,

where B is the Euclidean ball B(x,Rδ(t−s)) with Rδ(t−s) =
√

2d(t− s) ln δ2

4π(t−s) .
Next we multiply and divide the inner space integral by the Lebesgue measure of
the ball B raised to the power of 1 + λ

d and we use the boundedness of ηα
i in order

to obtain the upper estimate

Mλ
i,δ(v)(x, t)

≤cδ−λ

∫ t

t−δ2
|B|1+

λ
d





1

|B|1+
λ
d

∫

B

(Qα
i )δ(|x− y| , t− s)

∣∣v(y, s)− P|α|−1v(y, s)
∣∣ dy



 ds

≤ c

δ2

∫ t

t−δ2
δ2−λ+k−d(Rδ(t− s))d+λQα

i (Rδ(t− s), t− s)M#,λ,k(v(·, s))(x) ds,

where the monotonicity property of Qα
i in its first variable together with the fact

|x− y| < Rδ(t− s), the homogeneity of Qα
i and the definition of M#,λ,k have been

used.
Notice that from the definition of Rδ(t− s) and the homogeneity of Qα

i , we have

Qα
i (Rδ(t− s), t− s) = Qα

i

(
(t− s)

1
2

√
2d ln δ2

4π(t−s) , t− s

)

=
1

(t− s)
k+2
2

Qα
i

(√
2d ln δ2

4π(t−s) , 1
)

.

By inspection of the terms in the expansion for Nα given in (2.2.1) we see that for
each i ∈ I, we have

Qα
i

(√
2d ln δ2

4π(t−s) , 1
)
≤ c

(
ln

1
4π( t−s

δ2 )

)θi

with θi > 0.

Hence

Mλ
i,δ(v)(x, t)

≤ c

δ2

∫ t

t−δ2
δ2−λ+k−d (t− s)

d+λ
2

(t− s)1+
k
2

(
ln

1
4π( t−s

δ2 )

)θi+
d+λ

2
M#,λ,k(v(·, s))(x) ds

=
c

δ2

∫ t

t−δ2

(
t− s

δ2

)d+λ−2−k
2

(
ln

1
4π( t−s

δ2 )

)θi+
d+λ

2
M#,λ,k(v(·, s))(x) ds.

Since from our choice of k and λ, d+λ−2−k
2 > −1, from Lemma 3.1 the last integral

is bounded by the one–sided Hardy–Littlewood maximal operator M− for each
δ > 0 and each i ∈ I, hence Mλ,k(v) ≤ CM−[M#,λ,k(v)]. ¤
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5. Estimates for space and time derivatives of temperatures on
cylindrical domains

In this section we shall write Ω to denote a cylindrical domain on Rd+1 of the
form D ×R+, where D is an open set in Rd.

We shall use the standar parabolic distance function defined on Rd+1 × Rd+1

as ρ((x, t); (y, s)) = max
{
|x− y| ,

√
|t− s|

}
. Let us define the function δ(x, t)

on Ω as the parabolic distance of (x, t) ∈ Ω to the parabolic boundary of Ω.
Precisely, δ(x, t) = ρ((x, t), ∂parΩ) = inf

{
ρ((x, t); (y, s)) : (y, s) ∈ ∂parΩ

}
, where

∂parΩ = (D × {0}) ∪ (∂D ×R+) is the parabolic boundary of Ω.
Notice that for any temperature u in Ω, any (x, t) ∈ Ω and any 0 < δ < δ(x, t),

the mean value formula (1.3) holds true since for those values of δ the support of
Kδ(x− y, t− s) as a function of (y, s) is contained in Ω. Moreover, the same is true
for the support of the kernel (Nα)δ(x− y, t− s) when 0 < δ < δ(x, t). In particular
the formula for the space derivatives of Kδ ∗ v given in Corollary 2.4 remains true
for v ∈ C∞(Ω) for these values of δ.

From de above observations and the results of the previous section, we readily
realize that we shall be able to obtain estimates for a local version of the maximal
function Mλ,k in terms of local versions of M− and M#,λ,k.

For a given λ > 0, k any integer larger than λ and v ∈ C∞(Ω), we define

Mλ,k
Ω (v)(x, t) = sup

0<δ<δ(x,t)

δk−λ
∣∣∇k(Kδ ∗ v)(x, t)

∣∣ .

For a given L1
loc(R) function g supported on R+ and a given t > 0, let us write

M−
R+(g)(t) = sup

0<h<t

1
h

∫ t

t−h

|g(s)| ds,

to denote the local version of the one–sided maximal operator restricted to R+. On
the other hand for a given f smooth function on D we define the local version of
the Calderón–Scott maximal function of order λ by

M#,λ,k
D (f)(x) = sup

0<δ<δ(x)

1

|B(x; δ)|1+
λ
d

∫

B(x;δ)

|f(y)− Px(y)| dy

where δ(x) = inf {|x− y| : y ∈ ∂D} and Px is the Taylor polynomial of degree k−1
for f at x.

By simple inspection of the proofs of Theorem 4.1 and Lemma 3.1 and the above
remarks, we have the following result.

Theorem 5.1. For 0 < λ < k < λ + d and k ∈ N, there exists a constant
C = C(λ, k, d) such that for every Ω = D ×R+ with D open in Rd the inequality

Mλ,k
Ω (v)(x, t) ≤ CM−

R+ [M#,λ,k
D (v)](x, t)

holds for every function v in C∞(Ω) and every (x, t) ∈ Ω.

When the above result is applied to a temperature u = u(x, t) in Ω we have the
following statement.

Corollary 5.2. If u is a temperature in Ω, then

δk−λ(x, t)
∣∣∇ku(x, t)

∣∣ ≤ CM−
R+ [M#,λ,k

D (u)](x, t)

for every (x, t) ∈ Ω, when 0 < λ < k < λ + d, k ∈ N.
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In order to obtain estimates for mixed space–time derivatives of temperatures, let
us introduce some notation. Given a smooth function v on Ω let us write ∇2,1v(x, t)
to denote the d2 + 1–vector given by the d2 second order purely spatial derivatives
of v and the first derivative of v with respect to time, i.e., ∇2,1v =

(
∇2v, ∂v

∂t

)
. We

shall also say that given a multi–index α̃ = (α1, . . . , αd; αd+1) inNd+1
0 the derivative

∂α̃v is of parabolic order |α| + 2αd+1. By (∇2,1)n(v), n ∈ N we mean the vector
of all the derivatives of parabolic order 2n of the smooth function v. Explicitly,
each component of (∇2,1)n(v) has the form ∂α̃v with |α|+ 2αd+1 = 2n. So that we
always have, in each one of these derivatives, an even number of space derivatives.
We shall use the notation

∣∣(∇2,1)nu
∣∣ for the Euclidean length of (∇2,1)nu. The

next elementary lemma shall allow us to transfer the spatial estimates in Corollary
5.2 to mixed space–time derivatives for temperatures.

Lemma 5.3. Let u be a temperature in Ω and α̃ = (α; αd+1) ∈ Nd+1
0 with 2n =

|α|+ 2αd+1, n ∈ N. Then the derivative ∂α̃u belongs to the linear span of ∇2nu.

Proof. Induction in αd+1. When αd+1 = 1, we have that

∂α̃u = ∂(α;0)(∂(0;1)u) = ∂(α;0)(∆u) ∈ span∇2nu.

Assuming that result holds for αd+1 = j ∈ N and let us prove it for αd+1 = j + 1,

∂α̃u = ∂(α;0)∂(0;j+1)u = ∂(α;0)∂(0;j)∆u = ∂(α;0)∆ ∂(0;j)u.

Notice now that the last term is a linear combination of derivatives of the form
∂(β;0)∂(0;j)u, with |β| = |α|+ 2. So that we can apply the induction hypothesis to
each one of this terms to obtain that ∂α̃u is in the linear span of ∇2nu. ¤

As a corollary of Theorem 5.1, its Corollary 5.2 and the above considerations we
readily have that the next statement holds true.

Theorem 5.4. For 0 < λ < 2n < λ + d and n ∈ N there exits a constant C such
that the inequality

δ2n−λ(x, t)
∣∣(∇2,1)nu(x, t)

∣∣ ≤ CM−
R+ [M#,λ,2n

D (u)](x, t)

holds for every temperature u in Ω and every (x, t) ∈ Ω.

6. Lp–estimates for space–time gradients of temperatures in terms
of mixed Lebesgue–Besov norms

In analogy with the definition of Cλ
p (D) (see §6 in [4]) let us write C λ,m

p (D)
to denote the space of all those Lp(D) functions f for which M#,λ,m

D (f) belongs

to Lp(D) equipped with the norm ‖f‖C λ,m
p (D) = ‖f‖Lp(D) +

∥∥∥M#,λ,m
D (f)

∥∥∥
Lp(D)

.

From Corollary 5.4 in [4], when λ is a non integer positive number, M#,λ
D =

sup0<r<δ(x) infπ∈P[λ] |B(x; r)|−1−λ
d

∫
B(x;r)

|f − π| is pointwise equivalent to the Cal-

derón–Scott maximal operator, so that in this case C
λ,[λ]+1
p (D) = Cλ

p (D). Hence,
from the immersion of Besov Bλ,p

p (D) spaces into the space Cλ
p (D) (Corollary 11.6

in [4] and the footnote at page 7 in [2]) when D is a Lipschitz domain, we conclude
that Bλ,p

p (D) ↪→ C
λ,[λ]+1
p (D) which, for a bounded D is continuously immersed

in C λ,m
p (D) for m ≥ [λ] + 1. Let us introduce the mixed norm spaces defined by
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Lq(R+, C λ,m
p (D)) and by Lq(R+, Bλ,p

p (D)) with 1 ≤ q ≤ ∞, 1 ≤ p ≤ ∞ and λ > 0.
The corresponding norms for a d + 1 variables function v are

‖v‖Lq(R+,C λ,m
p (D)) =

(∫

R+
‖v(·, t)‖q

C λ,m
p (D)

dt

) 1
q

and

‖v‖Lq(R+,Bλ,p
p (D)) =

(∫

R+
‖v(·, t)‖q

Bλ,p
p (D)

dt

) 1
q

As a corollary of Theorem 5.4 we obtain the next basic result.

Theorem 6.1. Let Ω = D×R+ with D a bounded domain in Rd. Let 1 < p ≤ ∞
be given. For 0 < λ < 2n < λ + d and n ∈ N there exists a constant C1 depending
on p, λ and n such that for every temperature u in Ω we have the inequalities∥∥δ2n−λ

∣∣(∇2,1)nu
∣∣∥∥

Lp(Ω)
≤ C1 ‖u‖Lp(R+,C λ,2n

p (D)) .

Proof. Follows from Theorem 5.4 and the boundedness of M−
R+ on Lp(R) for p > 1.

¤

Notice also that for p = 1 a weak type inequality of the form∫

D

∣∣{t ∈ R+ : δ2n−λ(x, t)
∣∣(∇2,1)nu(x, t)

∣∣ > µ}∣∣ dx

≤ C

µ

∫

D

∥∥∥M#,λ,2n
D u(x, ·)

∥∥∥
L1(R+)

dx

≤ C1

µ
‖u‖L1(R+,C λ,2n

1 (D))

follows from the weak type (1,1) of the time operator M−
R+ .

Since the weight functions ω(t) for which the one–sided maximal operator M−

is bounded on Lp(ωdt) (p > 1) are characterized by the one–sided Muckenhoupt
condition A−p (see [10], [8]), the above results extend to mixed norms with weighted
Lp–norms in the time variable.

Corollary 6.2. If Ω = D×R+ with D a bounded Lipschitz domain in Rd, 1 < p ≤
∞, λ a non integer positive number and n an integer such that [λ]+1 ≤ 2n < λ+d,
then ∥∥δ2n−λ

∣∣(∇2,1)nu
∣∣∥∥

Lp(Ω)
≤ C2 ‖u‖Lp(R+,Bλ,p

p (D))

for some constant C2 and every temperature u in Ω.
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