
RIESZ TRANSFORMS RELATED TO SCHRÖDINGER
OPERATORS ACTING ON BMO TYPE SPACES.

B. BONGIOANNI, E. HARBOURE AND O. SALINAS

Abstract. In this work we obtain boundedness on suitable weighted BMO

type spaces of Riesz transforms, and their adjoints, associated to the Schrödinger

operator −∆ + V , where V satisfies a reverse Hölder inequality. Our results
are new even in the unweighted case.

1. Introduction

As it is well known, classical Riesz Transforms map Lp(w), 1 < p < ∞, into
itself as long as w belongs to the Muckenhoupt class Ap, i.e. weights satisfying

(1)
(∫

B

w

)(∫
B

w−
1
p−1

)p−1

≤ C|B|p,

where B denotes any ball in Rd. However they fail to be bounded for p = ∞. In
the unweighted case the substitute result is that L∞ is mapped into a larger space,
the BMO space of John and Nirenberg. Moreover, it turns to be true that BMO
itself is applied continuously into BMO under the Riesz Transforms. This result
has been generalized to the more general spaces BMOβ(w), 0 ≤ β < 1, for certain
classes of weights (see [11, 10]). More precisely, for w belonging to A∞ = ∪∞p=1Ap
and satisfying

(2) |B|
1−β
d

∫
Bc

w(y)
|xB − y |d+1−β ≤ C

w(B)
|B|

,

each Riesz Transform maps continuously BMOβ(w) into itself, 0 ≤ β < 1, where

BMOβ(w) = {f ∈ L1
loc : sup

B

1
|B|β/dw(B)

∫
B

|f(x)− fB | dx <∞},

with the supremum taken over all balls B and fB denoting the average of f over
B.

Classical Riesz Transforms are associated to the Laplacian operator by

Ri =
∂

∂xi
(−∆)−1/2, i = 1, 2, . . . , d.

If we make a perturbation of the Laplace operator we obtain a Schrödinger
operator

L = −∆ + V,
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where V is a no-negative function. Correspondingly, we may associate to the dif-
ferential operator L the Riesz Transforms

Ri =
∂

∂xi
(−∆ + V )−1/2, i = 1, 2, . . . , d.

These operators have been considered in [12], where the author shows that they are
also Calderón-Zygmund singular integrals as long as the potential V belongs to a
reverse-Hölder class RHq for some exponent q ≥ d ≥ 3, i.e. there exists a constant
C such that

(3)
(

1
|B|

∫
B

V (y)q dy
)1/q

≤ C

|B|

∫
B

V (y) dy,

for every ball B ⊂ Rd.
As a consequence Ri, i = 1, 2, . . . , d, are bounded on Lp(w), for 1 < p < ∞

and w ∈ Ap, and of weak type on L1(w), for w ∈ A1. Moreover, Shen shows that
if V satisfies (3) with d

2 ≤ q < d and w ≡ 1, then Ri are bounded only on a
finite range of p, namely for 1 < p ≤ p0 with 1

p0
= 1

d −
1
q , which he proves to be

optimal. Consequently, assuming (3) for q ≥ d/2 we will have Lp boundedness of
the adjoints R∗i , near p =∞. In fact it will hold for p′0 ≤ p <∞ when d/2 ≤ q < d
or 1 < p <∞ when q ≥ d.

Also, regarding these operators, in [4] the authors introduced an appropriate
version of the Hardy space H1 which turns out to be invariant by Ri, under the
assumption q > d/2. Further related results can be found in [5] and [6].

In connection with boundedness of other operators associated to L, in [3] appears
an appropriate version of the BMO space of John-Nirenberg, for potentials V
satisfying (3), for some q > d

2 , and d ≥ 3. Such space is defined through the
following function associated to V already used in [4, 5, 6, 12]. Given x ∈ Rd we
set

(4) ρ(x) = sup

{
r > 0 :

1
rd−2

∫
B(x,r)

V ≤ 1

}
, x ∈ Rd.

With this notation the space BMOL is defined as the set of functions f in L1
loc

satisfying ∫
B

|f − fB | ≤ C |B|, with fB =
1
|B|

∫
B

f ,

for every ball B ⊂ Rd, and ∫
B

|f | ≤ C |B|,

for every ball B = B(x,R), with R ≥ ρ(x).
Clearly BMOL is a subspace of BMO and contains L∞. In [3] it is proved that

BMOL is the dual of the Hardy type space H1
L introduced in [4].

In [1] we defined the more general space BMOβL(w) for an exponent 0 ≤ β < 1
and a weight w as the set of functions f in L1

loc satisfying

(5)
∫
B

|f − fB | ≤ C w(B) |B|β/d,

for every ball B ⊂ Rd, and

(6)
∫
B

|f | ≤ C w(B) |B|β/d,
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for every ball B = B(x,R), with R ≥ ρ(x).
A norm in the space BMOβL(w) can be given by the maximum of the two infima

of the constants that satisfy (5) and (6) respectively. This norm will be denoted by
‖ · ‖BMOβL(w).

The aim of this paper is to explore boundedness properties of the Riesz Trans-
forms Ri and their adjoints R∗i on the spaces BMOβL(w). To our knowledge there
were not results in this direction even in the simplest case w ≡ 1 and β = 0. How-
ever, during the revision of this article, the referee communicated us that in [2]
the authors have proved the BMOL-boundedness of Ri, for q > d. Also, observe
that due to the lack of symmetry of the problem, Ri and R∗i may have different
properties.

In order to give the precise statements we consider the following class of weights.
For η ≥ 1 we say that w ∈ Dη if there exists a constant C such that

(7) w(tB) ≤ C tdη w(B),

for every ball B ⊂ Rd and t > 1. Here, as usual, tB denotes the ball with the
same center as B and t times its radius. We remind that a weight w satisfies the
doubling property

(8)
∫

2B

w ≤ C
∫
B

w,

for every ball B ⊂ Rd, if and only if w ∈ Dη for some η ≥ 1.
Let us notice that our assumption (3) on V implies that V belongs to some Ap

class and thus satisfies (8) and hence (7) for some µ ≥ 1.
Before stating the main theorems we introduce the definition of the reverse

Hölder index of V as q0 = sup{q : V ∈ RHq}. Observe that since V ∈ RHq

implies V ∈ RHq+ε, under the assumption V ∈ RHd we may conclude q0 > d.

Theorem 1. Let V ∈ RHd and w ∈ A∞ ∩Dη. Then

(a) For any 0 ≤ β < 1 − d/q0 and 1 ≤ η < 1 + 1−d/q0−β
d , the operators Ri,

1 ≤ i ≤ d, are bounded on BMOβL(w).
(b) For any 0 ≤ β < 1 and 1 ≤ η < 1 + 1−β

d , the operators R∗i , 1 ≤ j ≤ d, are
bounded on BMOβL(w).

Theorem 2. Let V ∈ RHd/2 such that q0 ≤ d, 0 ≤ β < 2 − d
q0

, and w ∈ Dη ∩
∪s>p′0(Ap0/s′ ∩ RHs) where 1

p0
= 1

q0
− 1

d and 1 ≤ η < 1 + 2−d/q0−β
d . Then the

operators R∗i , 1 ≤ i ≤ d, are bounded on BMOβL(w).

Remark 1. For Ri the condition V ∈ RHd in Theorem 1 can not be relaxed to
V ∈ RHd/2 as it is the case for R∗i . In fact, for w ≡ 1 and V ∈ RHq with
d/2 < q < d, since L∞ ⊂ BMOL ⊂ BMO we would have that Ri, i = 1, . . . , d,
are bounded from L∞ into the classical BMO. Besides, by [12, Theorem 0.5] they
are also bounded on Lp, 1

p = 1
q −

1
d . Therefore by interpolation Ri, i = 1, . . . , d,

would be bounded on any Lr, p < r < ∞, leading to a contradiction since as we
mentioned, the range given in [12] is optimal. This is also the reason why even in
the case V ∈ RHd we obtain a wider class of weights for R∗i .

Remark 2. We point out that any non-negative polynomial gives an example of a
potential V satisfying the assumption of Theorem 1. In fact, those potentials satisfy
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(3) for any q > 1. In particular it applies to V (x) = |x|2 which gives the Hermite
operator. In this situation it can be seen that the weights given by Theorem 1 in
part (a) and (b) and those associated to the classical Riesz transforms coincide (see
Proposition 4 below).

As a corollary of Theorem 1 we have the following application.

Corollary 1. Let V ∈ RHd, w ∈ A∞ ∩Dη and 1 ≤ η < 1 + 1−d/q0−β
d . If u is a

solution of

−∆u+ V u = div ḡ,

then

‖u‖BMOβL(w) ≤ C‖ḡ‖BMOβL(w).

Proof. Since ∇u = R(R∗ · ḡ), the result follows applying Theorem 1. �

The paper is organized as follows. On Section 2 we present some estimates
related to the potential V and properties regarding the spaces and weights under
consideration. Section 3 is due to estimates on the size and smoothness of the
kernels. Finally, in Section 4 we prove our main results.

2. Some preliminary results

We start stating some properties of the function ρ defined in (4) that we will use
frequently.

Proposition 1 ([12]). Let V ∈ RHd/2. For the associated function ρ there exist C
and k0 ≥ 1 such that

(9) C−1ρ(x)
(

1 +
|x− y|
ρ(x)

)−k0
≤ ρ(y) ≤ C ρ(x)

(
1 +
|x− y|
ρ(x)

) k0
k0+1

,

for all x, y ∈ Rd.

Lemma 1. Let V ∈ RHq with q > d/2 and ε > d
q . Then for any constant C1 there

exists a constant C2 such that

(10)
∫
B(x,C1r)

V (u)
|u− x|d−ε

du ≤ C2 r
ε−2

(
r

ρ(x)

)2−d/q

,

if 0 < r ≤ ρ(x), and∫
B(x,C1r)

V (u)
|u− x|d−ε

du ≤ C2 r
ε−2

(
r

ρ(x)

)2+(µ−1)d

,

if r > ρ(x), where µ is such that V ∈ Dµ.

Proof. Clearly we may assume C1 ≥ 1. Since ε > d
q , by Hölder’s inequality,

∫
B(x,C1r)

V (u)
|u− x|d−ε

du ≤ C rε−d/q
(∫

B(x,C1r)

V q

)1/q

.
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If 0 < r ≤ ρ(x), using (3), the doubling property (8) and the definition of ρ, the
last factor can be bounded by(∫

B(x,C1ρ(x))

V q

)1/q

≤ C ρ(x)
d
q−d

∫
B(x,ρ(x))

V

≤ C ρ(x)
d
q−2.

In the case r > ρ(x), we use (3) and V ∈ Dµ to obtain the bound

C rε−d
∫
B(x,C1r)

V ≤ C rε−d
(

r

ρ(x)

)µd ∫
B(x,ρ(x))

V

≤ C rε−d
(

r

ρ(x)

)µd
ρ(x)d−2.

�

Next we present some special properties of the spaces BMOβL(w).

Proposition 2. Let 0 ≤ β < 1 and a weight w ∈ Dη for some η ≥ 1. A function
f belongs to BMOβL(w) if and only if condition (5) is satisfied for every ball B =
B(x,R) with R < ρ(x), and

(11)
∫
B(x,ρ(x))

|f | ≤ C w(B(x, ρ(x))) |ρ(x)|β ,

for all x ∈ Rd.

A proof of this result can be found in [3] for the case w ≡ 1 and β = 0, and in
[1] for the general case.

Recall that functions belonging to the classical BMO space satisfy the John
Nirenberg estimate (see [9]). An extension of this result to the weighted case was
given by Muckenhoupt and Wheeden in [11] and a general version that includes
BMOβ(w), 0 ≤ β < 1, appears in [10]. Even though the proofs are worked out in
d = 1, they can be easily carried out in higher dimension as well.

Weighted John-Nirenberg inequalities have an important consequence, namely
that equivalent norms can be obtained taking appropriate r-averages for the oscil-
lations as long as 1 ≤ r ≤ p′. More precisely, a function f ∈ BMOβ(w) if and only
if

(12) sup
B

1
|B|β/d

(
1

w(B)|B|β/d

∫
B

|f − fB |rw1−r
)1/r

<∞,

and, moreover, this quantity gives an equivalent norm.
An extension of such results for BMOβL(w) spaces is contained in the following

proposition.

Proposition 3. Let 0 ≤ β < 1, w ∈ Ap and 1 ≤ r ≤ p′, r < ∞. Then f ∈
BMOβL(w) if and only if

(13) sup
B

1
|B|β/d

(
1

w(B)

∫
B

|f − fB |rw1−r
)1/r

<∞,
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and

(14) sup
B∈Bρ

1
|B|β/d

(
1

w(B)

∫
B

|f |rw1−r
)1/r

<∞,

where Bρ is the set of balls B = B(x,R) with R ≥ ρ(x). Moreover, the maximum
of the two suprema gives an equivalent norm.

Proof. First, if (13) and (14) are satisfied, Hölder’s inequality implies that f ∈
BMOβL(w) with the norm is controlled by the sum of the two suprema. On the
other hand, by the continuous inclusion BMOβL(w) ⊂ BMOβ(w) we only have to
prove that the left hand side of (14) is dominated by ‖f‖BMOβL(w). Since Ap ⊂ Ar′ ,
for every ball B ∈ Bρ we have(

1
w(B)

∫
B

|f |rw1−r
)1/r

≤
(

1
w(B)

∫
B

|f − fB |rw1−r
)1/r

+ |fB |
(
w1−r(B)
w(B)

)1/r

≤ ‖f‖BMOβL(w)|B|
β/d

(
1 +

w(B)1/r
′
(w1−r(B))1/r

|B|

)
≤ C‖f‖BMOβL(w)|B|

β/d.

(15)

�

Before finishing this section we state the following lemma, providing a very useful
property for the functions on BMOβL(w). A proof for the case ν = 1 was given in
[1].

Lemma 2. Let w ∈ At ∩ Dη with t ≥ 1, η ≥ 1 and f ∈ BMOβL(w). Then, for
every ball B = B(x, r) and any finite ν ≤ t′, we have(∫

B

|f |νw1−ν
)1/ν

≤ C ‖f‖BMOβL(w) w(B)1/ν |B|β/d max

{
1,
(
ρ(x)
r

)dη−d+β}
,

if η > 1 or β > 0, and(∫
B

|f |νw1−ν
)1/ν

≤ C ‖f‖BMOL(w) w(B)1/ν max
{

1, 1 + log
(
ρ(x)
r

)}
,

if η = 1 and β = 0.

Proof. The proof follows the same lines as in [1] for the case ν = 1. For the sake of
completeness we include it here. We write f = f − fB +

(∑j0−1
j=1 f2jB − f2j+1B

)
+

f2j0B , where 2j0−1 < ρ(x)
r ≤ 2j0 . Then,(∫

B

|f |νw1−ν
)1/ν

≤ I1 + I2 + I3,

with I1 =
(∫
B
|f − fB |νw1−ν)1/ν , I2 = (w1−ν(B))1/ν

∑j0−1
j=1 |f2jB − f2j+1B | and

I3 = (w1−ν(B))1/ν |f |2j0B .
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For the first term we just use Proposition 3. For I2 and I3 we bound the oscil-
lation and the average using the definition of the norm, and

(w1−ν(B))1/ν ≤ C |B|
w(B)1/ν′

,

since w ∈ Aν′ .
Combining these estimates we obtain

I2 + I3 ≤ C ‖f‖BMOL(w) w(B)1/ν |B|β/d
j0∑
j=1

2j(dη−d+β).

Evaluating the sum according to the cases dη − d + β = 0 and dη − d + β > 0 we
arrive to the desired result. �

We finish this section making some remarks about the weights appearing in
Theorem 1 and Theorem 2.

The weights for classical Riesz transforms are given by an integral condition (2)
while our classes are stated through a doubling condition. Nevertheless, all the
classes can be described in both ways as the following proposition shows.

Proposition 4. Let γ > 0 and s ≥ 1. Then, w ∈ RHs ∩Dη with η < 1 + γ/d if
and only if

(16) |B|
γ
d

(∫
Bc

w(y)s

|x− y |d+γs

)1/s

≤ Cw(B)
|B|

,

for every ball B = B(x, r).

Proof. If we suppose w ∈ RHs ∩Dη, denoting Bk = B(x, 2kr),∫
Bc

w(y)s

|x− y |d+γs
≤
∞∑
k=1

1
(2kr)d+sγ

∫
Bk

ws

≤ C
∞∑
k=1

(
w(Bk)

(2kr)γ+d

)s

≤ C

(
w(B)
|B|1+ γ

d

∞∑
k=1

2k(dη−γ−d)
)s

,

where the last series converges since η < 1 + γ/d, obtaining (16).
On the other hand, if we suppose (16), by Hölder’s inequality we have

(17) |B|
γs
d

∫
Bc

w(y)s

|x− y |d+γs
≤ Cw

s(B)
|B|

,

and this implies
ws(2B \B) ≤ C ws(B)

which in turn gives the doubling condition for ws. Therefore, with standard argu-
ments we obtain

ws(B) ≤ C ws(2B \B).
Now it is easy to see that (16) implies w ∈ RHs.
Next we check that the function ψ(t) = ws(B(x, t)) satisfies∫ ∞

t

ψ(s)
sd+γs+1

ds ≤ C ψ(t)
td+γs

.
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This follows from (17) splitting the integral dyadically and using the doubling
condition for ws.

Therefore, applying [8, Lemma (3.3)] there exists there exists ε > 0 such that

ws(tB) ≤ Ctd+γs−εws(B),

for every ball B and t ≥ 1. Finally, as a consequence of Hölder’s inequality and
w ∈ RHs we obtain that w ∈ Dη with η < 1 + γ

d . �

Remark 3. In view of this proposition the class of weights appearing in Theorem 1
are those A∞ weights satisfying (16) with s = 1, and γ = 1 − β − d

q0
for the part

(a) and γ = 1− β for the part (b).
Regarding Theorem 2 we obtain the weights satisfying (16) with s > p′0 and

γ = 2− β − d/q0, which also belong to Ap0/s′ .

Remark 4. Clearly, the class of weights mentioned in the introduction regarding the
classical Riesz transforms coincide with that of Theorem 1 part (b) and contains
those of Theorem 1 part (a) and Theorem 2.

Examples of power weights satisfying the assumptions of the previous results are
w(x) = |x|α, with −d < α < 1−β−d/q0 for Theorem 1 part (a), and −d < α < 1−β
for part (b), while for Theorem 2, the exponent α should be in the range

−d+
d

q0
− 1 < α < 1− β − (

d

q0
− 1).

3. Some estimates for the kernels

We shall denote by R and R∗ the vectors whose components are the Riesz
Transforms Ri and R∗i respectively, i.e.,

R = ∇(−∆ + V )−1/2, R∗ = (−∆ + V )−1/2∇.
According to [12], under the assumption that V ∈ RHq with q > d, R is a

Calderón-Zygmund operator. In particular he shows that its Rd vector valued
kernel K satisfies for any 0 < δ < 1− d/q the smoothness condition

(18) |K(x, z)−K(y, z)|+ |K(z, x)−K(z, y)| ≤ C |x− y|δ

|x− z|d+δ
,

whenever |x− z| > 2|x− y|.
However, Calderón-Zygmund estimates are not enough to obtain our results.

We shall need some sharper estimates for the kernel and its difference with the
corresponding to the classical Riesz operator. That is the content of the next
lemma which is basically contained in [12].

Lemma 3. If V ∈ RHq with q > d, then we have:
(a) For every k there exists a constant Ck such that

(19) |K(x, z)| ≤ Ck(
1 + |x−z|

ρ(x)

)k 1
|x− z|d

.

(b) If K denotes the Rd vector valued kernel of the classical Riesz operator R, then

(20) |K(x, z)−K(x, z)| ≤ C

|x− z|d

(
|x− z|
ρ(x)

)2−d/q

.
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Proof. For part (a) we refer to [12, inequality (6.5)]. To deal with (b) we first
observe that if |x − z| ≥ ρ(x) the result is true since both are Calderón-Zygmund
kernels. The case |x−z| < ρ(x) is a consequence of the estimate (valid for q > d/2)

|K(x, z)−K(x, z)| ≤

C

|x− z|d−1

(∫
B(x,|x−z|/4)

V (u)
|u− x|d−1

du+
1

|x− z|

(
|x− z|
ρ(x)

)2−d/q
)

appearing in the same paper as inequality (5.9). In fact if q > d, we may use
Lemma 1 with ε = 1 and we bound the first term in the sum by the second one. �

In order to control the operator R acting on functions in BMOβL(w) we need a
new estimate concerning the smoothness of the difference K −K.

Lemma 4. Let V ∈ RHq with q > d and 0 < δ < 1 − d
q . Then, there exists a

constant C such that

(21) |[K(x, z)−K(x, z)]− [K(y, z)−K(y, z)]| ≤ C|x− y|δ

|x− z|d+δ

(
|x− z|
ρ(x)

)2−d/q

,

whenever |x− z| ≥ 2|x− y|.

Proof. Inequality (21) certainly holds when |x−z| ≥ ρ(x) since both kernels K and
K satisfy the Calderón-Zygmund smoothness estimate (18) for δ < 1 − d/q. Now
suppose |x − z| < ρ(x). Let Λ(x, z, τ) and Γ(x, z, τ) be the fundamental solutions
of (−∆ + V + iτ) and (−∆ + iτ) respectively. It is well known (see [12, p. 529])
that for any positive k there exists a constant Ck such that

(22) |∇1Γ(x, z, τ)| ≤ Ck
(1 + |τ |1/2|x− z|)k

1
|x− z|d−1

and

(23) |(∇1)2Γ(x, z, τ)| ≤ Ck
(1 + |τ |1/2|x− z|)k

1
|x− z|d

,

for all x, z ∈ Rd, where ∇1 means that we are taking all the partial derivatives with
respect to the first variable. Also, from [12, Theorem 2.7], we have

(24) |Λ(x, z, τ)| ≤ Ck
[1 + |τ |1/2|x− z|]k [1 + |x− z|/ρ(x)]k |x− z|d−2

for all x, z ∈ Rd. Notice that since Λ(x, z, τ) = Λ(z, x,−τ) we may replace ρ(x) by
ρ(z) in the previous inequality.

With this notation, following [12, p. 538] the difference of the kernels can be
written as

K(x, z)−K(x, z) = − 1
2π

∫
R
(−iτ)−1/2[∇1Λ(x, z, τ)−∇1Γ(x, z, τ)] dτ.

On the other hand since u = Λ− Γ, as a function of the first variable, satisfies the
equation −∆u+ iτu = −V Λ, we obtain

Λ− Γ = −
∫

Rd
ΓV Λ.

Then

K(x, z)−K(x, z) = − 1
2π

∫
R

(−iτ)−1/2

∫
Rd
∇1Γ(x, u, τ)V (u)Λ(u, z, τ) du dτ.(25)
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Consequently,

[K(x, z)−K(x, z)]− [K(y, z)−K(y, z)] =

− 1
2π

∫
R

(−iτ)−1/2

∫
Rd

[∇1Γ(x, u, τ)−∇1Γ(y, u, τ)]V (u)Λ(u, z, τ) du dτ.

We will deal first with the absolute value of the inner integral before performing
the integration in τ . To this end we consider four regions covering Rd:

E1 = {u : |u− x| < 3
2
|x− y|};

E2 = {u :
3
2
|x− y| ≤ |u− x| < 1

2
|x− z|};

E3 = {u :
1
2
|x− z| ≤ |u− x| < 2|x− z|};

E4 = {u : |u− x| ≥ 2|x− z|}.

After taking absolute value inside, we call Ij , j = 1, 2, 3, 4, the corresponding
integrals and we proceed to estimate them.

For I1, we majorize by the sum of the gradients and estimate each integral
separately. Since both are similar we work out one of them. Due to the assumption
|x− z| > 2|x− y|, for u ∈ E1 we have |u− z| ≥ 1

4 |x− z|, and by (22) and (24), we
get ∫

E1

|∇1Γ(x, u, τ)Λ(u, z, τ)|V (u) du

≤ Ck
∫
E1

V (u)
(1 + |τ |1/2|u− z|)k|x− u|d−1|u− z|d−2

du

≤ Ck
(1 + |τ |1/2|x− z|)k|x− z|d−2

∫
B(x,2|x−y|)

V (u)
|x− u|d−1

du

≤ Ck |x− y|δ

(1 + |τ |1/2|x− z|)k|x− z|d−1+δ

(
|x− z|
ρ(x)

)2−d/q

,

(26)

where in the last inequality we have used Lemma 1 with ε = 1 and r = |x − y| <
1
2 |x− z|, and δ < 1− d

q .
Next, to take care of the integrals on the remaining regions, we observe that for

|u− x| ≥ 3
2 |x− y| the Mean Value Theorem together with (23) and (24) give

|[∇1Γ(x, u, τ)−∇1Γ(y, u, τ)]V (u)Λ(u, z, τ)|

≤ Ck |x− y|V (u)

(1 + |τ |1/2|u− z|)k
(

1 + |u−z|
ρ(z)

)k
|u− z|d−2 (1 + |τ |1/2|x− u|)k|x− u|d

.(27)

Then, since u ∈ E2 implies |u− z| ≥ |x− z| − |u− x| > 1
2 |x− z|, we obtain

I2 ≤
Ck |x− y|

(1 + |τ |1/2|x− z|)k |x− z|d−2

∫
E2

V (u)
|x− u|d

du

≤ Ck |x− y|δ

(1 + |τ |1/2|x− z|)k |x− z|d−2

∫
B(x,|x−z|)

V (u)
|x− u|d−1+δ

du.
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By Lemma 1 with ε = 1− δ and r = |x− z|, we arrive to

(28) I2 ≤
Ck |x− y|δ

(1 + |τ |1/2|x− z|)k|x− z|d−1+δ

(
|x− z|
ρ(x)

)2−d/q

,

By (27) and using that u ∈ E3 implies |x− z| ∼ |u− x|,

I3 ≤
Ck |x− y|

(1 + |τ |1/2 |x− z|)k |x− z|d

∫
E3

V (u)
|u− z|d−2

du

and since E3 ⊂ B(z, 3|x− z|) we may use Lemma 1 with ε = 2 and r = |x− z| to
obtain

I3 ≤
Ck |x− y|

(1 + |τ |1/2|x− z|)k|x− z|d

(
|x− z|
ρ(x)

)2−d/q

,(29)

where we have use also that ρ(z) ∼ ρ(x).
Finally, to deal with I4 we use again (27). Noticing that for u ∈ E4 |u−x| ∼ |u−z|

and ρ(x) ∼ ρ(z) we get

I4 ≤
Ck|x− y|

(1 + |τ |1/2|x− z|)k

∫
E4

V (u)

|x− u|2d−2(1 + |u−x|
ρ(x) )k

du.(30)

We split the integral above into E4 ∩B(x, ρ(x)) and E4 ∩B(x, ρ(x))c.
For the first part, we have∫

2|x−z|<|u−x|<ρ(x)

V (u)

|x− u|2d−2(1 + |u−x|
ρ(x) )k

du

≤

(∫
B(x,2|x−z|)c

1
|u− x|(2d−2)q′

du

)1/q′ (∫
B(x,ρ(x))

V q

)1/q

≤ C

|x− z|d

(
|x− z|
ρ(x)

)2−d/q

,

(31)

where we have used (3) and the definition of ρ.
For the other term, splitting into dyadic annuli and choosing k big enough, we

obtain ∫
|u−x|>ρ(x)

V (u)

|x− u|2d−2(1 + |u−x|
ρ(x) )k

du

≤ ρ(x)k
∫
|u−x|>ρ(x)

V (u)
|x− u|k+2d−2

du

≤ C

ρ(x)2d−2

∑
j

1
2j(k+2d−2)

∫
|u−x|<2j+1ρ(x)

V

≤ C

ρ(x)2d−2

(∫
|u−x|<ρ(x)

V

)∑
j

1
2j(k+2d−2−µ)

≤ C

ρ(x)d
≤ C

|x− z|d

(
|x− z|
ρ(x)

)2−d/q

,

(32)

where in the third inequality we have use that V belongs to Dµ for some µ ≥ 1.
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From (30), (31), (32), we obtain

I4 ≤
Ck|x− y|

(1 + |τ |1/2|x− z|)k
C

|x− z|d

(
|x− z|
ρ(x)

)2−d/q

.(33)

Now from (26), (28), (29) and (33), integrating on τ we get the desired estimate
and we finish the proof of the lemma. �

Regarding R∗ we will work under a milder condition on V , that is V satisfies
(3) with q > d/2. Under this hypothesis R∗ is not necessarily a Calderón-Zygmund
operator. However, by [12] it is bounded “near” L∞. We state in the next two
lemmas properties of K∗ that replace (18) and inequalities of Lemma 3.

Lemma 5. If V ∈ RHq with d/2 < q < d, then we have:

(a) For every k there exists a constant C such that
(34)

|K∗(x, z)| ≤ C(
1 + |x−z|

ρ(x)

)k 1
|x− z|d−1

(∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du+
1

|x− z|

)
.

Moreover, the last inequality also holds with ρ(x) replaced by ρ(z).
(b) For every k and 0 < δ < 2− d/q there exists a constant C such that

|K∗(x, z)−K∗(y, z)| ≤

C(
1 + |x−z|

ρ(x)

)k |x− y|δ

|x− z|d−1+δ

(∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du+
1

|x− z|

)
,(35)

whenever |x− y| < 2
3 |x− z|. Moreover, the last inequality also holds with ρ(x)

replaced by ρ(z).
(c) If K∗ denotes the Rd vector valued kernel of the adjoint of the classical Riesz

operator, then

|K∗(x, z)−K∗(x, z)| ≤

C

|x− z|d−1

(∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du+
1

|x− z|

(
|x− z|
ρ(x)

)2−d/q
)
.

(36)

Proof. Inequalities (34) and (36) can be found in [12], pages 538 and 540 respec-
tively. We point out that inequality (36) is proved only for |x− z| < ρ(x) but using
the size of K∗ and K∗ this restriction is not necessary. Estimate (35) appears in
[7, Lemma 4] for |x − y| < 1

16 |x − z|. However, it is possible to change the factor
1/16 for any positive constant less than one. In order to see that both estimates
(34) and (35) still hold with ρ(z), it is enough to consider the case ρ(z) < |x− z|,
since otherwise ρ(x) ∼ ρ(z). In that case, using Proposition 1 we have(

1 +
|x− z|
ρ(x)

)−k
≤ C

(
1 +
|x− z|
ρ(z)

)−(1−σ)k

(37)

where 0 < σ < 1. �

Lemma 6. If V ∈ RHq with q > d, then we have:
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(a) For every k there exists a constant C such that

(38) |K∗(x, z)| ≤ C(
1 + |x−z|

ρ(x)

)k 1
|x− z|d

.

Moreover, the last inequality also holds with ρ(x) replaced by ρ(z).
(b) For every k and 0 < δ < 1 there exists a constant C such that

(39) |K∗(x, z)−K∗(y, z)| ≤ C(
1 + |x−z|

ρ(x)

)k |x− y|δ|x− z|d+δ
,

whenever |x− y| < 2
3 |x− z|. Moreover, the last inequality also holds with ρ(x)

replaced by ρ(z).
(c) If K∗ denotes the Rd vector valued kernel of the adjoint of the classical Riesz

operator, then

(40) |K∗(x, z)−K∗(x, z)| ≤ C

|x− z|d

(
|x− z|
ρ(x)

)2−d/q

.

Proof. Since K∗(x, z) = K(z, x), inequality (38) is a consequence of (19) and (37).
In order to see (39), given 0 < δ < 1, we consider d/2 < s < d and such that

0 < δ < 2 − d/s. Since V satisfies (3) for every s < q, inequality (35) holds, in
particular with ρ(z). Now, if |x− z| < ρ(z) we use the first inequality in Lemma 1
to see ∫

B(z,|x−z|/4)

V (u)
|u− z|d−1

du ≤ C 1
|x− z|

.

In the case |x− z| ≥ ρ(z), using the second inequality in Lemma 1 we get∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du ≤ C 1
|x− z|

(
1 +
|x− z|
ρ(z)

)2+(µ−1)d

.

Finally, by (37) we may replace ρ(z) with ρ(x) and (38) holds.
To check (40), if |x − z| < ρ(x) the result follows from (20) since ρ(x) ∼ ρ(z).

In the case |x− z| ≥ ρ(x) we use that the size of each kernel is like 1
|x−z|d and that

2− d/q > 0. �

The following result gives an appropriate version of Lemma 4 for R∗ under the
weaker assumption V ∈ RHd/2.

Lemma 7. Let V ∈ RHq with q > d/2 and 0 < δ < min{1, 2− d/q}. Then, there
exists a constant C such that

|K∗(x, z)−K∗(x, z)− [K∗(y, z)−K∗(y, z)]| ≤

C|x− y|δ

|x− z|d−1+δ

(∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du+
1

|x− z|

(
|x− z|
ρ(x)

)2−d/q
)

(41)

whenever |x− z| ≥ 2|x− y|. Moreover, in the case q > d,

|K∗(x, z)−K∗(x, z)− [K∗(y, z)−K∗(y, z)]| ≤ C|x− y|δ

|x− z|d+δ

(
|x− z|
ρ(x)

)2−d/q

,(42)

whenever |x− z| ≥ 2|x− y|.
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Proof. First observe that for |x− z| ≥ ρ(x), estimates (41) and (42) can be derived
using the smoothness of each kernel (see (35) and (39) for K∗).

For the rest of the proof we assume |x− z| < ρ(x). From (25) and the fact that
Λ(u, x, τ) = Λ(x, u,−τ) we obtain

K∗(x, z)−K∗(x, z)− [K∗(y, z)−K∗(y, z)] =

− 1
2π

∫
R

(−iτ)−1/2

∫
Rd
∇1Γ(z, u, τ)V (u)[Λ(x, u,−τ)− Λ(y, u,−τ)] du dτ.

We call I the absolute value of the inner integral in the above expression, and we
split Rd into the same regions Ej , j = 1, 2, 3, 4 as in Lemma 4. We denote by Ij ,
the integral over Ej , j = 1, 2, 3, 4 after taking absolute value inside.

For I1, we majorize the absolute value of the difference related to Λ by the sum
of the absolute values of each term and estimate each integral separately. Since
both are similar we work out one of them. First we notice that |x − z| > 2|x − y|
implies |z − u| > 1

4 |x− z| for u ∈ E1. Then, using (24) and (22), we have∫
E1

|∇1Γ(z, u, τ)Λ(x, u,−τ)|V (u) du

≤ Ck
(1 + |τ |1/2|x− z|)k|x− z|d−1

∫
B(x,2|x−y|)

V (u)
|x− u|d−2

du

≤ Ck |x− y|δ

(1 + |τ |1/2|x− z|)k |x− z|d−1+δ

(
|x− z|
ρ(x)

)2−d/q

,

(43)

where in the last inequality we have used Lemma 1 with ε = 2 and r = |x − y| <
2ρ(x), and that δ ≤ 2− d/q.

For the remaining regions we will use the following estimate taken from [7, p.
427],

|Λ(x, u,−τ)− Λ(y, u,−τ)| ≤

C
|x− y|δ

|x− u|d−2+δ

[
(1 + |τ |1/2|x− u|)

(
1 +
|x− u|
ρ(u)

)]−k
,

(44)

for |x− y| < 2
3 |x− u| and 0 < δ < min{1, 2− d/q}. In fact, in [7] the inequality is

proved for q < d. However, for q ≥ d since V belongs to RHs for every s ≤ q, the
above inequality holds for any 0 < δ < 1.

To estimate I2 we use (44) and (22) to get

I2 ≤
Ck|x− y|δ

(1 + |τ |1/2|x− z|)k|x− z|d−1

∫
B(x, 12 |x−z|)

V (u)
|u− x|d−2+δ

du

≤ Ck|x− y|δ

(1 + |τ |1/2|x− z|)k|x− z|d−1+δ

(
|x− z|
ρ(x)

)2−d/q

,

(45)

where in the last inequality we have used Lemma 1 with r = 1
2 |x− z| and ε = 2− δ.

To deal with I3 we notice E3 ⊂ B(z, 3|x − z|). Using again (44) and (22) we
arrive to

I3 ≤
Ck|x− y|δ

(1 + |τ |1/2|x− z|)k|x− z|d−2+δ

∫
B(z,3|x−z|)

V (u)
|u− z|d−1

du.(46)
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Finally, for u ∈ E4 we have |u− x| ∼ |u− z| and hence, using (44) and (22),

I4 ≤
Ck|x− y|δ

(1 + |τ |1/2|x− z|)k

∫
E4

V (u)
|u− x|2d−3+δ

[
1 +

(
|u− x|
ρ(u)

)]−k
du.

We set E4 = E1
4 ∪ E2

4 , where E1
4 = {u : 2|x − z| ≤ |u − x| ≤ ρ(x)}. Applying

Hölder’s inequality the above integral over E1
4 is bounded by(∫

B(x,ρ(x))

V q

)1/q (∫
|u−x|>2|x−z|

1
|u− x|(2d−3+δ)q′

du

)1/q′

≤ C

|x− z|d−1+δ

(
|x− z|
ρ(z)

)2−d/q

,

where in the last inequality we have used the reverse Hölder condition on V and
the definition of ρ.

To estimate the integral on E2
4 , by Proposition 1 we have

(47) ρ(u) ≤ Cρ(x)1−σ|u− x|σ,
with 0 < σ < 1. Therefore, we set N = k(1− σ) to get∫

|u−x|>ρ(x)

V (u)
|u− x|2d−3+δ

(
ρ(x)
|u− x|

)N
du

≤ ρ(x)−2d+3−δ
∞∑
j=1

2−j(2d−3+δ+N)

∫
|u−x|<2jρ(x)

V.

Since V satisfies a doubling condition and we can choose k large enough, pro-
ceeding as in (32) the last expression is bounded by a constant times

ρ(x)−d+1−δ ≤ C

|x− z|d−1+δ

(
|x− z|
ρ(z)

)2−d/q

,

since d− 1 + δ ≥ 2− d/q.
Now using the estimates in E1

4 and E2
4 reminding that |x− z| ≤ ρ(x), we obtain

I4 ≤
Ck|x− y|δ

(1 + |τ |1/2|x− z|)k |x− z|d−1+δ

(
|x− z|
ρ(x)

)2−d/q

.(48)

From (43), (45), (46) and (48), performing the integration on τ we get (41).
It remains to check (42) for |x − z| < ρ(x). For q > d, this is a consequence of
Lemma 1 and the fact that ρ(x) ∼ ρ(z). In the case q = d we use that V belongs
to RHq+η for some η > 0. �

4. Proofs of the main results

Proof of Theorem 1. First we will prove (a). Notice that by our assumptions if we
fix β and η we may choose q > d and β < δ < 1− d/q such that V ∈ RHq and

(49) 1 ≤ η < 1 +
δ − β
d

.

According to Proposition 2 we only need to check that

(50)
∫
B

|Rf | ≤ C ‖f‖BMOβL(w)w(B) |B|β/d,
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for all B = B(x0, ρ(x0)), x0 ∈ Rd, and

(51)
∫
B

|Rf − (Rf)B | ≤ C ‖f‖BMOβL(w)w(B) |B|β/d,

with B = B(x0, r), r < ρ(x0).
We start with (50). For B = B(x0, ρ(x0)) we write f = f1 +f2, with f1 = fχ2B .
Since w ∈ A∞, w ∈ Ap for some 1 < p <∞ and hence w1−p′ ∈ Ap′ . Using that

under our assumptions R is a Calderón-Zygmund operator we have∫
B

|Rf1| ≤ w(B)1/p
(∫

B

|Rf1|p
′
w1−p′

)1/p′

≤ C w(B)1/p
(∫

2B

|f |p
′
w1−p′

)1/p′

≤ C ‖f‖BMOβL(w)w(B) |B|β/d,

where in the last inequality we apply Proposition 3 and the doubling property of
the weight w.

On the other hand, an application of Lemma 3 gives,∫
B

|Rf2| ≤
∫
B

∫
(2B)c

|K(x, z) f(z)| dz dx

≤ Ck
∫
B

∫
(2B)c

(
ρ(x)
|x− z|

)k 1
|x− z|d

|f(z)| dz dx

≤ Ckρ(x0)k+d
∫

(2B)c

|f(z)|
|x0 − z|k+d

dz,

where we have use that ρ(x) ∼ ρ(x0) (Proposition 1) and |x0 − z| ∼ |x− z|.
Splitting the integral into dyadic annuli and using the doubling property, the

above expression is bounded by

Ck

∞∑
j=2

1
2j(k+d)

∫
2jB

|f(z)| dz ≤ Ck‖f‖BMOβL(w)ρ(x0)β
∞∑
j=2

w(2jB)
2j(k+d−β)

≤ Ck‖f‖BMOβL(w)ρ(x0)βw(B)
∞∑
j=2

1
2j(k+d−β−dη)

,

and the last sum is finite choosing k big enough. This completes the proof of (50).
In order to check (51) we consider the ball B = B(x0, r), r < ρ(x0).∫

B

|Rf(x)− (Rf)B | dx

≤
∫
B

|(R−R)f(x)− [(R−R)f ]B | dx+
∫
B

|Rf(x)− (Rf)B | dx

= I + II.

(52)

Since BMOβL(w) ⊂ BMOβ(w) and the weight w satisfies (2) (see Remark 4),
the classical Riesz transform preserves BMOβ(w) and thus

II ≤ C ‖f‖BMOβL(w)w(B) |B|β/d.



RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS. . . 17

It remains to take care of I. We set f = f1 + f2 + f3 with f1 = fχ5B and
f3 = fχBc0 with B0 = B(x0, 5ρ(x0)). Then I ≤ I1 + I2 + I3 where Ij is the integral
that defines I with fj instead of f .

To estimate I1 we use Lemma 3 obtaining

I1 ≤ 2
∫
B

|(R−R)f(x)| dx

≤ C

∫
B

∫
5B

|f(z)|
|x− z|d

(
|x− z|
ρ(x)

)2−d/q

dz dx

≤ C ρ(x0)d/q−2

∫
5B

∫
B

1
|x− z|d+d/q−2

dx |f(z)| dz

≤ C

(
r

ρ(x0)

)2−d/q ∫
5B

|f(z)| dz.

By Lemma 2 in the case β > 0 or η > 1, the last expression is bounded by(
r

ρ(x0)

)2−d/q−dη+d−β

rβw(B)‖f‖BMOβL(w) ≤ C rβw(B)‖f‖BMOβL(w),

since by assumption the exponent 2 − d/q − dη + d − β is non-negative. The case
β = 0 and η = 1 follows in the same way.

To deal with I2 we clearly have

I2 ≤
1
|B|

∫
B

∫
B

∫
B0\5B

|[K(x, z)−K(x, z)]− [K(y, z)−K(y, z)]| |f(z)| dz dx dy.

Now, since x, y ∈ B and z ∈ (5B)c it follows |x− z| ≥ 2|x− y|, and therefore we
may apply Lemma 4 for δ chosen as above to get

I2 ≤
C

|B|

∫
B

∫
B

∫
B0\5B

|x− y|δ

|x− z|d+δ

(
|x− z|
ρ(x)

)2−d/q

|f(z)| dz dx dy

≤ C
rd+δ

ρ(x0)2−d/q

∫
B0\5B

|f(z)|
|x0 − z|d+δ−2+d/q

dz,

since ρ(x0) ∼ ρ(x) and |x− z| ∼ |x0 − z|.
Splitting the integral, using Lemma 2 for β > 0 or η > 1, and the doubling

condition we obtain for j0 the integer part of log(ρ(x0)/5r),

I2 ≤ C

(
r

ρ(x)

)2−d/q j0∑
j=2

1
2j(d+δ−2+d/q)

∫
2j+1B\2jB

|f(z)| dz

≤ C

(
r

ρ(x0)

)2−d/q−dη+d−β

rβ w(B) ‖f‖BMOβL(w)

j0∑
j=2

2j(2−δ−d/q)

≤ C

(
r

ρ(x0)

)δ−dη+d−β
rβ w(B) ‖f‖BMOβL(w),

and since r < ρ(x0) and (49) implies 0 < δ − dη + d − β, we arrive to the desired
estimate. The case β = 0 and η = 1 follows in the same way majorizing the log
function by an appropriate positive power.

Finally, for I3 we use that both kernels K and K satisfy the Calderón-Zygmund
smoothness estimate (18) for δ < 1 − d/q. Therefore proceeding as with I2 we
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obtain

I3 ≤ C rd+δ
∫
Bc0

|f(z)|
|x0 − z|d+δ

dz

≤ C

∞∑
j=j0

1
2j(d+δ)

∫
2j+1B

|f(z)| dz

≤ C rβ ‖f‖BMOβL(w)

∞∑
j=j0

1
2j(d+δ−β)

w(2jB).

Applying the doubling condition our choice of δ implies that the last series converges
and we obtain the desired result.

In order to prove (b), we may proceed as before, this time choosing q > d and
β < δ < 1 such that V ∈ RHq and (49) holds, and using Lemma 6 and Lemma 7
instead of Lemma 3 an Lemma 4 respectively. �

Before the proof of Theorem 2 we need the following technical lemma. In what
follows we denote by I1 = (−∆)−1/2 the classical fractional integral of order 1.

Lemma 8. Let V ∈ RHq with d/2 < q < d and w ∈ RHs ∩ Ap/s′ for some
s < p′ where 1

p = 1
q −

1
d . Then for any f ∈ BMOβL(w), 0 ≤ β < 1, and any ball

B = B(x, r),

(53)
∫
B

|f(z)|I1(V χ2B)(z) dz ≤ C‖f‖BMOβL(w)w(B)rβ−1Φβ,η(
r

ρ(x)
),

where

Φβ,η(t) =


t2+µd−d if t ≥ 1,
td−dη−β+2−d/q if t < 1, and either β > 0 or η > 1,
[1 + log(1/t)] t2−d/q if t < 1, η = 1 and β = 0,

for η and µ being the exponent of the doubling property satisfied by w and V re-
spectively.

Proof. We first apply Hölder’s inequality to estimate the right hand side of (53) by

‖fχB‖p′ ‖I1(V χ2B)‖p.

To bound the first factor we apply again Hölder’s inequality with exponent σ
such that σp′ = (p/s′)′ = ν to the functions |f |p′ w 1

σ−p
′

and wp
′− 1

σ . It is easy to
check that (p′ − 1

σ )σ′ = s and 1
σ′p′ = s′

sp . Therefore,

‖fχB‖p′ ≤
(∫

B

ws
)s′/sp(∫

B

|f |νw1−ν
)1/ν

≤ Cw(B)s
′/p

|B|1/p

(∫
B

|f |νw1−ν
)1/ν

.

(54)

On the other hand, due to the boundedness of I1 and the doubling property of
V we have

‖I1(V χ2B)‖p ≤ C ‖V χ2B‖q ≤ C
V (B)
|B|1/q′

.(55)
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In the case r ≥ ρ(x0), since w ∈ Ap/s′ , an application of Proposition 3 gives us

(56) ‖fχB‖p′ ≤ ‖f‖BMOβL
w(B)rβ−d/p.

Now we apply the second part of Lemma 1 to estimate the right hand side of (55)
by

rd−2−d/q′
(

r

ρ(x)

)2+(µ−1)d

.

Combining the above estimates we arrive to (53).
The case r < ρ(x), is handled similarly, using Lemma 2 and the first part of

Lemma 1 to bound (54) and (55) respectively. �

Proof of Theorem 2. Let s > p′0 such that w ∈ Ap0/s′∩RHs. We choose q satisfying
d/2 < q < q0 ≤ d, V ∈ RHq, 0 ≤ β < 2 − d

q , 1 ≤ η < 1 + 2−d/q−β
d and such that

w ∈ Ap/s′ for 1
p = 1

q −
1
d .

As in the proof of Theorem 1 we only need to check (50) and (51) with R∗
instead ofR. To obtain these estimates, we follow the same steps as for the previous
theorem. Let us notice that there we used estimates of the kernel given by Lemma 6
and Lemma 7 for q > d. This time we have to take care of an additional term
involving V .

Let x0 ∈ Rd and B = B(x0, ρ(x0)), and set f = f1 + f2 with f1 = χ2Bf . Since
R∗ is bounded in Lp

′
(see [12, Theorem 0.5]) and using (56) we have∫

B

|R∗f1| ≤ |B|1/p
(∫

B

|R∗f1|p
′
)1/p′

≤ C|B|1/p
(∫

B

|f |p
′
)1/p′

≤ C‖f‖BMOβL
|B|β/dw(B).

(57)

For f2 we estimate the size of K∗ using Lemma 5. We only have to take care of
the term with V . The other is the same as in Theorem 1.

Now, using that for x ∈ B and z ∈ Rd \ 2B, ρ(x) ∼ ρ(x0), |x − z| ∼ |x0 − z|,
B(z, |z−x|4 ) ⊂ B(x0, 2|x0 − z|), we have that∫

B

∫
Rd\2B

ρ(x)k
(∫

B(z,
|x−z|

4 )

V (u)
|u− z|d−1

du

)
|f(z)|

|x− z|k+d−1
dz dx

is bounded by a constant times

ρ(x0)
∞∑
j=1

1
2j(k+d−1)

∫
2j+1B\2jB

(∫
2j+2B

V (u)
|u− z|d−1

du

)
|f(z)|dz.

Noticing that
∫
2j+2B

V (u)
|u−z|d−1 du = I1(χ2j+2BV )(z), we may use Lemma 8 and w ∈

Dη, to obtain the bound

C ‖f‖BMOβL(w)w(B) ρ(x0)β
∞∑
j=1

1
2j(k+2d−β−2−µd−ηd) .

Choosing k large enough to make the series convergent we arrive to the desired
estimate.

Now we take care of the oscillation of R∗ on a ball B = B(x0, r) with r < ρ(x0).
First, we use the same estimate as in (52) with R and R replaced by their

adjoints and we again call I and II to the corresponding terms. For II, the same
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argument is valid since w satisfies (2) (see Remark 4). For I we set Ij , j = 1, 2, 3
as in there.

To estimate I1 we use part c) of Lemma 5. The term without V can be carried
out in the same way. For the term involving V we notice that B(z, 1

4 |z − x|) ⊂ 8B
for x ∈ B and z ∈ 5B. Therefore it can be bounded by∫

B

∫
5B

|f(z)|
|x− z|d−1

I1(V χ8B)(z) dz dx = C r

∫
5B

|f(z)| I1(V χ8B)(z) dz.

An application of Lemma 8 yields to the bound

‖f‖BMOβL(w)w(B) rβ
(

r

ρ(x0)

)d−ηd−β+2−d/q

,

when β > 0 or η > 1, or

‖f‖BMOβL(w)w(B)
(

1 + log
ρ(x0)
r

)(
r

ρ(x0)

)2−d/q

,

when β = 0 and η = 1. Due to the assumptions on η and q we obtain the desired
result.

Now we proceed to estimate I2. Notice that we may assume 5r < ρ(x0), other-
wise I2 = 0. Making use of Lemma 7 we obtain two terms. One is the same as in
Theorem 1 and can be handled in a similar way, this time choosing δ close enough
to 2 − d/q. For the term containing V we use that for x ∈ B and z ∈ Rd \ 2B,
ρ(x) ∼ ρ(x0), |x − z| ∼ |x0 − z|, B(z, |z−x|4 ) ⊂ B(x0, 2|x0 − z|). Then we need to
estimate

rδ+d
∫
B(x0,ρ(x0))\5B

|f(z)|
|x0 − z|d+δ−1

∫
B(x0,2|x0−z|)

V (u)
|u− z|d−1

dudz.

Breaking the integral in z dyadically and setting j0 such that 2j0−1r ≤ ρ(x0) ≤ 2j0r,
the last expression is bounded by

r

j0∑
j=3

1
2j(d+δ−1)

∫
2jB

|f(z)| I1(χ2j+1BV )(z) dz.

Applying Lemma 8, we obtain for the case β > 0 or η > 1 the bound

rβ w(B)‖f‖BMOβL

(
r

ρ(x0)

)d−ηd−β+2−d/q j0∑
j=3

2j(2−d/q−δ)

≤ C rβ w(B)‖f‖BMOβL

(
r

ρ(x0)

)d−ηd−β+δ

≤ C rβ w(B)‖f‖BMOβL
,

choosing δ close enough to 2− d/q. The case β = 0 and η = 1 follows in the same
way.

Now we take care of I3. Here, as in Theorem 1, we use the smoothness of each
kernel separately. For R∗ we use Calderón-Zygmund condition and for R∗ we use
Lemma 5 with δ as above. Again we only have to deal with the term with V , which
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can be bounded by

C ρ(x0)krδ+d
∫

Rd\B(x0,ρ(x0))

|f(z)|
|x0 − z|k+d+δ−1

∫
B(x0,2|x0−z|)

V (u)
|u− z|d−1

du dz

≤ C ρ(x0)kr1−k
∞∑
j=j0

1
2j(k+d+δ−1)

∫
2jB

|f(z)| I1(χ2j+1BV )(z) dz,

and applying again Lemma 8 this time we obtain the bound

C ‖f‖BMOβL
w(B)rβ

(
r

ρ(x0)

)2+(µ−1)d−k ∞∑
j=j0

1
2j(k+2d−2+δ−β−dµ−dη) .

Choosing k large enough to make the series convergent we get

C ‖f‖BMOβL
w(B)rβ

(
r

ρ(x0)

)d+δ−β−dη
,

and the last factor is bounded since r < ρ(x0) and the exponent is positive according
to our assumptions and the choice of δ. �
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[3] J. Dziubański, G. Garrigós, T. Mart́ınez, J. Torrea, and J. Zienkiewicz. BMO spaces related
to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z.,
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