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Weighted inequalities and pointwise estimates for the

multilinear fractional integral and maximal operators

Gladis Pradolini ∗

Abstract

In this article we prove weighted norm inequalities and pointwise estimates
between the multilinear fractional integral operator and the multilinear fractional
maximal. As a consequence of these estimations we obtain weighted weak and
strong inequalities for the multilinear fractional integral operator. In particular, we
extend some results given in [CPSS] to the multilinear context. On the other hand
we prove weighted pointwise estimates between the multilinear fractional maximal
operator Mα,B associated to a Young function B and the multilinear maximal
operators Mψ = M0,ψ, ψ(t) = B(t1−α/(nm))nm/(nm−α). As an application of these
estimate we obtain a direct proof of the Lp − Lq boundedness results of Mα,B

for the case B(t) = t and Bk(t) = t(1 + log+ t)k when 1/q = 1/p − α/n. We
also give sufficient conditions on the weights involved in the boundedness results
of Mα,B that generalizes those given in [M] for B(t) = t. Finally, we prove some
boundedness results in Banach function spaces for a generalized version of the
multilinear fractional maximal operator.

1 Introduction and preliminaries

An important problem in Analysis is to control certain integral type operators by
means of adequate maximal operators. This control is sometimes understood in the
norm of the spaces where these operators act. For example, an interesting result due to
Coifman ([C]) establishes that, if T is a Calderón-Zygmund integral operator, M is the
Hardy-Littlewood maximal function and 0 < p <∞, then the inequality

∫

Rn

|T (f)(x)|p dx ≤ C

∫

Rn

|Mf(x)|p dx

holds for some positive constant C. Thus, the maximal function M controls the singular
integral in Lp-norm and the boundedness properties of M in Lp-spaces give the bound-
edness properties of T . The weighted version for A∞ weights of inequality above is also
true (see [CF]).
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For the fractional integral operator Iα, 0 < α < n, w ∈ A∞ and 0 < p <∞, Mucken-
houpt and Wheeden ([MW]) proved the following control-type inequalities involving the
fractional maximal operator Mα

∫

Rn

|Iα(f)(x)|pw(x) dx ≤ C

∫

Rn

|Mαf(x)|pw(x) dx,

and
sup
λ>0

λqw({Iαf > λ}) ≤ C sup
λ>0

λqw({Mαf > λ}),

where C depends on the A∞-constant of w. Then, by the weighted boundedness results
of Mα, they obtained the corresponding weighted boundedness results for Iα.

Similar problems for other operators such that conmutators of singular and fractional
integral operators, non linear commutators, potential operators, multilinear Calderón-
Zygmund operators and multilinear fractional integrals, were studied by several authors
(see for example [P4], [P5], [PT], [CUF], [BHP], [CPSS], [LOPTT] and [M]). Particularly,
in [CPSS], the authors obtain the boundedness of the fractional integral operator in term
of the fractional maximal operator in weighted weak L1-spaces, and then, by the weighted
weak boundedness of Mα, they obtain weighted weak estimates for Iα.

Related to the control of commutators of singular and fractional integral operators
appear the iterations of the Hardy- Littlewood maximal operator M and the composition
of the fractional maximal operator with iterations of M . These types of maximal oper-
ators were proved to be equivalent to certain maximal operators associated to a given
Young function (see, for example [P4], [P5], [CUF] and [BHP]). Then, the study of the
boundedness properties of these particular maximal operators seem to be an important
tool because they inclose information about the behaviour of the commutators that they
control.

In the multilinear context, there were an increasing interest in investigate how to
control integral operators by maximal functions. In [GT] the authors proved that the
multilinear Calderón-Zygmund operators are controled in Lp-norms by the product of
m Hardy-Littlewood maximal operators and they asked themselves if this product is
optimal in some sense. This problem is then solved in [LOPTT], where the authors give
a strictly smaller maximal operator and develop a corresponding weighted theory.

Later, in [M], a complete study of the weighted boundedness properties for the mul-
tilinear fractional integral operator is given, and the author proved that this operator is
bounded in norm by the corresponding version of the fractional maximal operator which
generalizes the maximal operator given in [LOPTT]. Again, the boundedness properties
of the “maximal controller” gives the boundedness properties of the“controlled operator”.

Pointwise estimates between operators are also of interest because they allow us to
obtain boundedness properties of a given operator by means of the properties of others.
For example, related to the fractional maximal operator and the Hardy-Littlewood max-
imal operator a pointwise estimate is given in [CCUF]. Other known pointwise estimates
between the fractional integral operator and maximal operators are due to Welland and
Hedberg (see [W] and [H]).

In this paper we give “control type results” for the multilinear fractional maximal
and integral operators. These results involved pointwise estimates and norm estimates
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between these operators, of the type described above. In particular, we extend some
results given in [CPSS] to the multilinear context. On the other hand we introduce the
multilinear fractional maximal operator Mα,B associated to a Young function B and we
prove weighted pointwise estimates between these operators and the multilinear maximal
operators Mψ = M0,ψ, where ψ is a given Young function that depends on B. As an
application of these estimates we obtain a direct proof of the Lp−Lq boundedness results
of Mα,B for the case B(t) = t and Bk(t) = t(1+ log+ t)k when 1/q = 1/p−α/n. We also
give sufficient conditions on the weights involved in the boundedness results of Mα,B

that generalizes those given in [M] for B(t) = t. The importance of a weighted theory
for this maximal function is due to the fact that this operators are in intimate relation
with the commutators of multisublinear fractional integral operators, as we shall see in
a next paper.

On the other hand, we study boundedness results in Banach function spaces for
a generalized version of the multilinear fractional maximal operator involved certain
essentially nondecreasing function ϕ.

The paper is organized as follows. In section §2 we statement the main results of this
article. We also include some corollaries and different proofs of results proved in [M].
The proof of the main results are in §4. In §3 we give some auxiliary lemmas and finally,
in §5 we define a generalized version of the multilinear fractional maximal operator and
we give some boundedness estimates in the setting of Banach function spaces.

Before stating the main results of this article, we give some standard notation.
Throughout this paper Q will denote a cube in R

n with sides parallel to the coordi-
nate axes. With D we will denote the family of dyadic cubes in R

n.
By a weight we understand a non negative measurable function.
We say that a weight w satisfies a Reverse Hölder’s inequality with exponent s,

RH(s), if there exists a positive constant C such that

(

1

|Q|

∫

Q

ws
)1/s

≤
w(Q)

|Q|
.

By RH∞ we mean the class of weights w such that the inequality

sup
x∈Q

w(x) ≤
C

|Q|

∫

Q

w,

holds for every Q ⊂ R
n and some positive constant C. It is easy to check that RH∞ ⊂

A∞.

Now we summarize a few facts about Orlicz spaces. For more information see [KR]
or [RR].

We say that B : [0,∞) → [0,∞) is a Young function if there exists a nontrivial, non-
negative and increasing function b such that B(t) =

∫ t

0
b(s) ds. Then B is continuous,

convex, increasing and satisfies B(0) = 0 and limt→∞B(t) = ∞. Moreover, it follows
that B(t)/t is increasing.
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Let B : [0,∞) → [0,∞) be a Young function. The Orlicz space LB = LB(Rn) consists
of all measurable functions f such that for some λ > 0,

∫

Rn

B(|f |/λ) <∞.

The space LB is a Banach space endowed with the Luxemburg norm

‖f‖B = ‖f‖LB
= inf{λ > 0 :

∫

Rn

B(|f |/λ) <∞}.

The B-average of a function f over a cube Q is defined by

‖f‖B,Q = inf{λ > 0 :
1

|Q|

∫

Q

B(|f |/λ) ≤ 1}.

When B(t) = t, ‖f‖B,Q = 1
|Q|

∫

Q
|f |.

We shall say that B is doubling if there exists a positive constant C such that B(2t) ≤
CB(t) for every t ≥ 0. Each Young function B has an associated complementary Young
function B̃ satisfying

t ≤ B−1(t)B̃−1(t) ≤ 2t,

for all t > 0. There is a generalization of Hölder’s inequality

(1.1)
1

|Q|

∫

Q

|fg| ≤ ‖f‖B,Q‖g‖B̃,Q.

A further generalization of Hölder’s inequality (see [O]) is the following: If A, B and
C are Young functions such that

A−1(t)B−1(t) ≤ C−1(t),

then
‖fg‖C,Q ≤ 2‖f‖A,Q‖g‖B,Q.

(1.2) Definition: Let 0 < α < nm and ~f = (f1, . . . , fm). We define the multilineal
fractional maximal operator Mα,B associated to a Young function B by

(1.3) Mα,B
~f(x) = sup

Q∋x
|Q|α/n

m
∏

i=1

‖fi‖B,Q

where the supremum is taken over all cubes Q containing x.
Even though Mα,B is sublinear in each entry, we shall refer to it as the multilineal

fractional maximal operator.

For α = 0 we denote M0,B = MB. When B(t) = t, Mα = Mα,B is the multilinear
fractional maximal operator defined in [M] by

(1.4) Mα
~f(x) = sup

Q∋x
|Q|α/n

m
∏

i=1

1

|Q|

∫

Q

|fi|.
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M0 = M is the multilinear maximal operator defined in [LOPTT]. When m = 1 we
write M and Mα to denote the Hardy-Littlewood and the fractional maximal operators
defined, for a locally integrable function f and 0 < α < n, by

(1.5) Mf(x) = sup
Q∈x

1

|Q|

∫

Q

|f(y)| dy

and

(1.6) Mαf(x) = sup
Q∈x

1

|Q|1−α/n

∫

Q

|f(y)| dy

respectively.

If we take g ≡ 1 in inequality (1.1) it follows that for every Young function B, every
α such that 0 ≤ α < nm, the inequality

Mα(~f)(x) ≤ Mα,B(~f)(x)

holds for every x ∈ R
n.

The following class of weights was introduced in [LOPTT] and is a generalization of

the Muckenhoupt Ap classes, p > 1. We use the notation ~P = (p1, . . . , pm).

(1.7) Definition: Let 1 ≤ pi <∞ for i = 1, . . . , m, 1
p

=
∑m

i=1
1
pi

. For each i = 1, . . . , m

let wi be a weight and ~w = (w1, . . . , wm). We say that ~w satisfies the A~P condition if

(1.8) sup
Q

(

1

|Q|

∫

Q

(

m
∏

i=1

w
p/pi

i

))1/p m
∏

i=1

(

1

|Q|

∫

Q

w
1−p′i
i

)1/p′i

<∞.

When pi = 1,
(

1
|Q|

∫

Q
w

1−p′i
i

)1/p′i
is understood as (infQ wi)

−1.

Condition (1.8) is called the multilinear A~P condition.

2 Statement of the main results

In this section we establish the main results of this article. For a sake of completeness
we consider subsections.

Pointwise estimates for Mα,B

For 0 < α < nm let B be a Young function such that t
α

nmB−1(t1−
α

nm ) ≤ B−1(t). Let
ψ be the function defined by ψ(t) = B(t1−α/(nm))nm/(nm−α). From lemma 3.1 bellow, ψ
is a Young function. The following result gives a pointwise estimate between the multi-
linear fractional maximal associated to the Young function B, Mα,B and the multilineal
maximal operator Mψ associated to the Young function ψ, and is an useful tool to obtain
boundedness results for Mα,B.

5



(2.1) Lemma: Let 0 < α < nm. Let B be a Young function such that

(2.2) t
α

nmB−1(t1−
α

nm ) ≤ B−1(t)

and ψ(t) = B(t1−α/(nm))nm/(nm−α).
For each i = 1, . . . , m, let pi, qi and si be the real numbers defined, respectively, by

1 ≤ pi < nm/α, 1
qi

= 1
pi

− α
nm

and si = (1 − α/(nm)) qi and p, q and s be the real

numbers given by 1
p

=
∑m

i=1
1
pi

, 1
q

=
∑m

i=1
1
qi

and 1
s

=
∑m

i=1
1
si

. Let w1, . . . , wm be m

weights. If ~fw = (f1/w1, . . . , fm/wm) and ~g = (f
p1/s1
1 w

−q1/s1
1 , . . . , f

pm/sm
m w

−qm/sm
m ) then

(2.3) Mα,B
~fw(x) ≤ Mψ~g(x)

1−α/(nm)

(

m
∏

i=1

‖fi‖
pi

Lpi

)
α

nm

.

(2.4) Remark: When B(t) = t we have that ψ(t) = t. Then, from inequality (2.3), we
get the following pointwise estimate between the multilinear fractional maximal operator
Mα and the multilineal maximal operator M

(2.5) Mα
~fw(x) ≤ M~g(x)1−α/(nm)

(

m
∏

i=1

‖fi‖
pi

Lpi

)
α

nm

.

In the case m = 1 the result above was obtained in [GPS].

(2.6) Remark: For 0 < α < nm and k ∈ N let Bk be the Young function defined by
Bk(t) = t(1 + log+ t)k. Then Bk satisfies (2.2). Let ψk(t) = Bk(t

1−α/(nm))nm/(nm−α) ∼=
t(1 + log+ t)knm/(nm−α). From the lemma above we get the following pointwise estimate

(2.7) Mα,L(logL)k
~fw(x) ≤ M

L(logL)
knm

nm−α
~g(x)1−α/(nm)

(

m
∏

i=1

‖fi‖
pi

Lpi

)
α

nm

.

Weighted boundedness results for Mα,B

As an easy consequence of inequality (2.5) and the weighted boundedness results
for the multilinear maximal operator M proved in [LOPTT] we obtain a direct proof
of the weighted weak and strong boundedness of the multilinear fractional maximal
operator Mα proved in [M], when p and q satisfy 1/q = 1/p− α/n and 1 < pi < nm/α,
i = 1, . . . , m. Actually, in [M] the author proves that the conditions on the weights are
also necessary (see theorems 2.7 and 3.6 in [M] applied to this case). These results are
given in the following two theorems.
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(2.8) Theorem: Let 0 < α < nm and let pi and q be defined as in lemma 2.1. Let
~f = (f1, . . . , fm), If (u, ~w) satisfy

(2.9) sup
Q

(

1

|Q|

∫

Q

u

)1/q m
∏

i=1

(

1

|Q|

∫

Q

w−pi′

i

)1/p′i

<∞

then

‖Mα
~f‖Lq,∞(u) ≤ C

m
∏

i=1

‖fiwi‖Lpi .

(2.10) Theorem: Let 0 < α < nm and let 1 < pi < nm/α and qi, si, p, q, and s be

defined as in lemma 2.1. Let ~wq = (wq11 , . . . , w
qm
m ). If ~f = (f1, . . . , fm), ~S = (s1, . . . , sm)

and ~wq ∈ A~S, then

‖Mα
~f (Πm

i=1wi)‖Lq ≤ C
m
∏

i=1

‖fiwi‖Lpi .

(2.11) Remark: It is easy to check that ~wq ∈ A~S if and only if ~w = (w1, . . . , wm)
belongs to the A~P ,q classes introduced in [M]. This equivalence is a generalization to
the multilinear case of that proved by Muckenhoupt and Wheeden in the linear case,
which establishes that a weight w ∈ Ap,q if and only if wq ∈ As with 1 ≤ p < n/α,
1/q = 1/p− α/n and s = 1 + q/p′. For more details see [MW].

The following corollary is a consequence of theorem 2.8 applied to the weights u =
∏m

i=1 u
q/qi
i and wi = M(ui)

1/qi, where M is the Hardy-Littlewood maximal operator.

(2.12) Corollary: Let 0 < α < nm and let pi, qi, si, p, q, and s be defined as in lemma

2.1. Let ~f = (f1, . . . , fm) and u =
∏m

i=1 u
q/qi
i then

‖Mα
~f‖Lq,∞(u) ≤ C

m
∏

i=1

‖fiM(ui)
1/qi‖Lpi .

From the weak and strong characterizations obtained in [M, Theorems 2.7 and 2.8]
applied to the case p = q, we obtain the following result.

(2.13) Theorem: Suppose that 0 < α < nm, 1 ≤ p1, . . . , pm < mn/α and 1
p

=
∑m

i=1
1
pi

.

Let u =
∏m

i=1 u
p/pi

i and v =
∏m

i=1 v
1/pi

i . Then

‖Mα
~f‖Lp,∞(u) ≤ C

m
∏

i=1

‖fi‖Lpi (Mαpi/m(ui)),

and

‖Mα
~f v‖Lp ≤ C

m
∏

i=1

‖fiMαpi/m(vi)‖Lpi ,

where Mαpi/m denotes the fractional maximal operator defined in (1.6) with α replaced
by αpi/m.
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The proof of the first inequality above follows from the fact that the weights u and
wi = Mαpi/m(ui) satisfy the condition on the weights in [M, Theorem 2.7]. On the other
hand, the weights v and wi = Mαpi/m(vi)

1/pi satisfy the hypotheses in [M, Theorem 2.8]
and thus we obtain the second inequality.

Before state the next result, we introduce the following class of Young functions
related to the boundedness of the sublinear maximal MB between Lebesgue spaces. For
more information see [P1].

(2.14) Definition: Let 1 < r < ∞. A Young function B is said to satisfy the Br

condition if for some constant c > 0,
∫ ∞

c

B(t)

tr
dt

t
<∞.

(2.15) Theorem: Let 0 ≤ α < nm, 1 < pi < ∞, i = 1, . . . , m, 1
p

=
∑m

i=1
1
pi

. Let q be

a real number such that 1/m < p ≤ q < ∞. Let B, Ai, and Ci, i = 1, . . . , m, be Young
functions such that A−1

i (t)C−1
i (t) ≤ B−1(t), t > 0 and Ci is doubling and satisfies the

Bpi
condition for every i = 1, . . . , m. Let (ν, ~w) weights that satisfy

(2.16) sup
Q

|Q|α/n+1/q−1/p

(

1

|Q|

∫

Q

νq
)1/q m

∏

i=1

‖w−1
i ‖Ai,Q <∞

then

‖Mα,B
~f ν‖Lq ≤ C

m
∏

i=1

‖fiwi‖Lpi .

holds for every ~f ∈ Lp1(wp11 ) × . . . Lpm(wpm
m ).

(2.17) Remark: The linear case of theorem above was proved in [CUF], and in [CUP]
for the case α = 0 and p = q. For B(t) = t, theorem 2.15 gives two weighted results
proved in [M] for the multilineal fractional maximal operator Mα. The first one ([M,
Theorem 2.8]) is obtained by considering Ai = trp

′

i and Ci = t(rp
′

i)
′

for some r > 1 and
the second ([M, Theorem 2.10]) is obtained by taking Ai = tp

′

i(1 + log+ t)p
′

i−1+δ and
Ci = tpi

(1+log+ t)1+δ(pi−1) for δ > 0.

As a consequence of theorem 2.15 and the pointwise estimate given in (2.7), we obtain
the following result about the boundedness of Mα,Bk

for multilinear weights in the A~S

class defined above, where ~S = (s1, . . . , sm) and Bk(t) = t(1 + log+ t)k. In the proof, we
also use the pointwise estimate given in (2.7).

(2.18) Corollary: Let 0 ≤ α < nm and let pi, p, qi, q, si and s be defined as in lema 2.1.

For each k ∈ N let Bk(t) = t(1 + log+ t)k. Let ~wq = (wq11 , . . . , w
qm
m ). If ~f = (f1, . . . , fm)

and ~S = (s1, . . . , sm) then the inequality

‖Mα,Bk
~f (Πm

i=1wi)‖Lq ≤ C
m
∏

i=1

‖fiwi‖Lpi

8



holds for every ~f if and only if ~wq satisfies the A~S condition.

Weighted weak type inequalities for the multilinear fractional integral operator

In this section we obtain weighted estimates for the multilinear fractional maximal
and integral operator.

The following definition of the multilinear fractional integral operator was considered
by several authors (see, for example, [G], [KS], [GK] and [M]).

(2.19) Definition: Let 0 < α < nm and ~f = (f1, . . . , fm). The multilinear fractional
integral is defined by

Iα ~f(x) =

∫

(Rn)m

f1(y1) . . . fm(ym)

(|x− y1| + · · · + |x− ym|)mn−α
d~y,

where the integral in convergent if ~f ∈ S × · · · × S.

Particularly, we study weighted weak type inequalities for the multilinear fractional
maximal and integral operator. For the first one we obtain the following result.

(2.20) Theorem: Let 0 ≤ α < nm, ~w = (w1, . . . , wm) and u =
∏m

i=1w
1/m
i . Then

u({x ∈ R
n : Mα

~f(x) > λm})m ≤ C

m
∏

i=1

∫

Rn

|fi|

λ
Mα/mwi,

where Mα/m denotes the fractional maximal operator of order α/m defined in (1.6).

The case α = 0 of theorem above was proved in [LOPTT]. For m = 1 this is a well
known result proved in [FS].

In [CPSS] the authors considered the problem of find weights W such that

w({x ∈ R
n : |Iαf(x)| > λ}) ≤

C

λ

∫

Rn

|f(x)|W (x) dx

for a given weight w, for every λ > 0 and for suitable functions f . Particularly, they
obtain that the weight W = Mα(ML(logL)δw), δ > 0, works. Motivated from the lin-
ear case, we study an analogous problem in the multilinear context and we obtain the
following result.

(2.21) Theorem: Let 0 < α < nm, δ > 0 and u =
∏m

i=1w
1/m
i . Then

(2.22) ‖Iα ~f‖L1/m,∞(u) ≤ C

m
∏

i=1

∫

Rn

|fi|Mα/mML(logL)δ(wi).

and, in particular

‖Iα ~f‖L1/m,∞(u) ≤ C
m
∏

i=1

∫

Rn

|fi|Mα/mM
2(wi).

9



The result above is an immediate consequence of the next theorem.

(2.23) Theorem: Let 0 < α < nm, δ > 0 and let u be a weight. Then

‖Iα ~f‖L1/m,∞(u) ≤ C‖Mα
~f‖L1/m,∞(M

L(log L)δ
(u)).

Then, the proof of (2.22) follows by observing that

ML(logL)δ(u) = ML(logL)δ(

m
∏

i=1

w
1/m
i ) ≤

m
∏

i=1

ML(logL)δ(wi)
1/m,

which is a consequence of the generalized Hölder’s inequality in Orlicz spaces. Then, an
application of theorem 2.20 gives the desired result.

Recall that a weight v satisfies the RH∞ condition if there exists a positive constant
C such that the inequality

sup
x∈Q

v(x) ≤
C

|Q|

∫

Q

v

holds for every Q ⊂ R
n.

(2.24) Lemma: Let 0 < α < nm. Let v be a weight satisfying the RH∞ condition.

Then, there exists a positive constant C such that, if u =
∏m

i=1w
1/m
i and ~f = (f1, . . . , fm),

∫

Rn

Iα ~f(x)u(x)v(x)dx ≤ C

∫

Rn

Mα
~f(x)Mu(x)v(x) dx,

where M is the Hardy-Littlewood maximal function defined in (1.5).

The following theorem establish some kind of control of the multilinear fractional
integral operator by the multilinear fractional maximal in Lp, 0 < p ≤ 1.

(2.25) Theorem: Let 0 < p ≤ 1 and let u be a weight. Then

∫

Rn

|Iα ~f(x)|pu(x)dx ≤ C

∫

Rn

|Mα
~f(x)|pMu(x) dx.

In the linear case, lemma 2.24 and theorem 2.25 were proved in [CPSS].

Pointwise estimates between Iα and Mα

A pointwise estimate relating both, the multilinear fractional and maximal operators
is given in the next result.
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(2.26) Theorem: (Welland’s type inequality) Let 0 < α < nm and 0 < ǫ <

min{α, nm − α}. Then, if ~f = (f1, . . . , fm) where fi’s are bounded functions with
compact support, then

|Iα ~f(x)| ≤ C
(

Mα+ǫ
~f(x)Mα−ǫ

~f(x)
)1/2

,

where C only depends on n, m, α and ǫ.

In [M], the author proves the following result.

(2.27) Theorem: [M, theorem 2.2] Suppose that 0 < α < nm, 1 < p1, . . . , pm < ∞
and q is a number that satisfies 1/m < p ≤ q <∞. Suppose that one of the two following
conditions holds.
(i) q > 1 and (ν, ~w) are weights that satisfy

sup
Q

|Q|α/n+1/q−1/p

(

1

|Q|

∫

Q

νqr
)1/(qr) m

∏

i=1

(

1

|Q|

∫

Q

w
−p′ir
i

)1/(p′ir)

<∞

for some r > 1.
(ii) q ≤ 1 and (ν, ~w) are weights that satisfy

sup
Q

|Q|α/n+1/q−1/p

(

1

|Q|

∫

Q

νq
)1/q m

∏

i=1

(

1

|Q|

∫

Q

w
−p′ir
i

)1/(p′ir)

<∞

for some r > 1.
Then the inequality

‖Iα ~fν‖q ≤ C

m
∏

i=1

‖fiwi‖pi
.

holds for every ~f ∈ Lp1(wp11 ) × . . . Lpm(wpm
m ).

A direct proof of theorem above for the case q > 1 can be given combining theo-
rem 2.26 with theorem 2.15 applied to the case Ai(t) = trp

′

i, and proceeding as in the
corresponding result in [GCM] (theorem 6.5).

3 Auxiliary results

In this section we give some technical lemmas used in the proof of the main results
in this paper.

(3.1) Lemma: Let B be a Young function and 0 < γ < 1. Then ψ(t) = B(tγ)1/γ is a
Young function.

11



Proof: It is enough to prove that there exists a nontrivial, non-negative and increasing

function g such that ψ(t) =
∫ t

0
g(s) ds. This function g is given by g(s) = b(sγ)

(

B(sγ )
sγ

)(1/γ)−1

,

where b is a non-negative and increasing function such that B(t) =
∫ t

0
b(s)ds. The func-

tion g has the desired properties. �

The next lemma establishes the relation between the dyadic a non-dyadic multilin-
ear fractional maximal operators. Let Mk

α,B be defined as Mα,B but over cubes with

side length less or equal than 2k, Qk = Q(0, 2k+2), τtg(x) = g(x − t) and ~τt(~f) =
(τtf1, . . . , τtfm).

(3.2) Lemma: For each k, ~f and every x ∈ R
n and 0 < q <∞, there exists a constant

C, depending only on n, m, α and q such that

(3.3) Mk
α,B(~f)(x)q ≤

C

|Qk|

∫

Qk

(τ−t ◦M
d
α,B ◦ ~τt)(~f)(x)q dt

For the linear case and α = 0 this result was proved by Fefferman and Stein in [FS]
and can be also found in [GCRF]. In the multilinear context and α = 0 the result above
is given in [LOPTT], and for B(t) = t and α > 0, in [M]. The proof of lemma 3.2 is an
easy modification of any of the mentioned results and we omit it.

In order to prove theorem 2.23 we need the following results. The first of them was
proved in [M] for the multilinear integral operator. For the linear case, a proof can be
found in [P2].

(3.4) Lemma: [M] Let g and fi, i = 1, . . . , m be positive functions with compact
support and let u be a weight. Then there exists a family of dyadic cubes {Qk,j} and a
family of pairwise disjoint subsets {Ek,j}, Ek,j ⊂ Qk,j with

|Qk,j| ≤ C|Ek,j|

for some positive constant C and for every k, j and such that

∫

Rn

Iα ~f(x)u(x)g(x)dx ≤ C
∑

k,j

|Qk,j|
α/n

(

1

|Qk,j|

∫

Qk,j

u(x)g(x) dx

)

(3.5)

×

(

m
∏

i=1

1

|3Qk,j|

∫

3Qk,j

fi(yi) dyi

)

|Ek,j|.

The following lemma was proved in [CN] and gives examples of weights in the RH∞

class.

(3.6) Lemma: Let g be any function such that Mg is finite a.e.. Then (Mg)−α ∈ RH∞,
α > 0.

12



4 Proofs

Proof of lemma 2.1:

The proof is based in some ideas from lemma 2.8 in [GPS]. Let gi be a function such

that gsi
i w

qi
i = f pi

i . Then fi/wi = g
si/pi

i w
qi/pi−1
i = g

si/pi+α/(nm)−1
i g

1−α/(nm)
i w

(qi/pi−1)
i . Let

r = nm/(nm − α) and r′ = nm/α. If s and si are defined as in the hypotheses of the
theorem we get

(4.1)

(

qi
pi

− 1

)

r′ =

(

qi
pi

− 1

)

nm

α
= qi

and
(

si
pi

+
α

nm
− 1

)

r′ =

(

si
pi

+
α

nm
− 1

)

nm

α
(4.2)

=

(

(

1 −
α

nm

) qi
pi

+
α

nm
− 1

)

nm

α

=
(

1 −
α

nm

)

(

qi
pi

− 1

)

nm

α

=
(

1 −
α

nm

)

qi

= si

Let B and ψ be the functions in the hypotheses of the theorem. From lemma 3.1 ψ
is a Young function. Let φ(t) = B(t)nm/(nm−α). Then, by the properties of the function
B we obtain

φ−1(t) tα/nm ≤ CB−1(t).

By applying Hölder’s inequality, and using (4.1) and (4.2) we obtain that

‖fi/wi‖B,Q = ‖g
si/pi

i w
qi/pi−1
i ‖B,Q

= ‖g
1−α/nm
i g

si/pi+α/nm−1
i w

qi/pi−1
i ‖B,Q

≤ ‖g
1−α/nm
i ‖φ,Q‖g

si/pi+α/nm−1
i w

qi/pi−1
i ‖nm/α,Q

=
1

|Q|α/nm
‖gi‖

1−α/nm
ψ,Q ‖fi‖

αpi/nm
pi

.

where we have used that ‖g
1−α/nm
i ‖φ,Q = ‖gi‖

1−α/nm
ψ,Q . Then

|Q|α/n
m
∏

i=1

‖fi/wi‖B,Q ≤
m
∏

i=1

‖gi‖
1−α/(nm)
ψ,Q

m
∏

i=1

‖fi‖
αpi/(nm)
pi

.

≤ Mψ~g(x)
1−α/(nm)

(

m
∏

i=1

‖fi‖
pi
pi

)α/(nm)

,

and inequality (2.3) follows by taking supremum over the cubes Q in R
n. �
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Proof of theorem 2.8: We use the same notation as in the proof of lemma 2.1. Thus, it
is enough to prove that

‖Mα
~fw‖Lq,∞(u) ≤ C

m
∏

i=1

‖fi‖pi
,

and then replace fi by fiwi.
From the hypotheses on the weights and raising the quantity in (2.9) to the power

1 − α/(nm) we obtain that

sup
Q

(

1

|Q|

∫

Q

u

)1/s m
∏

i=1

(

1

|Q|

∫

Q

w−pi′

i

)1/s′i

<∞

o, equivalently

(4.3) sup
Q

(

1

|Q|

∫

Q

u

)1/s m
∏

i=1

(

1

|Q|

∫

Q

w
qi(1−s′i)
i

)1/s′i

<∞

By inequality (2.5) and from (4.3) and the weighted weak boundedness result for M
proved in [LOPTT] we obtain that

‖Mα
~fw‖Lq,∞(u) ≤ C

(

m
∏

i=1

‖fi‖
pi
pi

)α/nm

‖Mg‖
1−α/nm
Ls,∞(u)(4.4)

≤ C

(

m
∏

i=1

‖fi‖
pi
pi

)α/nm( m
∏

i=1

‖gi‖Lsi (w
qi
i )

)1−α/nm

= C

(

m
∏

i=1

‖fi‖
pi
pi

)α/nm( m
∏

i=1

‖fi‖
pi/si
pi

)1−α/nm

= C

m
∏

i=1

‖fi‖pi
,

where we have used that pi α/(nm) + (pi/si)(1 − α/(nm)) = 1. Thus the proof is done.
�

Proof of theorem 2.10: Let ν =
∏m

i=1wi. As in the proof above , it is enough to show
that

‖Mα
~fwν‖q ≤ C

m
∏

i=1

‖fi‖pi
,

but this inequality can be obtained in a similar way to that in (4.4) by replacing
‖Mg‖Ls,∞(u) by ‖Mg‖Ls(νq) and then using the weighted strong boundedness result
proved in [LOPTT]. �

Proof of theorem 2.15: We first consider the dyadic version Md
α,B de Mα,B defined by

Md
α,B = sup

Q∈D:x∈Q
|Q|α/n

m
∏

i=1

‖fi‖B,Q.
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where D denotes the set of dyadic cubes in R
n. Let a be a constant satisfying a > 2mn

and for each k let
Ωk = {x ∈ R

n : Md
α,B(~f)(x) > ak}.

It is easy to see that an analogue of the Calderón Zygmund decomposition in Orlicz spaces
holds for Md

α,B and, therefore there is a family of maximal non-overlapping dyadic cubes
{Qj,k} such that Ωk = ∪jQj,k and

ak < |Qj,k|
α/n

m
∏

i=1

‖fi‖B,Qk,j
≤ 2nmak.

Moreover, each Ωk+1 ⊂ Ωk and the sets Ek,j = Qk,j\(Qk,j ∩Ωk+1) are disjoint and satisfy

(4.5) |Qk,j| < β|Ek,j|

for some β > 1. Then, by the generalized Hölder’s inequality and condition (2.16) we
obtain
∫

Rn

Md
α,B(~f)qνq =

∑

k

∫

Ωk\Ωk+1

Md
α,B(~f)qνq

≤ aq
∑

k

akqνq(Ωk)

≤ aq
∑

k,j

akqνq(Qk,j)

≤ C
∑

k,j

(

|Qk,j|
α/n

m
∏

i=1

‖fi‖B,Qk,j

)q

νq(Qk,j)

≤ C
∑

k,j

(

|Qk,j|
α/n

m
∏

i=1

‖fiwi‖Ci,Qk,j

)q( m
∏

i=1

‖w−1
i ‖qAi,Qk,j

)

νq(Qk,j)

≤ C
∑

k,j

(

m
∏

i=1

‖fiwi‖Ci,Qk,j

)q

|Qk,j|
q/p.

Now, from the fact that p ≤ q and using (4.5), the multilinear Hölder’s inequality and
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the hypotheses on Ci we obtain that

(
∫

Rn

Md
α,B(~f)qνq

)1/q

≤ C

(

∑

k,j

(

m
∏

i=1

‖fiwi‖Ci,Qk,j

)p

|Qk,j|

)1/p

≤ C

(

∑

k,j

(

m
∏

i=1

‖fiwi‖Ci,Qk,j

)p

|Ek,j|

)1/p

≤ C

m
∏

i=1

(

∑

k,j

‖fiwi‖
pi

Ci,Qk,j
|Ek,j|

)1/pi

≤ C
m
∏

i=1

(
∫

Rn

MCi
(fiwi)

pi

)1/pi

≤

m
∏

i=1

‖fiwi‖Lpi .

To prove the non-dyadic case we use lemma 3.2. Thus, from (3.3) it follows that

(4.6) ‖Mα,B(~f) ν‖q ≤ sup
t

‖τ−t ◦M
d
α,B ◦ ~τt(~f) ν‖q.

If the weights (ν, ~w) satisfy condition (2.16), then the weights (τt(ν), ~τt ~w) satisfy the
same condition with constant independent of t. Then, applying the dyadic case, we
obtain

‖(τ−t ◦M
d
α,B ◦ ~τt)(~f) ν‖q = ‖(Md

α,B ◦ ~τt)(~f) τtν‖q

≤ C

m
∏

i=1

‖τtfi τtwi‖pi

≤ C
m
∏

i=1

‖fiwi‖pi
,

with C independent of t. Then, from (4.6) we obtain that

‖Mα,B(~f) ν‖q ≤ C

m
∏

i=1

‖fiwi‖pi
.�

Proof of corollary 2.18: We begin by proving the case α = 0. If ~wp ∈ A~P then we have

that w
pi(1−p′i)
i = w

−p′i
i ∈ Amp′i (see [LOPTT]). Then, for each i = 1, . . . , m there exist

si > 1 such that w
−p′i
i satisfies a reverse Hölder inequality with exponent si. Let Ai(t) =

tsip′i and Ci,k(t) =
(

t(1 + log+ t)k
)(sip

′

i)
′

. Then we have that A−1
i (t)C−1

i,k (t) ∼= B−1
k (t) and
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Ci,k ∈ Bpi
. Thus, since ~wp ∈ A~P we obtain

(

1

|Q|

∫

Q

(Πm
i=1wi)

p

)1/p m
∏

i=1

‖w−1
i ‖Ai,Q ≤

(

1

|Q|

∫

Q

(Πm
i=1wi)

p

)1/p m
∏

i=1

(

1

|Q|

∫

Q

w
−sip′i
i

)1/(sip
′

i)

≤

(

1

|Q|

∫

Q

(Πm
i=1wi)

p

)1/p m
∏

i=1

(

1

|Q|

∫

Q

w
−p′i
i

)1/(p′i)

≤ C.

Then by theorem 2.15 applied to the case α = 0 and p = q we obtain that

‖MBk
(~f)(Πm

i=1wi)‖Lp ≤

m
∏

i=1

‖fiwi‖Lpi
.

The other implication is a consequence of the inequality M(~f) ≤ MBk
(~f) and the

boundedness results proved in [LOPTT] for the multilinear maximal operator M.
Now we prove the case α > 0. Let us first suppose that ~wq ∈ A~S. It is enough to

show that the following inequality

(4.7) ‖Mα,Bk
( ~fw)(Πm

i=1wi)‖Lq ≤

m
∏

i=1

‖fi‖Lpi
.

holds for every ~f = (f1, . . . , fm).
In order to prove (4.7) we use inequality (2.7). Let ψk(t) = t(1 + log+ t)knm/(nm−α).

Then, from the case α = 0 we obtain that

‖Mα,Bk
( ~fw)(Πm

i=1wi)‖Lq ≤ C‖Mψk
(~g)1− α

nm (Πm
i=1wi)‖q

(

m
∏

i=1

‖fi‖
piα

nm
Lpi

)

≤ C‖M
L(logL)

knm
nm−α

(~g)(Πm
i=1w

q/s
i )‖

s/q
Ls

(

m
∏

i=1

‖fi‖
piα

nm
Lpi

)

≤ C‖M
L(logL)[

knm
nm−α ]+1

(~g)(Πm
i=1w

q/s
i )‖

s/q
Ls

(

m
∏

i=1

‖fi‖
piα

nm
Lpi

)

= C‖MB
[ knm

nm−α ]+1
(~g)(Πm

i=1w
q/s
i )‖

s/q
Ls

(

m
∏

i=1

‖fi‖
piα

nm
Lpi

)

≤ C

(

m
∏

i=1

‖giw
q/s
i ‖

s/q
Lsi

)(

m
∏

i=1

‖fi‖
piα

nm
Lpi

)

,

where in the last inequality we have used the fact that ~wq ∈ A~S. We observe now that

‖giw
q/s
i ‖

s/q
Lsi = ‖fi‖

pi/qi
pi = ‖fi‖

1−
αpi
nm

pi and inequality (4.7) follows immediately.

The other implication is a consequence of the inequality Mα(~f) ≤ Mα,B(~f) and the
boundedness result proved in [M].�
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Proof of theorem 2.20 : Let Ωλ = {x ∈ R
n : Mα

~f(x) > λm}. By homogeneity we may
assume that λ = 1. Let K be a compact set contained in Ωλ. Since K is a compact set
and using Vitali’s covering lemma we obtain a finite family of disjoint cubes {Qj} for
which

(4.8) 1 < |Qj |
α/n

m
∏

i=1

1

|Qj |

∫

Qj

|fi|,

andK ⊂ Uj3Qj. Notice that, by Hölder’s inequality we have that u(Q)
|Q|

≤
∏m

i=1

(

wi(Q)
|Q|

)1/m

.

Then by (4.8) and Hölder’s inequality at discrete level we obtain that

u(K)m ≤ C

(

∑

j

u(3Qj)

|3Qj |
|Qj |

)m

≤ C





∑

j

m
∏

i=1

(

1

|3Qj |

∫

3Qj

wi

)1/m

|Qj|
1/m

(

|Qj|
α/(nm)

|Qj|

∫

Qj

|fi|

)1/m




m

≤ C





∑

j

m
∏

i=1

(

|3Qj |
α/(nm)

|3Qj|

∫

3Qj

wi

)1/m(
∫

Qj

|fi|

)1/m




m

≤ C





∑

j

m
∏

i=1

(

∫

Qj

|fi|Mα/mwi

)1/m




m

≤ C
m
∏

i=1

∫

Rn

|fi|Mα/mwi,

and the proof concludes. �

Proof of theorem 2.23: Let p > 1 to be chosen later. Thus, since Lp,∞ and Lp
′,1 are

associate spaces, we have that

‖Iα ~f‖
1/(pm)

L1/m,∞(u)
= ‖(Iα ~f)1/(pm)‖Lp,∞(u) = sup

‖g‖
Lp′ ,1(u)

≤1

∫

Rn

(Iα ~f)1/(pm)g u.

By theorem 2.25 we obtain that
∫

Rn

(Iα ~f)1/(pm)g u ≤

∫

Rn

(Mα
~f)1/(pm)M(gu) =

∫

Rn

(Mα
~f)1/(pm) M(gu)

ML(logL)δ(u)
ML(logL)δ(u),

for δ > 0.

By applying Hölder’s inequality in Lorentz spaces we obtain that
∫

Rn

(Iα ~f)1/(pm)g u ≤ ‖(Mα
~f)1/(pm)‖Lp,∞(M

L(log L)δ
(u))

∥

∥

∥

∥

M(gu)

ML(logL)δ(u)

∥

∥

∥

∥

Lp′,1(M
L(log L)δ

(u))
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Now we proceed as in the linear case (see [CPSS]) by taking p = 1 + δ − 2ǫ with
0 < 2ǫ < δ which allows us to obtain that

∥

∥

∥

∥

M(gu)

ML(logL)δ(u)

∥

∥

∥

∥

Lp′,1(M(logL)δ(u))

≤ C‖g‖Lp′,1(u)

and taking supremum over ‖g‖Lp′,1(u) ≤ 1. �

Proof of lemma 2.24: From inequality (3.5) with g replaced by v and the RH∞ condition
on v we obtain that

∫

Rn

Iα ~f(x)u(x)v(x)dx

≤ C
∑

k,j

|Qk,j|
α/n

(

1

|Qk,j|

∫

Qk,j

uv

)(

m
∏

i=1

(

1

|3Qk,j|

∫

3Qk,j

fi

))

|Ek,j|

≤ C
∑

k,j

|Qk,j|
α/n

∫

Qk,j

u

(

m
∏

i=1

(

1

|3Qk,j|

∫

3Qk,j

fi

))

sup
Qk,j

v

≤ C
∑

k,j

|Qk,j|
α/n

(

1

|Qk,j|

∫

Qk,j

u

)(

m
∏

i=1

(

1

|3Qk,j|

∫

3Qk,j

fi

))

v(Qk,j).

Since v ∈ A∞ and by the properties of the sets Ek,j we obtain that

∫

Rn

Iα ~f(x)u(x)v(x)dx

≤ C
∑

k,j

|3Qk,j|
α/n

(

1

|Qk,j|

∫

Qk,j

u

)(

m
∏

i=1

(

1

|3Qk,j|

∫

3Qk,j

fi

))

v(Ek,j)

≤ C
∑

k,j

∫

Ek,j

Mα
~f(x)Mu(x) v(x) dx

≤ C

∫

Rn

Mα
~f(x)Mu(x) v(x) dx. �

Proof of theorem 2.25: We proceed as in the linear case (see [CPSS]). We use the duality
for Lp spaces for p < 1: if f ≥ 0

‖f‖p = inf{fu−1 : ‖u−1‖p′ = 1} =

∫

fu−1

for some u ≥ 0 such that ‖u−1‖p′ = 1, with p′ = p
p−1

< 0. This follows from the following
reverse Hölder’s inequality, which is a consequence of the Hölder’s inequality,

(4.9)

∫

fg ≥ ‖f‖p‖g‖p′.

19



We choose a nonnegative function g such that ‖g−1‖Lp′(Mu) = 1, and such that

‖Mα
~f‖Lp(Mu) =

∫

Mα
~f
Mu

g
.

Let δ > 0. By Lebesgue differentiation theorem we get

‖Mα
~f‖Lp(Mu) ≥

∫

Mα
~f

Mu

Mδ(g)
,

where Mδ(g) = M(gδ)1/δ. Then applying lemmas 2.24 and 3.6 to the weight Mδ(g)
−1

and the reverse Hölder’s inequality (4.9), we obtain that

‖Mα
~f‖Lp(Mu) ≥

∫

Iα ~f
u

Mδ(g)
≥ ‖Iα ~f‖Lp(u)‖Mδ(g)

−1‖Lp′ (u),

and everything is reduced to proved

‖Mδ(g)
−1‖Lp′ (u) ≥ ‖g−1‖Lp′(Mu) = 1.

Now, the proof follows as in the linear case (see [CPSS]). Since p′ < 0, this is equivalent
to prove that

∫

Rn

Mδ(g)
−p′(x)u(x) dx ≤ C

∫

g−p
′

(x)Mu(x) dx.

By choosing δ such that 0 < δ < p
1−p

, we have that −p′/δ > 1 and the above inequality

follows from the classical weighted norm inequality of Fefferman-Stein (see [FS]). �

Proof of theorem 2.26: Let s be a positive number. We split Iα as follows

|Iα ~f(x)| ≤

∫

Pm
i=1 |x−yi|<s

∏m
i=1 |fi(yi)|

(
∑m

i=1 |x− yi|)mn−α
d~y +

∫

Pm
i=1 |x−yi|≥s

∏m
i=1 |fi(yi)|

(
∑m

i=1 |x− yi|)mn−α
d~y

= I1 + I2.

Let us first estimate I1. Thus, if Qk is a cube centered at x with side length 2−ks,
k ∈ N ∪ {0}, we obtain

I1 =

∞
∑

k=0

∫

2−k−1s<
Pm

i=1 |x−yi|≤2−ks

∏m
i=1 |fi(yi)|

(
∑m

i=1 |x− yi|)mn−α
d~y

≤ C

∞
∑

k=0

1

(2−ks)mn−α

∫

Pm
i=1 |x−yi|≤2−ks

(

m
∏

i=1

|fi(yi)|

)

d~y

≤ C

∞
∑

k=0

1

(2−ks)−α

m
∏

i=1

1

|Qk|

∫

Qk

|fi(yi)| dyi

≤ C
∞
∑

k=0

1

(2−ks)−α
(2−ks)α−ǫ

(2−ks)α−ǫ

m
∏

i=1

1

|Qk|

∫

Qk

|fi(yi)| dyi

≤ CsǫMα−ǫ
~f(x).
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Now, we proceed to estimate I2. Let Pk be the cube centered at x with side length 2ks.
Then we obtain

I2 =

∞
∑

k=0

∫

2ks<
Pm

i=1 |x−yi|≤2k+1s

∏m
i=1 |fi(yi)|

(
∑m

i=1 |x− yi|)mn−α
d~y

≤ C

∞
∑

k=0

1

(2ks)mn−α

∫

Pm
i=1 |x−yi|≤2k+1s

(

m
∏

i=1

|fi(yi)|

)

d~y

≤ C

∞
∑

k=0

1

(2ks)−α

m
∏

i=1

1

|Pk+1|

∫

Pk+1

|fi(yi)| dyi

≤ C
∞
∑

k=0

1

(2ks)−α
(2ks)α+ǫ

(2ks)α+ǫ

m
∏

i=1

1

|Pk+1|

∫

Pk+1

|fi(yi)| dyi

≤ C
1

sǫ
Mα+ǫ

~f(x).

Collecting both estimates we obtain

Iα ~f(x) ≤ C
(

sǫMα−ǫ
~f(x) + s−ǫMα+ǫ

~f(x)
)

,

for any s > 0. Then, to complete the proof, we just have to minimize the expression
above in the variable s. �

5 Banach function spaces

We introduce now some basic facts about the theory of Banach function spaces. For
more information about these spaces we refer the reader to [BS].

Let X be a Banach function space over R
n with respect to the Lebesgue measure. X

has an associate Banach function space X ′ for which the generalized Hölder inequality,
∫

Rn

|f(x)g(x)| dx ≤ ‖f‖X‖g‖X′,

holds. Examples of Banach functions spaces are given by the Lebesgue Lp spaces, Lorentz
spaces and Orlicz spaces. The Orlicz spaces are one of the most relevant Banach function
spaces, and a brief description was given in section §1.

Given any measurable function f ∈ X and a cube Q ⊂ R
n, we define the X average

of f over Q to be
‖f‖X,Q = ‖δl(Q)(fχQ)‖X ,

where δaf(x) = f(ax) for a > 0 and χA denotes the characteristic function of the set A.
In particular, when X = Lr, r ≥ 1, we have that

‖f‖X,Q =

(

1

|Q|

∫

Q

|f(y)|r
)1/r

,

21



and if X = LB, the Orlicz space associated to a Young function B, then

‖f‖X,Q = ‖f‖B,Q.

For a given Banach function space X, we associate the following maximal operator
defined for each locally integrable function f by

MXf(x) = sup
Q∋x

‖f‖X,Q.

If Y1, . . . , Ym are Banach function spaces, the multilinear version of the maximal function
above is given by

M~Y
~f(x) = sup

Q∋x

m
∏

i=1

‖fi‖Yi,Q.

Let 1 < p1, . . . , pm < ∞ and suppose that MYi
: Lpi → Lpi. From the fact that

M~Y
~f(x) ≤

∏m
i=1MYI

fi(x) and applying Hölder’s inequality we obtain that

M~Y : Lp1(Rn) × · · · × Lpm(Rn) → Lp(Rn).

We define now the multilinear maximal operator associate to certain function ϕ that
generalizes the multilinear fractional maximal operator Mα. We shall assume that the
function ϕ : (0,∞) → (0,∞) is essentially nondecreasing, that is, there exists a positive

constant ρ such that, if t ≤ s then ϕ(t) ≤ ρϕ(s). We shall also suppose that limt→∞
ϕ(t)
t

=
0. The linear case of the operator below was study in [P3].

(5.1) Definition: Let ~f = (f1, . . . , fm). The multilinear maximal operator Mϕ associ-
ated to the function ϕ is defined by

Mϕ
~f(x) = sup

Q∋x
ϕ(|Q|)

m
∏

i=1

1

|Q|

∫

Q

fi.

When m = 1 we simply write Mϕ = Mϕ.

The following result is a generalized version of theorem 2.15 when B(t) = t. The case
m = 1 was proved in [P3].

(5.2) Theorem: Let 1/m < p ≤ q < ∞, 1 < pi < ∞, i = 1, . . . , m, 1/p =
∑m

i=1 1/pi.
Let ϕ be a function as in definition (5.1). Let Yi, i = 1, . . . , m, be m Banach function
spaces such that MY ′ : Lpi → Lpi. Suppose that ν, w1, . . . , wm are weights such that, for
some positive constant C and for every cube Q

(5.3) ϕ(|Q|)|Q|1/q−1/p

(

1

|Q|

∫

Q

νq
)1/q m

∏

i=1

‖w−1
i ‖Yi,Q ≤ C.

Then

(5.4) ‖Mϕ
~fν‖q ≤ C

m
∏

i=1

‖fiwi‖pi

holds for every ~f ∈ Lp1(wp11 ) × · · · × Lpm(wpm
m ).
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When ϕ(t) = tα/n and Yi = LAi
, i = 1, . . . , m are the Orlicz spaces associated to the

Young functions Ai, then we obtain theorem 2.15 for the case B(t) = t.
The proof of theorem 5.2 follows similar arguments to those in the proof of theorem

2.15. The main tools used are an analogue of the Calderón-Zygmund decomposition
for Md

ϕ adapted to the essentially nondecreasing function ϕ, the generalized Hölder’s
inequality and the boundedness of MY ′ in the right places.

(5.5) Corollary: Let 1/m < p < ∞, 1 < pi < ∞, i = 1, . . . , m, 1/p =
∑m

i=1 1/pi. Let
ϕ be a function as in definition (5.1). Then

(i) There exists a positive constant C such that, for every ~f = (f1, . . . , fm), and every
positive functions ui

(
∫

Rn

Mϕ
~f(y)p(Πm

i=1ui(y)
1/pi)p dy

)1/p

≤ C

m
∏

i=1

(
∫

Rn

|fi(y)|
piMϕp(ui)

)1/pi

(ii) If si > p′i−1, there exists a positive constant C such that, for every ~f = (f1, . . . , fm),
and every positive functions ui

(
∫

Rn

Mϕ
~f(y)p

dy

(Πm
i=1Mϕpsi (u

si
i )(y)1/(pisi))

p

)1/p

≤ C

m
∏

i=1

(
∫

Rn

|fi(y)|
pi

dy

ui(y)

)1/pi

.

The proof of (i) follows by applying theorem 5.2 to the weights ν = Πm
i=1u

1/pi

i , wi =
Mϕp(ui)

1/pi and Yi = Lp
′

ir, 1 < r <∞.
To prove (ii) we apply theorem 5.2 to the weights ν = Πm

i=1Mϕpsi (u
si
i )(y)1/(pisi), wi =

u
−1/pi

i and Yi = Lp
′

iri , ri = (pi − 1)si.
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