WHAT IS A SOBOLEV SPACE FOR THE LAGUERRE
FUNCTION SYSTEMS?

B. BONGIOANNI AND J. L. TORREA

ABSTRACT. We discuss the concept of Sobolev space associated to the La-

— gy _d y,d®
guerre operator Lo = —y wZ gy titiy Y€ (0,00). We show that the

natural definition does not fit with the concept of potential space, defined via
the potentials (Lq)~%. An appropriate Laguerre-Sobolev spaces are defined in
order to have the mentioned coincidence. An application is given to the al-
most everywhere convergence of solutions of the Schrodinger equation. Other
Laguerre operators are also considered.

1. INTRODUCTION

We start with a naive description of our aim in writing this paper. Let L be
a linear second order differential operator, selfadjoint with respect to a certain
measure p. Different techniques, see for example (77?), allow us to define the “Riesz
potentials” L™%, s > 0. In these circumstances we consider the “potential space”
L?, 1 < p < o0, as the space L™%/2(LP (1)), in other words the collection of functions
f such that there exists g € L?(u) with f = L=%/2(g).

In general, the second order operator L admits a certain factorization L =
> D;D;, where D; are first order differential operators with adjoints (respect to
) D;. Then it is also usual to define the “Riesz transforms” R; = D; o L=1/2 and
analyze their boundedness properties on LP(u), see [?], [?]. Several motivations
can be given for the study of these Riesz transforms. For example the boundedness
in LP of operators like D? o L~! (usually called Riesz transforms of second order)
drive rather easily to “a priori” estimates in LP for the equation Lu = f, just ob-
serve that the boundedness ||D? o L=1gl|, < C||g||, can be written in this case as
1D2ull, < C||f|l,- A second motivation (in fact the motivation of this note) is the
following. Given a natural number k, let us define the (Sobolev) space ij as the
collection of functions on LP such that the k—derivatives D¥ f belong to LP. Suppose
that the Riesz transforms of order k, DF o L=F/2  satisfy | DF o L=F/2f|l, ~ || fl,-
This last equivalence could be written (at least formally) as | DFf|, ~ [[L*/2f|,.
In other words the spaces W;f and LY would coincide. As the spaces L? have a
meaning for all s > 0, (even no integer) one could say that the potential space L?
is the space of functions on LP whose “s—derivative” is in LP?. We observe that if
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¢p, is an eigenfunction of L with eigenvalue A,, # 0 then L™%¢,, = A, ®p,. Hence
the last interpretation of s—derivative is particularly simple to understand.

If the above ideas are directly applied to the Laguerre differential operator (for
Laguerre functions) one finds something that can be consider a surprise. The
expected definition of Sobolev space of order k, that is, the set of functions in LP
such that the derivatives (according to the natural factorization of the differential
operator) of order k belong to LP, does not fit with the definition of potential
spaces, see Definitions 7?7, 7?7 and ?? and Theorems ?? and ??. The main purpose
of the paper is to clarify and make precise which could be the most appropriated
definition of Sobolev spaces for the Laguerre operator. Our work was inspired in
[?] and [?].

It is a common fact that if a concept is developed for Laguerre functions then
the analogous concept can be developed in an easier way for Hermite functions.
That happens in this work and then we devote Section 7?7 to Hermite functions. A
comment about the dimension is convenient here. The motivation of this paper is
essentially one-dimensional, but in the case of Hermite functions, the theory has no
added difficulty in several variables, so we present in that context our results for
the Hermite operator.

The knowledge of a sharp enough power weighted theory for a Laguerre function
system can be transferred to another Laguerre function system, see [?]. That is why
we develop a weighted theory of Sobolev and potential spaces for a particular system
of Laguerre functions and then we transfer in an easy way to another systems, see
Section ?77.

Finally in the last section we present a simple application to the pointwise con-
verge of solutions of Schrodinger equation.
We discuss quickly the case of the Hermite operator

(1) H=—-A+|z]?, 2R

H is self-adjoint on the set of infinitely differentiable functions with compact sup-
port C°(R). The Lebesgue measure will be the ambient measure.

For each s > 0, the Hermite potential, H %, is defined for f € L*(R,dz), by the
formula

1 e dt

(2) Hf(z) = F(s)/o e f(x)t* o TE RY,
where {e7t#},5( is the heat semi-group associated to H. The corresponding po-
tential spaces, LP(w) = H~%/?(LP(w)), are defined in (??) with respect to an
absolute continuous measure w(z)dz, being w a weight in A,. For the reader’s con-
venience we remind that a positive function w is said to belong to the Muckenhoupt
class A,,1 < p < oo, if the Hardy-Littlewood maximal operator is bounded from
LP(w(z)dz) into LP(w(x)dx), and w is said to belong to the class Aj, if the Hardy-
Littlewood maximal operator is bounded from L!(w(z)dx) into weak-L!(w(x)dz).

The operator H can be factorized as H = %ijl AjA_; + A_jA;, see (77).
Where A; and A_; are first order differential operators.
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Definition 1. Given k € N, the Hermite-Sobolev space of order k, denoted by
WP (w), will be the set of functions f € LP(w) such that

m times
—
A Ajf=A"f € LP(w), 1<m<k1<j<d,

with the norm

d
I lweeey =D D A Flooww) + 1f 1 Low)-

j=11<m<k
The following theorem will be proved in Section ?7.
Theorem 1. Let k€N, 1 <p < oo, and w € A,. Then,
Wk (w) = €8 (w)
and the norms || - | wr.p(w) and || - [[er () are equivalent.

Of course in order to prove this theorem, we shall need previously to prove some
boundedness result of higher order Riesz Transforms, see Theorem 77.

Regarding the Laguerre operator
d? d y o
3 Lo=—y-———+>+—, € (0, 00),
(3) VaE “ay Taty vEOo)
selfadjoint in the set C.(0,00), there is a natural domain of power weights y° for
the boundedness on LP(R*,3°dy) of classical operators associated to L, (see [?]),
namely if a > -1, 1 <p<oocand § € R

(4) (Ca) —%p—1<5<p—1+%p.
In a parallel way to the Hermite case, we can define appropriate potential spaces
for Laguerre functions.
Definition 2. Given a > —1,1<p < o0, s >0 and § € R we define
W (y°) = (La)~**[LP(RT, 5 dy)]
with the norm ||f||ml§,s(y5) = |lgllp,s, where (La)_s/Qg = f.

On the other hand the Laguerre operator can be factorized as Lo = (0%)%0% +
(a+1)
2

one can give the following.
Definition 3. We shall denote by WP (y%) the set of functions f in LP(R*,y°dy)
such that (§%)™ f € LP(R*,y°dy), 0 < m < k, with the norm

, see (?7). Following the thoughts that we developed for the Hermite case,

k
1 sy = S 1™ Fll o s yoay) -

m=0

However, even we shall prove (see Theorem ?7) that the higher order Riesz trans-
forms (6%)* (L) ™%/ are bounded in LP(y’dy) for ¢ satisfying (C4), the “Sobolev”
spaces WP (y%) are different from the potential spaces Qﬂg’k(y‘s). In fact we have
the following

Theorem 2. Let p be in the range 1 < p < oco.
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(i) Let a > —1, and § satisfying (Cy). Then 20EP(y0) € WFEP(y9).
(ii) Let —1 < a < 0. Then 20%2 £ W22,
(iii) Let o >0, and § satisfying (Co_1). Then W2P(y0) = W2P(y?).

This result suggests that the iteration of operators §% are no good substitutes
for the notion of fractional derivative in this case. Looking at the actual action of
these operators over the set of eigenfunctions of the operator L, see (??) and (?7?),
it seems natural to consider the higher order Riesz transforms defined as

B = (574 007 0 (L) M

It is proved in Theorem ?? that these Riesz transforms, RE, are bounded on
LP(R*,y0dy) for § satisfying (C,). This would suggest the following alternative
concept of the “Sobolev” spaces given in Definition 77.

Definition 4. The Laguerre-Sobolev spaces, that we denote by WFP(y%), are the
sets of functions f in LP(R*,y%dy) such that

§tmo L od® o f e LP(RY,y°dy), 0<m <k—1

with the norm

k—1
1f o sy = IFllps + D 6™ 008t 062 f]| 5
m=0

These spaces are the right spaces for the problem we are considering and the
following theorem will be proved in Section ?7.

Theorem 3. Let a > -1, 1 <p < oo, k € N and 0 satisfies (C,). Then,
Wb (y°) = W (y°),

and the norms are equivalent.

Unweighted Sobolev spaces in the case of Hermite operator were considered
previously by Thangavelu see [?] and the authors [?].

For the case of Laguerre functions, Laguerre potential spaces were introduced
by Peetre and Sparr in 1975, they were also studied by Thangavelu in [?] and
by Radha and Thangavelu in [?] and [?]. For some previous works contain the
definition and power weighted LP —boundedness of the first order Riesz transforms,
see [?] and [?] for the system £¢, and [?] for the system ¢¢, see Section ??. Recently,
power weighted LP—boundedness of the higher order Riesz transforms of the form
(D*)*L~"/2 for the system ¢ (see Section ??) has been proved in [?]. From that
result one can deduce, by using back the methods in Section ??, our Theorem 7?7
about operators of the form (6%)¥(L,)~*/2. However, we present our different proof
since we think that it contains some explanation of the behaviour of the commuting
properties of several operators. Finally for the case of Laguerre polynomials some
results can be found in [?].

2. HERMITE SOBOLEV SPACES WITH WEIGHTS

Let H,,n=0,1,... be the family of Hermite polynomials. The Hermite function
H,(t)e t*/?

(2nnlrl/2)1/2 t € R. Given a multi-index a =
mnlr

of order n is defined as h,(t) =
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(a;)9_, € N%, the Hermite function of order a is defined as
ho(x) = H?Zlhaj (z7), == (21,...,24) € RL
These functions are eigenvectors of the Hermite operator, see (??). In fact
Hho = (2la] + d) hq,

where |a| = ijl o, see [?].
We shall need the following lemmas. Their proofs can be found respectively in
[?], [?] and [?].

Lemma 1. Let M € N and f € C°, then there exists a constant Cpry > 0 such

that
’ /R Tha

Lemma 2. Let 1 <p < oo and w € A, there exist constants €, > 0 and C,, such
that

<Cuy(lal+1)™, aeN

”ha”LP(w) < Cy (|a| +1)°r.

Lemma 3. Let f be a linear combination of Hermite functions, the fractional
integral H=%, s > 0, see (77), has an integral representation

1 f() = [ Ko fo)dy, o € R,

where Kq(x,y) is positive and symmetric. Moreover,

(5) Ky(2,y) < Cos(lr —yl), x,yERd,
where ¢s(r), for r > 0, is defined by
_,2 ‘
X0 4 e xay (7). ifs <4,
2 _
¢s(r) = q log (£) X{'r<1}(7;) +eTi xpey(r), ifs=4,
Xir<13(r) + €75 xo13(r), ifs> 4.

Theorem 4. Let 1 < p < oo and s > 0. If w € Ay, then the operator H™*, is
bounded on LP(w).

Proof. If p > 1, we just observe that the function z — ¢4(|z|) is radial and de-
creasing for |z| — oo, therefore, |H~°f(z)| < M(|f[)(x) where M is the Hardy-
Littlewood maximal operator and the the result follows.

In the case p = 1, we shall prove that / K(z,y)w(z)dr < Cw(y), whenever
R4

y is a Lebesgue point of w. Therefore,

[ t@lu@ o< [ 1) [ Ko @ dedy < [l

If y is a Lebesgue point of w € Ay, then

1
_ w(z)dr < Cw(y).
|B(y,7‘)| B(y,r) ( ( )
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Hence, by estimate (??) and splitting into annuli, we have

o0

Ks(z,y)w(z)de < C
R4

/ bu(ly — al)w(e) do
b= —oo ¥ B(¥,2°)\B(y,2k=1)
e & 2dk,

¢ ¢s(2°) w(z) do
Z ( ) ‘B(yan” B(y,2*)\B(y,2k—1) (

IA

k=—o00

Cwl(y) < > ¢s(2k)2dk> < Cu(y).

k=—o0

IA

Given 1 <p < 00, s > 0 and w € A,, we define the potential spaces
(6) L8 (w) = H*/2(LP (w)),

with the norm || f|| ¢z (w) = [lgll 2 (w), Where g is such that H™/?g = f.
The space £°(w) is well defined, since H~*/? is bounded and one to one in L”(w).
If fact, suppose g € LP(w) and H~%/2g = 0. Observe that

L [ el aila@laoldy de < =gl ol o oesiny

and this expression in finite by Theorem 7?7 and Lemma 77 since wP' /P belongs
to A,. Hence, by Fubini and the symmetry of K/,

/ gha=(2n+1)s/2/ gH ™ *Phy = 2n+1)*? [ H™*?gh, =0,
]Rd ]Rd Rd

and this assures that g = 0 (see Corollary 2.4 in [?]).

Remark 1. The space § of finite linear combinations of Hermite functions is a dense
subspace of £7(w), since § = H~%/?(F) is dense in LP(w).

The operator H can be factorized as

d
1
(7) H=5) AjA+A A
=1
where
0 0

It is easy to check that

(8) Ajha = \/205]‘ ha_ej, A_jha = 1/2(043‘ + 1) ha+eja

where e; is the jth-coordinate vector in N<. From these formulas the operators A;
and Aj are called annihilation and creation operators respectively.

Definition 5. The Hermite-Riesz transforms of order m, m € N, associated to H
are defined by

= Ay Ay HT™2 ) where J = (1, m), 1< 5] < dy 1< <m.



WHAT IS A SOBOLEV SPACE FOR THE LAGUERRE FUNCTION SYSTEMS? 7

In the case j; = -+ = j,, = j, these operators will be denoted by R The case
m = 1 were introduced by S. Thangavelu, see [?]. He proved that they are bounded
operators in LP(R?). Also in [?] and [?], it was shown that the operators R'} are
Calderon-Zygmund operators and as a consequence they are bounded in LP(w) for
we A, 1<p<oo.

We shall now present a structural theorem for the spaces £2(w). The unweighted
versions of this result can be found in [?] (Theorems 2, 6 and 7.)

Theorem 5. Let w € Ay, 1 <p < o0, and s > 0.

i) If t > s, then £F(w) C £8(w) C LP(w) with continuous inclusions. Moreover,
£2(w) and LY (w) are isometrically isomorphic.
i) If t > 0, then H~*/? maps £2(w) into £, ,(w).
i) If s >1 and 1 <|j| < d, then A; is bounded from £2(w) into £, (w).
iv) The operators R}, are bounded on £F(w).

Proof. Observe that H=%2 = H=%/2 0 H™", with r = (t — 5)/2. Then (i) follows
from Theorem ??. (i) also follows from Theorem ?? and the definition of the
spaces £8(w).

In order to prove (iii) we shall need the two following results. They can be found
respectively in [?] and [?]. For further reference, we stated them as Proposition ??
and Lemma 77.

Proposition 1. Let 1 < p < oo and m € £>°(N%) such that
[A‘m(a)] < C(1+]a))™, aeN! Vi<d+1.

Consider the operator T, f = Y., m(a)(f, ha)ha, defined at least for f € L*(R).
Then, T,, admits a bounded extension to LP(w) whenever the weight w belongs to
the Muckenhoupt class Ap.

Remark 2. Observe that as Hh,, = (2|a|+d)ha, any operator of the type F(H) f =
Yoo Fa+d)(f, ha)ha can be written as 7, f = >, m(a)(f, ha)ha with m(a) =
F2a+d)=F(2(a1,...,aq) +d).
Lemma 4. Let b € R%, then for all f in §, we have

AGH f = (H +2)°4;f, 1<j<d,

AGHY f = (H - 2)°4;f, —d<j<-1

HYA;f = Aj(H —2)f, 1<j<dand

HYA;f = Aj(H+2)"f, —d<j<-1.
Where Hh, = (2|a| + d)°h,, and (H + 2)°h, = (2|a| + d + 2)°h,, for all o € N,
and (H — 2)°hg = (2|a| + d — 2)%hq, for all o with |a| > 1.

We continue the proof of Theorem ??. Let 1 < j < d (the case —d < j < —1is

similar). Let f € §, by Lemma ?? we have

ey (_H O\ /2
2ol +d
2ol +d+2

(s—1)/2
sition ??, see also Remark ?7?, the operator (HLH) is bounded on LP(w).

(s—1)/2
As the function m(«a) = ( ) satisfies the hypotheses of Propo-



8 B. BONGIOANNI AND J. L. TORREA

Hence by using the boundedness in LP(w) of the Riesz transforms, we have

14, ]

H (s—1)/2 ) )
eaw) = H (H+2> R; H/ fHLP(w) < OIH* 2 f| Loy = I fllez -
Finally (iv) follows from (i) and (it). O
The following technical result will be needed later.

Proposition 2. Let 1 < p < oo and w € A,. For k € N the set WFP(w) (see

Definition ??) is a Banach space. Moreover, the sets § and CS° are dense in
WEP(w).

Proof. Observe that if { f, },>1 is a Cauchy sequence in W*»(w), the completeness
of LP(w) implies that f, converges to some f and AJ" fr, converges to some gy, j in
LP(w), 1 <m <k, 1 <j <d. If 4 belongs to C2°, also (A]")*t) belongs to C2°,
and if B is a ball containing the support of (A7")*¢, then

c[ -1
()" (fer)”

where the last integral is finite due to w € A,. Hence

lim [ f (A7) = / £ (AY .
R4 R4

IN

Ay — [ f, (AT
[ rapyre Ag<3>4

IN

n—00

In the same way, lim Al fntp = / gm,; ¥. Therefore we have / AT fp =
d R4 R4

n—oo R

gm,; ¥, for all ¢ in C2°, and thus AT'f = g, ; almost everywhere. These
Ra
completes the proof that W*P?(w) is complete.

Now we will see that C° is a dense set in W"P(w) (we shall follow the ideas

in [?], p. 123.) Let ¢ be a function in CZ° such that [, = 1. For every € > 0,
1
consider ¥(x) = —dz/)(g> . Given f in WHP(w), the function f * 1. belongs to
€ €
C* and approximates f in the WP(w)-norm. In fact, it is easy to see that for all
m>1land 1 <75 <d,
Aj(fxbe) = Ajf x e+ ef % (), AT(f o) = Y AT f 5 (a]1))e.

n=0

Since A7*™" f belongs to LP(w) and 279 belongs to C2°, 0 < n < m, we have
AT (f*pe) = AT f

in LP(w) as € goes to 0. The functions f*w. do not necessary have compact support,
but they can be modified as in the classical case (see [?], p. 123).

It remains to prove that any function in C2° can be approximated in the W*? (w)-
norm by a function in §. We will show that any f € Cg° is the limit, in the
WP (w)-norm, of a subsequence of the partial sums

Snf= > (fha) ha, N>1,

la|<N
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where (f, hq) = /fha. In [?], Lemma 2.3, it is proved that there exists a subse-

quence of the previous sequence converging to f in the LP(w)-norm. Hence, it is
enough to show that there exists a subsequence of

{AT(Sv ()1 = {Sn (AT f)in>1

converging to A;"f in the LP(w)-norm, where 1 < j < dand 1 <m < k.

Let us fix j and m such that 1 < j < dand 1 <m < k . Following the argument
of [?], the sequence {SN(AT'f)}n>1 converges to A" f in the L%-norm. Hence we
can take a subsequence {Sn, (47" f)}r>1 converging to AT f almost everywhere. By
using (?7?), we have

SN(ATF) = D (AT f haYha = Y (£, (A7) ha)ha

lal<N lal<N
= Y JIV2(ci +D{f, hagme ha -
la| <N I=1

Hence, by Lemma ?? (with M > m) and Holder’s inequality, we have

ISn(AF AP <C | Y0 T2+ (lal +m+ 1)~ k|

la| <N 1=1
P

<C Z loe +m + 1]7M/2|p,|

la|<N

p/p’
<C <Z o + 1|_M/2> >+ 1M g P
<C D o+ 1M g,
(e}

From Lemma ?7, for a big enough M, the function

Dl 1M b P

belongs to L'(w). The dominated convergence theorem implies that
{SN (AT ) }iz1 — AT f

in the LP(w)-norm. Now we can repeat the lines above for every j and m, taking
a subsequence of the previous subsequence in each step. ([

Proof of Theorem ??. Since § is dense in both spaces, it is enough to show the
equivalence of the norm for functions in §.

Let f € § and f = H%/2g. For 1 < j <dand 1< m < k, from the bound-
edness of R7" and H —k+m (see the comments after Definition ?? and Theorem ?7)
we have

m m gy =ktm
1(AD™ fllLewy < IR H ™2 gllew) < 19llLr (w),
then
[ fllwrer @y < Cligllee@w) = Clfller w)-
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Now we shall prove the converse inequality. By using Lemma ?7?, the following
identities can be proved for each integer k > 1.

d d
T, = Y RF RE=NC(ANFH R (A)kH M2
d
= (H = 28) (DA (A ) 2
d
= (= 2k) LY (= Dy 1= 2) (= 1= 2k = 1) fHH,

where H; = —8672? + xf Observe that H =3, H;. Consider the function

(2lal +d = 2k)*/2(2]a] 4+ d)*/2
Y1 (205)(205 —2) ... (205 — 2(k — 1))

An appropriate smooth extension of my, can be considered in order to apply Proposi-
tion ??. Hence the operator Sp, defined as Sm, f = >_, mi()(f, ha)ha is bounded
in LP(w).

Denote by §; the finite dimensional space of linear combinations of Hermite
functions h,, with |a| < k. Given a function g in §\Fx. We observe that Sm, 0T g =
g and therefore we have

my(a) = X[dk,o0) (|])

lollrwy = 1S Trglioqwy < CillTigleo w>—CkZHR‘“ 5 9] o)
j=1
< ckzuR ol incuy = @ZH AP

for some constant Cy independent of g. Therefore for f € §\ §x with f = H~%/%g,
we have

(£ ler wy = 19l e (w) < Crll fllwrr (w)

For the general case g € §, we write g = g1 + g2 with g; € §1 and g2 € F\ Fr. We
observe (one can use Lemma ?7?) that H*/? is a bounded linear operator on the
finite dimensional space § (with the LP(w)-norm). The same lemma also ensures
that the projection g — g; is bounded in LP(w), hence

lglleew) < |‘Hk/2H7k/2gl||LP(w)Jr”gQ”LP(w)

A

< Cil H?g1| 1o () +CkZH Ve H 2 ‘

LP(w)

IN

CllH2g]|1s w>+ck2H VH 2

Lr(w) ’

where in the last inequality we have used (Aj)kH k/2g, = 0 and also the fact that
the projection of the function H */2¢g from § into §x is H */2g,. O
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3. LAGUERRE SETTING

Let LY, n = 0,1,... be the Laguerre polynomials of type a,« > —1. Consider
the family of Laguerre functions £ defined as

T(n+1) \7? _
9 Loy =|7—"""— /22 € RT, neNy.
For each a > —1, {£2}2°, is an orthonormal system in L?((0,00)) and satisfy

a+1

Lo Ly = (n+ )Eg,neNo,

where L, is defined in (?7?). It is known (probably it can be said that belongs
to the folklore, see for example [?] Theorem 5.7.1) that if @ > —1, 1 < p < ®©
and ¢ € R satisfy (C,), see (?7), then, the set S, of finite linear combinations of
Laguerre functions is dense in LP((0, 00), y°dy). This condition (C,) will be crucial
along this note.

Remark 3. Observe that if a pair (0,p) satisfies condition (C,) then it satisfies
condition (Cg) for every 8 > a.

Given @ > —1 and s > 0, we can define the operator (L,)~*® analogously as
in (??) just by making the substitution of {e *#},5¢ by {e7*L=},50. We need the
following two results that can be found in [?] and that we state as a unified theorem
for further reference.

Theorem 6. Let « > —1, 1 < p < oo and § € R satisfying condition (Cy).
Consider the function p € C*([0,00)) such that

(10) ’”(k)(t)‘ < G140 k=0,1,2,...

for allt >0 and k € Ng. Then, the operator
Tuf = Z ;u(n)<f7 ﬁ%w%
n=0

defined at least for f € L?(R), admits a bounded extension to LP(RT yody).
A consequence of this result is the following theorem.

Theorem 7. Let « > —1, 1 < p < 0o and § € R satisfying relation (C,). The
operator (La) ™%, 8 > 0, is bounded from LP((0,00),°) into itself.

a+1

—S8
Proof. The multiplier p(n) = (n + ) satisfies (?7). O
Now we can see that the spaces in Definition 77 are well defined, we proceed as
in the Hermite context. It is not difficult to prove that (L,)~*/? is one to one in

LP(R*,y%dy), using the fact that S, is contained and dense in L’ (R+7y_%5dy),
whenever § satisfies (C,). Moreover, since S, = (Lo)~*/?(S,) and S, are dense in
LP(RT,y°dy), then S, is dense in 20, (y°).

The operator L, can be written as
(a+1)
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wher
) 6o (5o Y ] (v 220,

The action of these operators on Laguerre functions is given by

(12) §4LG) =0, 0*LY) =—v/n Lot forn>1, and
(13) () (Lot =—Vn+1L8,, forn>0.

The Riesz transforms were defined in [?], for « > —1 by
Ro=06%(La)™"?  and Ry = (6%)"(Lag1)” /2

In [?] it was proved that those operators are bounded on LP(R*,y°dy) for § satis-
fying (C,). Given a positive integer k and o > —1 we define the higher order Riesz
transform of order k as

RE = (5H Vo 0§ 067 (L) T+

and }
RS = (89 0 (57H1) 0+ 0 (371" ) (L) 2.

Observe that RL, = R, and R. = R,.

Theorem 8. Letk € N, 1 <p <oo, a>—1 and 0 satisfying (Cy). The operators
RE and RE are bounded on LP(RY, y°dy).

In order to prove this theorem we shall need the following lemma, whose proof
is left to the reader.

Lemma 5. Let ® be a continuous function and o > —1. For every f in Sy, we
have

1
(1) 6°®(Lo)f = <1>(La+1 + 5lrd)aaf.
* 1 *
(2) (5°) (Las)f = ¥ La = 31a) (6)°F.
Now we can give the proof of Theorem 7?7 by using an induction argument on k.

Proof of Theorem ??7. As we mention above, the result is true for k = 1, see [?].
Let k£ > 1, for a function f in S,, we have

RE = (5 Vo050t 0 5%) (La) /2
= ((5a+k_1 o0---0 (5O‘+1) 03% 0 (Lo) " =1/2(Ly) 12
1 \—(k=1)/2
(5(1%71 0-:-0 5a+1) o (La+1 + §Id> 0 8% 0 (Lg) H/?
—(k=1)/2
(6a+k_1o-.-060+1) o (La+1) ( )/ OTMQ(SQQ(LQ)—’%‘/Q

= ngt;ll o jvu [0} Ra.
Where T), is the operator given by the multiplier (in the system {£8T'}52 ) u(n) =
[ n -+ QTH }(k—l)/2
.
??, we get that 7}, is bounded from LP((0,c0),y°dy) into LP((0,0),y’dy) for §

. The function p satisfies (??). Hence, by using Theorem
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satisfying (Co+1). On the other hand the induction hypothesis says that Rijrll is
bounded from LP((0,00),y%dy) into LP((0,00),3°dy) for § satisfying (Cuy1). As
we noticed, this range is bigger than the range (C,), see Remark ??.

In order to prove the boundedness of ]:2’(;7 we use again Lemma 7?7. We write
R = RF=1 0T, 0 Ry 11, where T, is the operator given by the multiplier v(n) =

k k—1
(n + 04—21— ) / (n + %) The proof continues along the same lines as for

RE . by using in this case the boundedness of the operators RZ and 7T, . (I

Parallel to the Hermite setting we have the following structural theorem for the
spaces 207, (y°).
Theorem 9. Let > -1, 1 <p < oo, s >0, and ¢ satisfying (Cy).
i) If t > s, then 202, (y°) C W% ,(y°) C LP(y°) with continuous inclusions.
Moreover, Qﬂgys(y‘s) and 20, ,(y°) are isometrically isomorphic .
i) Ift >0, then (La)~*/? maps WL, (y°) into WE, ., (y°).
iii) If s > 1, then 6 is bounded from 207, (y°) into QHZ+1,S—1(?15)-

iv) The operators RE, are bounded from Qﬂg7s(y5) into Qﬂgﬂrk,s(y‘s).

Proof. The statements i) and ) follow from the boundedness of (L,)~*/? estab-
lished in Theorem ??7. On the other hand, given a function f € Qﬁgs(y‘s), there ex-

1
s Log1+ 31 2
ists a function g € LP(y%) such that Lo, /2g = f. Consider h = <+L12d> Rug,
a+1
then

1
0°f = 8°Lg"Pg = (Lasa + 1)~ C7V267 L 2
1
= (La+1t+ gfd)f(sfl)mpbag
= (Loy)) "7 h.
By Theorem ?? and Theorem 7?7, we have
16% Fllawe,, . we) = Ihlleey < Cllgline sy = 10% fllavz . y9)-
In order to prove iv) we use i) and 7). O
Given a function f, consider the Cesaro sums of g of order r > 0, that is
1N
C;V,a(g) = Z a?V—n(f7 ‘Cg>£${a
aN n=0
R
for N € N, with a], = M
n!
easy consequence of Theorem 1.13 in [?] and it shall be the key to prove a density

. k .
result in W}, see Definition ?7.

, 0 < n < N. The following proposition is an

Proposition 3. Let a > —1, 1 < p < o0 and ¢ satisfying (Cy), there exists r > 1
(possibly depending on «) such that the Cesaro sums of order v of a function f
converge to f in the LP(y°dy)-norm as N goes to infinity.

Proposition 4. Leta > —1,1 <p < oo, k € N and § satisfying (Cy). Then S, is
k,p
a dense subspace of W_’5.



14 B. BONGIOANNI AND J. L. TORREA

Proof. By using (??) and (?7), we have

N
1 «
0°Chralf) = = D a—nlf £3) (=Vm) £371
N p=1

N
1 1 1
= oy (f, (0%) Loty Loty
N pn=1
a1 N-1

= Z a€N71)7n<6af’ Lot cott

T T
aN On—1 .

ar* T (6%
== 10N—1,a+1(5 f),

ay
and inductively, if m € Ny and N > m,
(14)
a’y
(6a+m_1 0...06%o 50‘) Cyv(f) = Nom CN_m.atm (50”””_1 0...06%1o 5"‘f) .

aT

N
We choose r big enough as in Proposition ??, therefore the sequence in S, given
by fn = C} [, converges to f in LP(y°dy)-norm. Observe that the functions
sotm=lo o6l o % f, where 1 <m < k — 1, also belong to LP (R, y°dy), then

equation (?7?), Proposition ?? and the fact that limy az;m =1, imply that the
N

sequence §2T™ Lo . 0§20 §% 0 O (f) converges to 6*T™m 1o, . 06 L 0§ f in

the Lp(y‘sdy)—norm, forl1<m<k-1. O

Now we give the proof of Theorem 77.

Proof of Theorem ?7?7. As S, is a dense subspace of QIT]; s and ng{ , it is enough
to show the equivalence of the norms for functions f € S,. Let g such that
(Lo)"%/2g = f. For 0 < m < k — 1, we have

k—1
1 gy £ llp,s + Zl [0t o oaeH o5 f| S

k—1
= )™ 2gls + Y |
m=1

§otmo o dtlo 50‘([/@)716/29" 5
P,

p,6

k—1
= ”(La)_k/Qng,é + Z HR;”(LQ)—(k—m)/Qg
m=1

< Cllgllps = Cllf lags-

Where in the last inequality we have used Theorem ?7 and Theorem ?77.
For the converse inequality it is clearly enough to prove that for all functions
f € S,, there exists a constant C' such that

(15) (L) Fllps < C (I fllps + [[67F* 00 d L ogo g ).

Let @« > —1 and k € N. We call II¥ the set of linear combinations of Laguerre
functions of type o up to order k. If f € S,, we split f = fi + fo, with f; € II¥
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and fa € S, \ IX. Since (L,)* is a linear operator on a finite dimensional space
I1% | there exists a constant C that depends on k such that

(L) 2 fillps < Cllf1llp.s-

On the other hand, since (L) */? is bounded on LP(R*,y%dy) (Theorem ?7), we
have

1 fllp.s = 11f=F2llps < I Flpst1(La) ™2 (La)*? fallps < £ lp.s+Cl(La)* f2
thus

1(Ea)* s < (L) fillps + 1L fallps < C (Iflps + 1(Za)*Falls) -

Therefore, it is enough to prove (??) for fo. By using Lemma ?? we can easily
show the following identity for each integer k

|p7t5’

Ty = RF o RF
k 1 1
(T = 5y 20 (L= 2 Do (La— 2 k).
2 2 2
a+1 a+1 _
oLy — — 1o (Lo~ ——)(La) k/2

and consider the function
k/2 k/2
(t+252)"" (t+ 232 - 5)
k—1 ;
II =0 (t—J)
which satisfies (??7). Then, the proof follows the same lines as in the Hermite case

in Theorem 77 using the multiplier Theorem 7?7 and Theorem ?7 in order to control
the operator RE. O

Mk(t) = X[k,00) (t)

4. ALTERNATIVE DEFINITIONS OF RIESZ TRANSFORMS. CONSEQUENCES FOR
SOBOLEV SPACES

In this section we analyse the role of the “natural” Riesz transforms
(§a)k(La)—k/27

relating to Sobolev spaces. Some commutation properties of the operators §* with
the operator of multiplication by x/2? will be essential. We shall write §¢ 1,51/2 and
2%/25% as a shorthand to denote the action 5% (ﬁf()) (z) and x/25%(f)(x). We
state the following lemma whose proof (by using (?7)) is left to the reader.

Lemma 6. Let §,a > —1, and ¢ € N.

N
(1) + 2\/3?
1 1
s\ B _ B+L
W) 0" % =
1 1 ¢

. - Bt~ sB—C_ _ ~

(iii) If B> €—1, then xg/z(s = $£/25 p+1)/2°

(iv) If B > € — 1, then 6°2"/? = /255,

o 0 =Y ) S 1)
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Lemma 7. Let @ > —1, and k € N, then

«@ Cm a+m «@
(6°)F = > 30" o 08

0<p<m+1,pt+m=k—1

Proof. Let p < m + 1, by using Lemma ?? we have

1 1
«a atm . e a+p at+m . «
0 (719/25 0---00 )77]9/25 0d 0---00

1 m+1—p
_ a+m—+1 a+m e
_xp/2(5 NN )‘”5 °rod
3/26a+m+105a+m0---05a
X

1 m+1-p.oim o
+xp/2ﬁé oot

If p=m+ 1 we have

6@(%/2601-{-7110._.06@) _ %/26(1-1-771-‘4-1 Oéa-‘r’mo...o(sa.
xT T

Then

(5a)k+l = 5a< Z CI:;LQ §Tmo. .o 5O‘>
0<p<m+1, p+m=k—1 x

C
— § : p7‘72 6a+m+1 ° §a+7n 0---00%
xT
0<p<m+1, pt+m=k—1

cm m+1—p
+ 7750‘-’—’”10...060[
Z /2
0<p<mt1pimet—1 L 2Vz

1
+ E T/25a+m+1 o 5a+m O-++-0 5a
0<p=m+1, p+m=k—1 x

Cm
= E p/25a+mo...o5a
X
0<p<m, p+m=~k

C
+ E (;726oz+mo._.06a
X
0<g<m+1, g+m=k

1
a+m «a
+ E acp/Q(S 0:+-00

0<p=m, p+m=~k

c
= E gmmeen
x
0<p<m+1,p+m=k

The standard induction argument gives now the proof.
Lemma 8. Let P,,(u,v) be a polynomial of degree m and variables u,v, i.e.
P (u,v) = apu™ + au™ o+ a,u™.

Assume that 3 > m — 1, then

59 P2, %) - Pﬁlw,%

where PY, and P2, are polynomials of degrees m and m + 1.

) 877+ PLL (VE, —=)

L
NG
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Proof. Observe that

Pm<\/5, 7) = ay xm/Q +a; x(m—Q)/Q 4+t am x—(m—2)/2 +an, x—m/Z_
VT
Let 0 < ¢ < m, then by using Lemma 7?7 we have
{—m {—m
B2y —  pl/258—t — /2 (557771 ) — pl/258-m (=1)/2
(z**) x x + NG x + 5%
Let £ = —q < 0, again by Lemma 7?7 we have
1 1 _ q
B t/2y — 5B — B—aq _
07(=") =0 a2 = gai® (gt 1)/2
1 _ 1 /q—m q
— B—m _
= Y Tt ( 2172 ) EESVYP
_ L spm M
/2 rla+1)/2

_ I€/26B7m _mz(ffl)/Q
(|

Lemma 9. Let £,m natural numbers such that 0 < £ < m. Given o > —1 and

/
(0,p) satisfying (C,), then the operators 21/2 (La+m) and '/ (Laym) Y2 are
bounded on LP(R*,1y0dy).

Proof. Case 1 = ¢ =m. We already mention that the operator
ayx - a+l -
() (Lar) ™2 = { — vae + 5 (vE = L) ) (L),
f
is bounded in LP(R™,y°dy), for p,§ satisfying (C,), see (??). Also the operator

(6" L) = (Vg + 5 (VE = ) YL

is bounded in LP(R*,y%dy), for p,§ satisfying (Cuy1). Hence both operators are
bounded in LP(R*, 3dy), for p, § satisfying (C,). Consequently the operator (f—
a+1
N

If2(a+1) <z then 0 < /z < 2<\f a'H) We already know that (Lg)~'/2

has positive kernel, hence for positive functions f we have

Va(Law) P (@) < Va(Lap) 2 (H)(@)X0.26041) (@)

(V= ) ) D )

V2(a+1)(Lq +1)_1/2(f)($)X[0,2(a+1)](x)

(\[_ a}l)(La+1)_I/Q(f)(x)XP(aJrl),oo)(37)

The case £ = 1 and ¢ < m, can be proved as the previous one by using
(64t (Loym) /% and 6% (Lotrm)~ /2. Then we would obtain boundedness
in LP(RT,y°dy), for §,p satisfying (Coim_1). By Remark ?? we obtain bounded-
ness for 4, p satistying (C,).

)(L(Hl)’l/2 is also bounded.

IA
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In order to prove the case 1 < ¢ < m we shall apply an induction argument. The
operators

RZ

a+m

— (5a+m+£—1 0...0 6a+m+l ° 5a+m> (La-l-m)l/Q;

are bounded in LP(R™,y°dy), for §,p satisfying (Caqrm). On the other hand the
operators

Rlpe = (6757707 0 (85 m =00 00 (5751 ) (L) 2

are bounded in LP(R*,4dy), for &,p satisfying (Coym_¢), see Theorem ??. In
particular, both operators are bounded on LP(R*,13°dy), for 6, p satisfying (Cy).
We observe that due to Lemma ?? we have for j =0,...,¢

(§a+mfj)* _ 75a+m+(j71)

+;<ﬁ_a+m:/;(j1))+;<ﬁ_(a+mﬁj)+1>

= —gotmt@-1) (\f_a:/r%m)

Therefore
(5a+m—€) (5o¢+m é—i—l)* o . (5a+m 1)

_ (75a+m+671+( T — O‘+m))0(75a+m+472+<\/5,a\—/'—§m))o...
( x_oz—l—m))

= (mom e PR ) o (<8R L AV,
VT
1
)
where P;(y/z, ﬁ) is the polynomial of first degree \/z — (”T;" Hence, by using
Lemma ?? and an induction argument we get

o (—6O‘+m

1
7))0...
NG

° (—60‘+m+P1(\/E,

(6a+m—€)* ° (5a+m—€+1)* 0.0 (5a+m—1)*
— (_1)25a+m+£71 ° 6a+m+£72 0.0 5a+m + Pl(\/E, %)5a+m+272 0.0 5a+m

1

1
+P2(\/E’ ﬁ)5a+m+e_3 SR 6o¢+m + -+ PZ(\/'E7 7)a

N3
where as usual P;(y/z, %) denotes a polynomial of degree j. Now by using Lemma 77
we get

1 _ _
RBosme = (D'Ropm+ PVE 72) 0 (Lasmer1) 2 0 Tnatmsso o Rolr)”

1 _(r—
+P1(VT, —=) © (Lagm+1) "2 0 T a1 0 Ry

N3
+eee At PZ(\/E; %) © (La+m)7z/2

Where T, at+m+¢—1 are multipliers analogous to the multipliers appearing in The-
orem 7?7. By using Theorem 7?7, Theorem ?? and induction hypotheses on ¢, the
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operators Rﬁﬂrm—év fo-‘rm? Py (y/x, ﬁ) o (La+m+€—1)71/2 o Tinatmie—10 Rg;i)ﬂ
and P,_1(\/z, %) o (Latmt1)" V20T, aymir o RL,,, are bounded for (4,p)
satisfying (C,) hence the operator P,(y/z, \%) 0 (Laym)~%? will be bounded in the

x
same range. Therefore by using induction hypotheses on ¢ again, we get that an

operator of the type (ax’/? + bx=%/?) o (Laym) "% will be bounded. By using an
argument similar to the beginning of this proof we get the lemma.
O

Theorem 10. Let o > —1 then the “Riesz” transforms (6%)*(Ly)~*/? are bounded
in LP(y°dy) for (6,p) satisfying (Cy).

Proof. Let 0 <p<m-+1and p+m =k —1, by using Lemma ?? we have

1 a-T+m (03 - 1 - m
(0™ 008 (La) ™ = g (Lagmen) PR

Where T}, is a multiplier defined on the system {£3T"1}, 5, which satisfies the
hypothesis in Theorem ??7. Now Lemmas 7?7 and ??, and Theorem 77 give the
result. O

In order to analyze the possible coincidence for certain «,d and p of the spaces
WPEP(y?9), see Definition ??, with the spaces considered in Section ?? we shall need
the following lemma whose statement is just a reformulation of Lemma ?77.

Lemma 10. Let £,m natural numbers such that 0 < £ < m + 1. Given o > 0

—t/2
and (8,p) satisfying (Co—1), then the operators #(Lw_m) are bounded on
LP(R*, y’dy).

Now we present the proof of Theorem ?77.

Proof of Theorem ??. By using Theorem ?7 and same arguments in the beginning
of the proof of Theorem ?7?, it is easy to prove (i). To see (ii), consider the function
f with support in [0, 1] such that f(y) = y(@*D/2 for 0 < y < 1/2, f(1) =0 and f
smooth in [1/3,1]. It is easy to see that f, d,f and 4 0 d f belong to L2(RT, dy).
However, for y ~ 0, §o41000f ~ y%, that is to say do11004.f is not in L2(RT, dy).

Finally, let f be a function in W2P(y°) then we have §*f, (6%)2f € LP(y°),
therefore (by Theorem ?7?) there exist h € LP such that (6%)f = (Ly)~/?h. Hence,
by using Lemma 7?7, we have

1 1
a+1 « _ « ap ar __ s apr ) —-1/2
0nT et 0% 0dtf =5 m0tf = 0% et f = 5om(La) " Th

Lemma ?? gives (iii). O

5. OTHER LAGUERRE SYSTEMS

The Laguerre functions {¢¢}72 ,, o > —1. We consider the orthonormal system
in L2((0,00),dy) given by ¢¢(y) = L&(y*)(2y)*/?, where L are the functions
defined in (?7). The functions ¢ are eigenfunctions of the operator
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In fact,

La(¢k)(k+ 5 >50k'

The operator L, can be “factorized” as:

1
Lo — (a;— ) = (Da)*Dou
1(d 1 1 1 d 1 1
b' Da:—— _ - dDa*:* _ _ = =
eing 2{dy—|—y y(a—|—2)} and (D%) 2{ dy+y y(a+2)},
where (D%)* is the formal adjoint of D% with respect to the Lebesgue measure.
Then

D(gf) = —Vheptl  and (D7) (@) = —VE+19), -
As in Sections ??7 and ?7? the Riesz transforms can be defined as

RF =Dotk"15...0 D“(La)fk/Q7 alternatively (Do‘)k(La)*km7 o> -1
Let V be the operator defined by V f(y) = (2y)"/2f(y?). Let 26 = v + g -1,
11
then ||Vf||LT’(y’Y dy) — 227p Hf”[ﬂ’(y‘S dy)-
Proposition 1. Let 1 < p < oo, and §,7y be real numbers. Let T be an operator de-
fined over the set of finite linear combination of Laguerre functions {L$ }. The op-

erator T has a bounded extension from LP((0,00),y°dy) into LP((0,0), y°dy) if and
only if the operator T = VTV~ has a bounded extension from LP((0,00),y"dy)

into LP((0,00),y"dy), where 26 = v + g ~ 1.

An easy consequence of the above proposition, and Theorems 77 and 77 is the
following.

Theorem 11. Let a« > —1 and let f be a finite linear combination of Laguerre
functions {L}i. Then
(1) e_tL"‘f _ V—le—tLa va7
(ii) Given s >0, (Lo) *f =V Y La) *Vf and
(iii) 6*f =V DV 1.
(iv) REf =V IREV S
Proposition 2. Let a > —1, 1 < p < 00, and vy be real number. Let S be any one

of the operators L=°, s > 0, RE, (D*)*L~%/2, s > 0. Then the operator S has a
bounded extension from LP((0,00),y7dy) into itself, for v satisfying

3
(16) (Ca) —1—ap—§<7<ap+?p—1.

Now in a parallel way as we did in Section 7?7 and ??, we can define potential
spaces and Sobolev spaces for the class of Laguerre functions {¢% }x, @ > —1. Thus,
given @« > —1, 1 < p < 00, s > 0 and v satisfying (C,), see (??), we define

Y (1) = (La)~**[LP(RT, ydy)]
with the norm ||f||uﬁ,s(m) = |lgllp.~, where (La)_s/zg =f.
We shall denote by U¥P?(y?), the set of functions f in LP(RT,y7dy) such that
Do, oD oDYf € LP(RY,ydy), 0<m <k -1
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with the norm
k—1
£ ler gy = 1 Fllpy + Z [D**™ o .. oD o D“me )
m=0
Finally, U*?(y?%), will denote the set of functions f in LP(RT,y"dy) such that
(D)™ f € LP(RT,y7dy), 0 < m <k, with the norm

k
1 £l iy = S 1D A1, -
m=0

The following theorems are direct consequences of Theorems 77, 7?7 and Propo-
sitions 7?7 and ?77.

Theorem 12. Let a > —1, 1 < p < 00, k € N and v satisfies (C,). Then,

i) UF? = 4*P  and the norms are equivalent.
oy ay

(i) Let v satisfying (Ca). Then UEP(y7) C ULP(y7).

(i) Let —1 < o < 0. Then 422 # U>2.

(iii) Let v satisfying (Ca—1). Then U2P(y7) = U>P(y7).

Analogous results could be obtained for the systems of Laguerre fucntionss
2 (y) = LY (y)y=*? and ¥ (y) = V2y “L2(y?), a > —1. These systems are
eigenfunctions of the differential operators

2

d——(a—kl)

L, = _ydy2 +

RS

a
dy

eo= g+ (55 v}

We leave to the interested reader the easy work, but boring unless the statements
were needed for some application, of establishing the corresponding Theorem 77 in
these systems.

and

6. SCHRODINGER EQUATION

Consider the equation

Ou(y,t)
(17) ZT - Lau(yat)
u(y,0) = f(y) yeRY tER,

for some initial data f. Consider its solution
u(y,t) = et f(y),

for f in the space L?(R*,dy). From some general result in [?] one can get that if
f e W2, with s > 1, then lim;_.g L= f(y) = f(y) a.e y. On the other hand it

a,s?

is known, see [?] and [?], that lim; .o e**2 f(y) = f(y) for f such that AY/8f ¢ L2
We give the following intermediate result.
Theorem 13. If f € QU;S with s > % then,

(18) lim "% f(y) = [ (y),

for almost everywhere y € R,
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Proof. 1t is enough to prove that the maximal function
T* f = sup [e"Fe f|
teR

satisfies the inequality
JESELIT.
I

for all compact interval I of the real line not containing the origin, and C' a constant
that may depend on the interval I but not on f.

From [?] (Theorem 8.91.2, pp. 241) and (?7?), if I is an interval that does not
contains the origin, then there exist constants C' and ng such that

C

(19) L(z) < i/i
for all z € I and n > ng.

Now, if f belongs to 202 | we can write

f) =" an L3(y),
n=0

and thus
1/2

ad a+1,
I, = | 32 fo 2+ 5

By Tonelli’s theorem, estimate (??) and Holder’s inequality, we get

* - it(n4otl — o
[ sty < [ e L) dy < 3 lanl [ 12301 dy
1 It>0 n=0 n=0 I

o 1 172 / ) 1/2
<c C+;m §|an|2(n+a; e
o ) 1/2
<C <C+ Z nl/2+s> | fllwz -
n=ng
Since s > 1/2, we have 1/2 + s > 1 and the last series is convergent.
O
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