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Abstract. We discuss the concept of Sobolev space associated to the La-

guerre operator Lα = −y d2

dy2
− d
dy

+ y
4

+ α2

4y
, y ∈ (0,∞). We show that the

natural definition does not fit with the concept of potential space, defined via

the potentials (Lα)−s. An appropriate Laguerre-Sobolev spaces are defined in
order to have the mentioned coincidence. An application is given to the al-

most everywhere convergence of solutions of the Schrödinger equation. Other

Laguerre operators are also considered.

1. Introduction

We start with a naive description of our aim in writing this paper. Let L be
a linear second order differential operator, selfadjoint with respect to a certain
measure µ. Different techniques, see for example (??), allow us to define the “Riesz
potentials” L−s, s > 0. In these circumstances we consider the “potential space”
Lps , 1 < p <∞, as the space L−s/2(Lp(µ)), in other words the collection of functions
f such that there exists g ∈ Lp(µ) with f = L−s/2(g).

In general, the second order operator L admits a certain factorization L =∑
iD∗iDi, where Di are first order differential operators with adjoints (respect to

µ) D∗i . Then it is also usual to define the “Riesz transforms” Ri = Di ◦ L−1/2 and
analyze their boundedness properties on Lp(µ), see [?], [?]. Several motivations
can be given for the study of these Riesz transforms. For example the boundedness
in Lp of operators like D2

i ◦ L−1 (usually called Riesz transforms of second order)
drive rather easily to “a priori” estimates in Lp for the equation Lu = f, just ob-
serve that the boundedness ‖D2

i ◦ L−1g‖p ≤ C‖g‖p can be written in this case as
‖D2

i u‖p ≤ C‖f‖p. A second motivation (in fact the motivation of this note) is the
following. Given a natural number k, let us define the (Sobolev) space W k

p as the
collection of functions on Lp such that the k−derivatives Dki f belong to Lp. Suppose
that the Riesz transforms of order k, Dki ◦ L−k/2, satisfy ‖Dki ◦ L−k/2f‖p ∼ ‖f‖p.
This last equivalence could be written (at least formally) as ‖Dki f‖p ∼ ‖Lk/2f‖p.
In other words the spaces W k

p and Lpk would coincide. As the spaces Lps have a
meaning for all s > 0, (even no integer) one could say that the potential space Lps
is the space of functions on Lp whose “s−derivative” is in Lp. We observe that if
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ϕn is an eigenfunction of L with eigenvalue λn 6= 0 then L−sϕn = λ−sn ϕn. Hence
the last interpretation of s−derivative is particularly simple to understand.

If the above ideas are directly applied to the Laguerre differential operator (for
Laguerre functions) one finds something that can be consider a surprise. The
expected definition of Sobolev space of order k, that is, the set of functions in Lp

such that the derivatives (according to the natural factorization of the differential
operator) of order k belong to Lp, does not fit with the definition of potential
spaces, see Definitions ??, ?? and ?? and Theorems ?? and ??. The main purpose
of the paper is to clarify and make precise which could be the most appropriated
definition of Sobolev spaces for the Laguerre operator. Our work was inspired in
[?] and [?].

It is a common fact that if a concept is developed for Laguerre functions then
the analogous concept can be developed in an easier way for Hermite functions.
That happens in this work and then we devote Section ?? to Hermite functions. A
comment about the dimension is convenient here. The motivation of this paper is
essentially one-dimensional, but in the case of Hermite functions, the theory has no
added difficulty in several variables, so we present in that context our results for
the Hermite operator.

The knowledge of a sharp enough power weighted theory for a Laguerre function
system can be transferred to another Laguerre function system, see [?]. That is why
we develop a weighted theory of Sobolev and potential spaces for a particular system
of Laguerre functions and then we transfer in an easy way to another systems, see
Section ??.

Finally in the last section we present a simple application to the pointwise con-
verge of solutions of Schrödinger equation.

We discuss quickly the case of the Hermite operator

(1) H = −∆ + |x|2, x ∈ Rd.

H is self-adjoint on the set of infinitely differentiable functions with compact sup-
port C∞c (R). The Lebesgue measure will be the ambient measure.

For each s > 0, the Hermite potential, H−s, is defined for f ∈ L2(R, dx), by the
formula

(2) H−sf(x) =
1

Γ(s)

∫ ∞
0

e−tHf(x) ts
dt

t
, x ∈ Rd,

where {e−tH}t≥0 is the heat semi-group associated to H. The corresponding po-
tential spaces, Lps(w) = H−s/2(Lp(w)), are defined in (??) with respect to an
absolute continuous measure w(x)dx, being w a weight in Ap. For the reader’s con-
venience we remind that a positive function w is said to belong to the Muckenhoupt
class Ap, 1 < p < ∞, if the Hardy-Littlewood maximal operator is bounded from
Lp(w(x)dx) into Lp(w(x)dx), and w is said to belong to the class A1, if the Hardy-
Littlewood maximal operator is bounded from L1(w(x)dx) into weak-L1(w(x)dx).

The operator H can be factorized as H = 1
2

∑d
j=1AjA−j + A−jAj , see (??).

Where Aj and A−j are first order differential operators.
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Definition 1. Given k ∈ N, the Hermite-Sobolev space of order k, denoted by
W k,p(w), will be the set of functions f ∈ Lp(w) such that

m times︷ ︸︸ ︷
Aj · · ·Aj f = Amj f ∈ Lp(w), 1 ≤ m ≤ k, 1 ≤ j ≤ d,

with the norm

‖f‖Wk,p(w) =
d∑
j=1

∑
1≤m≤k

‖Amj f‖Lp(w) + ‖f‖Lp(w).

The following theorem will be proved in Section ??.

Theorem 1. Let k ∈ N, 1 < p <∞, and w ∈ Ap. Then,

W k,p(w) = Lpk(w)

and the norms ‖ · ‖Wk,p(w) and ‖ · ‖Lpk(w) are equivalent.

Of course in order to prove this theorem, we shall need previously to prove some
boundedness result of higher order Riesz Transforms, see Theorem ??.

Regarding the Laguerre operator

(3) Lα = −y d2

dy2
− d

dy
+
y

4
+
α2

4y
, y ∈ (0,∞),

selfadjoint in the set Cc(0,∞), there is a natural domain of power weights yδ for
the boundedness on Lp(R+, yδdy) of classical operators associated to Lα, (see [?]),
namely if α > −1, 1 < p <∞ and δ ∈ R

(4) (Cα) − α

2
p− 1 < δ < p− 1 +

α

2
p.

In a parallel way to the Hermite case, we can define appropriate potential spaces
for Laguerre functions.

Definition 2. Given α > −1, 1 < p <∞, s > 0 and δ ∈ R we define

Wp
α,s(y

δ) = (Lα)−s/2[Lp(R+, yδdy)]

with the norm ‖f‖Wp
α,s(yδ) = ‖g‖p,δ, where (Lα)−s/2g = f .

On the other hand the Laguerre operator can be factorized as Lα = (δα)∗δα +
(α+ 1)

2
, see (??). Following the thoughts that we developed for the Hermite case,

one can give the following.

Definition 3. We shall denote by Wk,p
α (yδ) the set of functions f in Lp(R+, yδdy)

such that (δα)mf ∈ Lp(R+, yδdy), 0 ≤ m ≤ k, with the norm

‖f‖Wk,p
α (yδ) =

k∑
m=0

‖(δα)mf‖Lp(R+,yδdy) .

However, even we shall prove (see Theorem ??) that the higher order Riesz trans-
forms (δα)k(Lα)−k/2 are bounded in Lp(yδdy) for δ satisfying (Cα), the “Sobolev”
spaces Wk,p

α (yδ) are different from the potential spaces Wp
α,k(yδ). In fact we have

the following

Theorem 2. Let p be in the range 1 < p <∞.
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(i) Let α > −1, and δ satisfying (Cα). Then Wk,p
α (yδ) ⊂ Wk,p

α (yδ).
(ii) Let −1 < α ≤ 0. Then W2,2

α 6=W2,2
α .

(iii) Let α > 0, and δ satisfying (Cα−1). Then W2,p
α (yδ) =W2,p

α (yδ).

This result suggests that the iteration of operators δα are no good substitutes
for the notion of fractional derivative in this case. Looking at the actual action of
these operators over the set of eigenfunctions of the operator Lα, see (??) and (??),
it seems natural to consider the higher order Riesz transforms defined as

Rkα =
(
δα+k−1 ◦ · · · ◦ δα+1 ◦ δα

)
(Lα)−k/2.

It is proved in Theorem ?? that these Riesz transforms, Rkα, are bounded on
Lp(R+, yδdy) for δ satisfying (Cα). This would suggest the following alternative
concept of the “Sobolev” spaces given in Definition ??.

Definition 4. The Laguerre-Sobolev spaces, that we denote by W k,p
α (yδ), are the

sets of functions f in Lp(R+, yδdy) such that

δα+m ◦ . . . ◦ δα+1 ◦ δαf ∈ Lp(R+, yδdy), 0 ≤ m ≤ k − 1

with the norm

‖f‖Wk,p
α (yδ) = ‖f‖p,δ +

k−1∑
m=0

∥∥δα+m ◦ . . . ◦ δα+1 ◦ δαf
∥∥
p,δ
.

These spaces are the right spaces for the problem we are considering and the
following theorem will be proved in Section ??.

Theorem 3. Let α > −1, 1 < p <∞, k ∈ N and δ satisfies (Cα). Then,

W k,p
α (yδ) = Wk,p

α (yδ),

and the norms are equivalent.

Unweighted Sobolev spaces in the case of Hermite operator were considered
previously by Thangavelu see [?] and the authors [?].

For the case of Laguerre functions, Laguerre potential spaces were introduced
by Peetre and Sparr in 1975, they were also studied by Thangavelu in [?] and
by Radha and Thangavelu in [?] and [?]. For some previous works contain the
definition and power weighted Lp−boundedness of the first order Riesz transforms,
see [?] and [?] for the system Lαk , and [?] for the system ϕαk , see Section ??. Recently,
power weighted Lp−boundedness of the higher order Riesz transforms of the form
(Dα)kL−k/2 for the system ϕαk (see Section ??) has been proved in [?]. From that
result one can deduce, by using back the methods in Section ??, our Theorem ??
about operators of the form (δα)k(Lα)−k/2. However, we present our different proof
since we think that it contains some explanation of the behaviour of the commuting
properties of several operators. Finally for the case of Laguerre polynomials some
results can be found in [?].

2. Hermite Sobolev spaces with weights

Let Hn, n = 0, 1, . . . be the family of Hermite polynomials. The Hermite function

of order n is defined as hn(t) =
Hn(t) e−t

2/2

(2nn!π1/2)1/2
, t ∈ R. Given a multi-index α =
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(αj)dj=1 ∈ Nd, the Hermite function of order α is defined as

hα(x) = Πd
j=1hαj (xj), x = (x1, . . . , xd) ∈ Rd.

These functions are eigenvectors of the Hermite operator, see (??). In fact

Hhα = (2|α|+ d)hα,

where |α| =
∑d
j=1 αj , see [?].

We shall need the following lemmas. Their proofs can be found respectively in
[?], [?] and [?].

Lemma 1. Let M ∈ N and f ∈ C∞c , then there exists a constant CM,f > 0 such
that ∣∣∣∣∫

Rd
f hα

∣∣∣∣ ≤ CM,f (|α|+ 1)−M , α ∈ Nd.

Lemma 2. Let 1 ≤ p <∞ and w ∈ Ap, there exist constants εp > 0 and Cw such
that

‖hα‖Lp(w) ≤ Cw (|α|+ 1)εp .

Lemma 3. Let f be a linear combination of Hermite functions, the fractional
integral H−s, s > 0, see (??), has an integral representation

H−sf(x) =
∫

Rd
Ks(x, y)f(y)dy, x ∈ Rd,

where Ks(x, y) is positive and symmetric. Moreover,

(5) Ks(x, y) ≤ C φs(|x− y|), x, y ∈ Rd,

where φs(r), for r ≥ 0, is defined by

φs(r) =


χ{r<1}(r)

rd−2s + e
−r2

4 χ{r≥1}(r), if s < d
2 ,

log
(
e
r

)
χ{r<1}(r) + e

−r2
4 χ{r≥1}(r), if s = d

2 ,

χ{r<1}(r) + e
−r2

4 χ{r≥1}(r), if s > d
2 .

Theorem 4. Let 1 ≤ p < ∞ and s > 0. If w ∈ Ap, then the operator H−s, is
bounded on Lp(w).

Proof. If p > 1, we just observe that the function x → φs(|x|) is radial and de-
creasing for |x| → ∞, therefore, |H−sf(x)| ≤ M(|f |)(x) where M is the Hardy-
Littlewood maximal operator and the the result follows.

In the case p = 1, we shall prove that
∫

Rd
Ks(x, y)w(x) dx ≤ C w(y), whenever

y is a Lebesgue point of w. Therefore,∫
Rd
|H−sf(x)|w(x) dx ≤

∫
Rd
|f(y)|

∫
Rd
Ks(x, y)w(x) dx dy ≤

∫
Rd
|f(y)|w(y)dy.

If y is a Lebesgue point of w ∈ A1, then

1
|B(y, r)|

∫
B(y,r)

w(x)dx ≤ C w(y).
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Hence, by estimate (??) and splitting into annuli, we have∫
Rd
Ks(x, y)w(x) dx ≤ C

∞∑
k=−∞

∫
B(y,2k)\B(y,2k−1)

φs(|y − x|)w(x) dx

≤ C

∞∑
k=−∞

φs(2k)
2dk

|B(y, 2k)|

∫
B(y,2k)\B(y,2k−1)

w(x) dx

≤ C w(y)

( ∞∑
k=−∞

φs(2k)2dk
)
≤ Cw(y).

�

Given 1 ≤ p <∞, s > 0 and w ∈ Ap, we define the potential spaces

(6) Lps(w) = H−s/2(Lp(w)),

with the norm ‖f‖Lps(w) = ‖g‖Lp(w), where g is such thatH−s/2g = f.

The space Lps(w) is well defined, since H−s/2 is bounded and one to one in Lp(w).
If fact, suppose g ∈ Lp(w) and H−s/2g = 0. Observe that∫

Rd

∫
Rd
Ks/2(x, y)|g(x)||hα(y)|dy dx ≤ ‖H−s/2|g|‖Lp(w)‖hα‖Lp′ (w−p′/p),

and this expression in finite by Theorem ?? and Lemma ?? since w−p
′/p belongs

to Ap′ . Hence, by Fubini and the symmetry of Ks/2,∫
Rd
g hα = (2n+ 1)s/2

∫
Rd
g H−s/2hα = (2n+ 1)s/2

∫
Rd
H−s/2g hα = 0,

and this assures that g = 0 (see Corollary 2.4 in [?]).

Remark 1. The space F of finite linear combinations of Hermite functions is a dense
subspace of Lps(w), since F = H−s/2(F) is dense in Lp(w).

The operator H can be factorized as

(7) H =
1
2

d∑
j=1

AjA−j +A−jAj ,

where

Aj =
∂

∂xj
+ xj and A−j = − ∂

∂xj
+ xj .

It is easy to check that

(8) Ajhα =
√

2αj hα−ej , A−jhα =
√

2(αj + 1)hα+ej ,

where ej is the jth-coordinate vector in Nd. From these formulas the operators Aj
and A∗j are called annihilation and creation operators respectively.

Definition 5. The Hermite-Riesz transforms of order m, m ∈ N, associated to H
are defined by

RmJ = Aj1 . . . AjmH
−m/2, where J = (j1, . . . , jm), 1 ≤ |ji| ≤ d, 1 ≤ i ≤ m.
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In the case j1 = · · · = jm = j, these operators will be denoted by Rmj . The case
m = 1 were introduced by S. Thangavelu, see [?]. He proved that they are bounded
operators in Lp(Rd). Also in [?] and [?], it was shown that the operators RmJ are
Calderon-Zygmund operators and as a consequence they are bounded in Lp(w) for
w ∈ Ap, 1 < p <∞.

We shall now present a structural theorem for the spaces Lps(w). The unweighted
versions of this result can be found in [?] (Theorems 2, 6 and 7.)

Theorem 5. Let w ∈ Ap, 1 < p <∞, and s > 0.
i) If t > s, then Lpt (w) ⊂ Lps(w) ⊂ Lp(w) with continuous inclusions. Moreover,

Lps(w) and Lpt (w) are isometrically isomorphic.
ii) If t > 0, then H−t/2 maps Lps(w) into Lps+t(w).

iii) If s > 1 and 1 ≤ |j| ≤ d, then Aj is bounded from Lps(w) into Lps−1(w).
iv) The operators RmJ , are bounded on Lps(w).

Proof. Observe that H−t/2 = H−s/2 ◦ H−r, with r = (t − s)/2. Then (i) follows
from Theorem ??. (ii) also follows from Theorem ?? and the definition of the
spaces Lps(w).

In order to prove (iii) we shall need the two following results. They can be found
respectively in [?] and [?]. For further reference, we stated them as Proposition ??
and Lemma ??.

Proposition 1. Let 1 < p <∞ and m ∈ `∞(Nd) such that

‖∆`m(α)| ≤ C (1 + |α|)−|`|, α ∈ Nd, ∀ |`| ≤ d+ 1.

Consider the operator Tmf =
∑
αm(α)〈f, hα〉hα, defined at least for f ∈ L2(R).

Then, Tm admits a bounded extension to Lp(w) whenever the weight w belongs to
the Muckenhoupt class Ap.

Remark 2. Observe that as Hhα = (2|α|+d)hα, any operator of the type F (H)f =∑
α F (2α+ d)〈f, hα〉hα can be written as Tmf =

∑
αm(α)〈f, hα〉hα with m(α) =

F (2α+ d) = F (2(α1, . . . , αd) + d).

Lemma 4. Let b ∈ Rd, then for all f in F, we have
AjH

bf = (H + 2)bAjf , 1 ≤ j ≤ d,
AjH

bf = (H − 2)bAjf , − d ≤ j ≤ −1
HbAjf = Aj(H − 2)bf , 1 ≤ j ≤ d and
HbAjf = Aj(H + 2)bf, −d ≤ j ≤ −1.

Where Hbhα = (2|α|+ d)bhn and (H + 2)bhα = (2|α|+ d+ 2)bhα, for all α ∈ Nd0,
and (H − 2)bhα = (2|α|+ d− 2)bhα, for all α with |α| ≥ 1.

We continue the proof of Theorem ??. Let 1 ≤ j ≤ d (the case −d ≤ j ≤ −1 is
similar). Let f ∈ F, by Lemma ?? we have

Ajf = H−(s−1)/2

(
H

H + 2

)(s−1)/2

Rj H
s/2f .

As the function m(α) =
(

2|α|+ d

2|α|+ d+ 2

)(s−1)/2

satisfies the hypotheses of Propo-

sition ??, see also Remark ??, the operator
(

H
H+2

)(s−1)/2

is bounded on Lp(w).
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Hence by using the boundedness in Lp(w) of the Riesz transforms, we have

‖Ajf‖Lps−1(w) =
∥∥∥( H

H + 2

)(s−1)/2

Rj H
s/2f

∥∥∥
Lp(w)

≤ C‖Hs/2f‖Lp(w) = ‖f‖Lps(w).

Finally (iv) follows from (ii) and (iii). �

The following technical result will be needed later.

Proposition 2. Let 1 < p < ∞ and w ∈ Ap. For k ∈ N the set W k,p(w) (see
Definition ??) is a Banach space. Moreover, the sets F and C∞c are dense in
W k,p(w).

Proof. Observe that if {fn}n≥1 is a Cauchy sequence in W k,p(w), the completeness
of Lp(w) implies that fn converges to some f and Amj fn converges to some gm,j in
Lp(w), 1 ≤ m ≤ k, 1 ≤ j ≤ d. If ψ belongs to C∞c , also (Amj )∗ψ belongs to C∞c ,
and if B is a ball containing the support of (Amj )∗ψ, then∣∣∣∣∫

Rd
f (Amj )∗ψ −

∫
Rd
fn (Amj )∗ψ

∣∣∣∣ ≤ C

∫
B

|f − fn|

≤ C

(∫
Rd
|f − fn|pw

)1/p(∫
B

w−p
′/p

)1/p′

,

where the last integral is finite due to w ∈ Ap. Hence

lim
n→∞

∫
Rd
fn (Amj )∗ψ =

∫
Rd
f (Amj )∗ψ.

In the same way, lim
n→∞

∫
Rd
Amj fn ψ =

∫
Rd
gm,j ψ. Therefore we have

∫
Rd
Amj fψ =∫

Rd
gm,j ψ, for all ψ in C∞c , and thus Amj f = gm,j almost everywhere. These

completes the proof that W k,p(w) is complete.
Now we will see that C∞c is a dense set in W k,p(w) (we shall follow the ideas

in [?], p. 123.) Let ψ be a function in C∞c such that
∫

Rd ψ = 1. For every ε > 0,

consider ψε(x) =
1
εd
ψ
(x
ε

)
. Given f in W 1,p(w), the function f ∗ ψε belongs to

C∞ and approximates f in the W 1,p(w)-norm. In fact, it is easy to see that for all
m ≥ 1 and 1 ≤ j ≤ d,

Aj(f ∗ ψε) = Ajf ∗ ψε + εf ∗ (xjψ)ε , Amj (f ∗ ψε) =
m∑
n=0

εnAm−nj f ∗ (xnj ψ)ε.

Since Am−nj f belongs to Lp(w) and xnj ψ belongs to C∞c , 0 ≤ n ≤ m, we have

Amj (f ∗ ψε)→ Amj f

in Lp(w) as ε goes to 0. The functions f ∗ψε do not necessary have compact support,
but they can be modified as in the classical case (see [?], p. 123).

It remains to prove that any function in C∞c can be approximated in theW k,p(w)-
norm by a function in F. We will show that any f ∈ C∞c is the limit, in the
W k,p(w)-norm, of a subsequence of the partial sums

SNf =
∑
|α|≤N

〈f, hα〉hα, N ≥ 1,
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where 〈f, hα〉 =
∫
fhα. In [?], Lemma 2.3, it is proved that there exists a subse-

quence of the previous sequence converging to f in the Lp(w)-norm. Hence, it is
enough to show that there exists a subsequence of

{Amj (SN (f))}N≥1 = {SN (Amj f)}N≥1

converging to Amj f in the Lp(w)-norm, where 1 ≤ j ≤ d and 1 ≤ m ≤ k.
Let us fix j and m such that 1 ≤ j ≤ d and 1 ≤ m ≤ k . Following the argument

of [?], the sequence {SN (Amj f)}N≥1 converges to Amj f in the L2-norm. Hence we
can take a subsequence {SNk(Amj f)}k≥1 converging to Amj f almost everywhere. By
using (??), we have

SN (Amj f) =
∑
|α|≤N

〈Amj f, hα〉hα =
∑
|α|≤N

〈f, (A∗j )mhα〉hα

=
∑
|α|≤N

m∏
l=1

√
2(αi + l)〈f, hα+mei〉hα .

Hence, by Lemma ?? (with M ≥ m) and Hölder’s inequality, we have

|SN (Amj f)|p ≤ C

 ∑
|α|≤N

m∏
l=1

√
2(αj + l) (|α|+m+ 1)−M |hα|

p

≤ C

 ∑
|α|≤N

|α+m+ 1|−M/2|hα|

p

≤ C

(∑
α

|α+ 1|−M/2

)p/p′∑
α

|α+ 1|−M/2|hα|p

≤ C
∑
α

|α+ 1|−M/2|hα|p.

From Lemma ??, for a big enough M , the function∑
α

|α+ 1|−M/2|hα|p

belongs to L1(w). The dominated convergence theorem implies that

{SNk(Amj f)}k≥1 → Amj f

in the Lp(w)-norm. Now we can repeat the lines above for every j and m, taking
a subsequence of the previous subsequence in each step. �

Proof of Theorem ??. Since F is dense in both spaces, it is enough to show the
equivalence of the norm for functions in F.

Let f ∈ F, and f = H−k/2g. For 1 ≤ j ≤ d and 1 ≤ m ≤ k, from the bound-
edness of Rmj and H−k+m (see the comments after Definition ?? and Theorem ??)
we have

‖(Aj)mf‖Lp(w) ≤ ‖Rmj H
−k+m

2 g‖Lp(w) ≤ ‖g‖Lp(w),

then
‖f‖Wk,p(w) ≤ C‖g‖Lp(w) = C‖f‖Lpk(w).



10 B. BONGIOANNI AND J. L. TORREA

Now we shall prove the converse inequality. By using Lemma ??, the following
identities can be proved for each integer k ≥ 1.

Tk =
d∑
j=1

Rk−j R
k
j =

d∑
j=1

(A∗j )
kH−k/2 (Aj)kH−k/2

= (H − 2k)−k/2
( d∑
j=1

(A∗j )
k (Aj)k

)
H−k/2

= (H − 2k)−k/2
{ d∑
j=1

(
(Hj − 1)(Hj − 1− 2) . . . (Hj − 1− 2(k − 1))

)}
H−k/2,

where Hj = − ∂2

∂x2
j

+ x2
j . Observe that H =

∑
j Hj . Consider the function

mk(α) =
(2|α|+ d− 2k)k/2(2|α|+ d)k/2∑d

j=1(2αj)(2αj − 2) . . . (2αj − 2(k − 1))
χ[dk,∞)(|α|)

An appropriate smooth extension of mk can be considered in order to apply Proposi-
tion ??. Hence the operator Smk

defined as Smk
f =

∑
α mk(α)〈f, hα〉hα is bounded

in Lp(w).
Denote by Fk the finite dimensional space of linear combinations of Hermite

functions hα with |α| < k. Given a function g in F\Fk. We observe that Smk
◦Tk g =

g and therefore we have

‖g‖Lp(w) = ‖Smk
Tkg‖Lp(w) ≤ Ck‖Tkg‖Lp(w) = Ck

d∑
j=1

∥∥Rk−j Rkj g∥∥Lp(w)

≤ Ck

d∑
j=1

∥∥Rkj g∥∥Lp(w)
= Ck

d∑
j=1

∥∥∥(Aj)kH−k/2g
∥∥∥
Lp(w)

for some constant Ck independent of g. Therefore for f ∈ F \Fk with f = H−k/2g,
we have

‖f‖Lpk(w) = ‖g‖Lp(w) ≤ Ck‖f‖Wk,p(w).

For the general case g ∈ F, we write g = g1 + g2 with g1 ∈ Fk and g2 ∈ F \ Fk. We
observe (one can use Lemma ??) that Hk/2 is a bounded linear operator on the
finite dimensional space Fk (with the Lp(w)-norm). The same lemma also ensures
that the projection g → g1 is bounded in Lp(w), hence

‖g‖Lp(w) ≤ ‖Hk/2H−k/2g1‖Lp(w) + ‖g2‖Lp(w)

≤ Ck‖H−k/2g1‖Lp(w) + Ck

d∑
j=1

∥∥∥(Aj)kH−k/2g2

∥∥∥
Lp(w)

≤ C‖H−k/2g‖Lp(w) + Ck

d∑
j=1

∥∥∥(Aj)kH−k/2g
∥∥∥
Lp(w)

,

where in the last inequality we have used (Aj)kHk/2g1 = 0 and also the fact that
the projection of the function H−k/2g from F into Fk is H−k/2g1. �
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3. Laguerre setting

Let Lαn, n = 0, 1, . . . be the Laguerre polynomials of type α, α > −1. Consider
the family of Laguerre functions Lαn defined as

Lαn (y) =
(

Γ(n+ 1)
Γ(n+ α+ 1)

)1/2

e−y/2yα/2Lαn (y) , y ∈ R+, n ∈ N0.(9)

For each α > −1, {Lαn}∞n=0 is an orthonormal system in L2((0,∞)) and satisfy

LαLαn =
(
n+

α+ 1
2

)
Lαn, n ∈ N0,

where Lα is defined in (??). It is known (probably it can be said that belongs
to the folklore, see for example [?] Theorem 5.7.1) that if α > −1, 1 < p < ∞
and δ ∈ R satisfy (Cα), see (??), then, the set Sα of finite linear combinations of
Laguerre functions is dense in Lp((0,∞), yδdy). This condition (Cα) will be crucial
along this note.

Remark 3. Observe that if a pair (δ, p) satisfies condition (Cα) then it satisfies
condition (Cβ) for every β > α.

Given α > −1 and s > 0, we can define the operator (Lα)−s analogously as
in (??) just by making the substitution of {e−tH}t>0 by {e−tLα}t>0. We need the
following two results that can be found in [?] and that we state as a unified theorem
for further reference.

Theorem 6. Let α > −1, 1 < p < ∞ and δ ∈ R satisfying condition (Cα).
Consider the function µ ∈ C∞([0,∞)) such that

(10)
∣∣∣µ(k)(t)

∣∣∣ ≤ Ck(1 + t)−k, k = 0, 1, 2, . . .

for all t > 0 and k ∈ N0. Then, the operator

Tµf =
∞∑
n=0

µ(n)〈f,Lαn〉Lαn,

defined at least for f ∈ L2(R), admits a bounded extension to Lp(R+, yδdy).

A consequence of this result is the following theorem.

Theorem 7. Let α > −1, 1 < p < ∞ and δ ∈ R satisfying relation (Cα). The
operator (Lα)−s, s > 0, is bounded from Lp((0,∞), yδ) into itself.

Proof. The multiplier µ(n) =
(
n+

α+ 1
2

)−s
satisfies (??). �

Now we can see that the spaces in Definition ?? are well defined, we proceed as
in the Hermite context. It is not difficult to prove that (Lα)−s/2 is one to one in

Lp(R+, yδdy), using the fact that Sα is contained and dense in Lp
′
(R+, y−

p′
p δdy),

whenever δ satisfies (Cα). Moreover, since Sα = (Lα)−s/2(Sα) and Sα are dense in
Lp(R+, yδdy), then Sα is dense in Wp

α,s(y
δ).

The operator Lα can be written as

Lα = (δα)∗δα +
(α+ 1)

2
,
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where

(11) δα =
√
x
d

dx
+

1
2

(√
x− α√

x

)
and (δα)∗ = −

√
x
d

dx
+

1
2

(√
x− α+ 1√

x

)
.

The action of these operators on Laguerre functions is given by

δα(Lα0 ) = 0, δα(Lαn) = −
√
n Lα+1

n−1, for n ≥ 1, and(12)

(13) (δα)∗(Lα+1
n ) = −

√
n+ 1 Lαn+1 for n ≥ 0.

The Riesz transforms were defined in [?], for α > −1 by

Rα = δα(Lα)−1/2 and R̃α = (δα)∗(Lα+1)−1/2.

In [?] it was proved that those operators are bounded on Lp(R+, yδdy) for δ satis-
fying (Cα). Given a positive integer k and α > −1 we define the higher order Riesz
transform of order k as

Rkα =
(
δα+k−1 ◦ · · · ◦ δα+1 ◦ δα

)
(Lα)−k/2

and
R̃kα =

(
(δα)∗ ◦ (δα+1)∗ ◦ · · · ◦ (δα+k−1)∗

)
(Lα+k)−k/2.

Observe that R1
α = Rα and R̃1

α = R̃α.

Theorem 8. Let k ∈ N, 1 < p <∞, α > −1 and δ satisfying (Cα). The operators
Rkα and R̃kα are bounded on Lp(R+, yδdy).

In order to prove this theorem we shall need the following lemma, whose proof
is left to the reader.

Lemma 5. Let Φ be a continuous function and α > −1. For every f in Sα, we
have

(1) δαΦ(Lα)f = Φ
(
Lα+1 +

1
2
Id

)
δαf.

(2) (δα)∗Φ(Lα+1)f = Φ
(
Lα −

1
2
Id

)
(δα)∗f.

Now we can give the proof of Theorem ?? by using an induction argument on k.

Proof of Theorem ??. As we mention above, the result is true for k = 1, see [?].
Let k > 1, for a function f in Sα, we have

Rkα =
(
δα+k−1 ◦ · · · ◦ δα+1 ◦ δα

)
(Lα)−k/2

=
(
δα+k−1 ◦ · · · ◦ δα+1

)
◦ δα ◦ (Lα)−(k−1)/2(Lα)−1/2

=
(
δα+k−1 ◦ · · · ◦ δα+1

)
◦
(
Lα+1 +

1
2
Id

)−(k−1)/2

◦ δα ◦ (Lα)−k/2

=
(
δα+k−1 ◦ · · · ◦ δα+1

)
◦
(
Lα+1

)−(k−1)/2

◦ Tµ ◦ δα ◦ (Lα)−k/2

= Rk−1
α+1 ◦ Tµ ◦Rα.

Where Tµ is the operator given by the multiplier (in the system {Lα+1
k }∞k=0) µ(n) =[ n+ α+1

2

n+ α+2
2 + 1

2

](k−1)/2

. The function µ satisfies (??). Hence, by using Theorem

??, we get that Tµ is bounded from Lp((0,∞), yδdy) into Lp((0,∞), yδdy) for δ
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satisfying (Cα+1). On the other hand the induction hypothesis says that Rk−1
α+1 is

bounded from Lp((0,∞), yδdy) into Lp((0,∞), yδdy) for δ satisfying (Cα+1). As
we noticed, this range is bigger than the range (Cα), see Remark ??.

In order to prove the boundedness of R̃kα, we use again Lemma ??. We write
R̃kα = R̃k−1

α ◦ Tν ◦ R̃α+k−1, where Tν is the operator given by the multiplier ν(n) =(
n +

α+ k

2

)/(
n +

α+ k − 1
2

)
. The proof continues along the same lines as for

Rkα, by using in this case the boundedness of the operators R̃kα and Tν . �

Parallel to the Hermite setting we have the following structural theorem for the
spaces Wp

α,s(y
δ).

Theorem 9. Let α > −1, 1 < p <∞, s > 0, and δ satisfying (Cα).
i) If t > s, then Wp

α,s(y
δ) ⊂ Wp

α,t(yδ) ⊂ Lp(yδ) with continuous inclusions.
Moreover, Wp

α,s(y
δ) and Wp

α,t(yδ) are isometrically isomorphic .
ii) If t > 0, then (Lα)−t/2 maps Wp

α,s(y
δ) into Wp

α,s+t(y
δ).

iii) If s > 1, then δα is bounded from Wp
α,s(y

δ) into Wp
α+1,s−1(yδ).

iv) The operators Rkα, are bounded from Wp
α,s(y

δ) into Wp
α+k,s(y

δ).

Proof. The statements i) and ii) follow from the boundedness of (Lα)−s/2 estab-
lished in Theorem ??. On the other hand, given a function f ∈Wp

α,s(y
δ), there ex-

ists a function g ∈ Lp(yδ) such that L−s/2α g = f . Consider h =
(
Lα+1 + 1

2Id

Lα+1

)− s−1
2

Rαg,

then

δαf = δαL−s/2α g = (Lα+1 +
1
2
Id)−(s−1)/2δαL−1/2

α g

= (Lα+1 +
1
2
Id)−(s−1)/2Rαg

= (Lα+1)−
s−1
2 h.

By Theorem ?? and Theorem ??, we have

‖δαf‖Wp
α+1,s−1(yδ) = ‖h‖Lp(yδ) ≤ C‖g‖Lp(yδ) = ‖δαf‖Wp

α,s(yδ).

In order to prove iv) we use ii) and iii). �

Given a function f, consider the Cesàro sums of g of order r > 0, that is

CrN,α(g) =
1

arN

N∑
n=0

arN−n〈f,Lαn〉Lαn,

for N ∈ N, with arn =

∏n
j=1(j + r)
n!

, 0 ≤ n ≤ N. The following proposition is an

easy consequence of Theorem 1.13 in [?] and it shall be the key to prove a density
result in W k,p

α,δ , see Definition ??.

Proposition 3. Let α > −1, 1 < p <∞ and δ satisfying (Cα), there exists r ≥ 1
(possibly depending on α) such that the Cesàro sums of order r of a function f
converge to f in the Lp(yδdy)-norm as N goes to infinity.

Proposition 4. Let α > −1, 1 < p <∞, k ∈ N and δ satisfying (Cα). Then Sα is
a dense subspace of W k,p

α,δ .
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Proof. By using (??) and (??), we have

δαCrN,α(f) =
1

arN

N∑
n=1

arN−n〈f,Lαn〉 (−
√
n)Lα+1

n−1

=
1

arN

N∑
n=1

arN−n〈f, (δα)∗Lα+1
n−1〉 L

α+1
n−1

=
arN−1

arN

1
arN−1

N−1∑
n=0

ar(N−1)−n〈δ
αf,Lα+1

n 〉 Lα+1
n

=
arN−1

arN
CrN−1,α+1(δαf),

and inductively, if m ∈ N0 and N > m,
(14)(
δα+m−1 ◦ . . . ◦ δα+1 ◦ δα

)
CrN (f) =

arN−m
arN

CrN−m,α+m

(
δα+m−1 ◦ . . . ◦ δα+1 ◦ δαf

)
.

We choose r big enough as in Proposition ??, therefore the sequence in Sα given
by fN = CrN,αf , converges to f in Lp(yδdy)-norm. Observe that the functions
δα+m−1 ◦ . . . ◦ δα+1 ◦ δαf , where 1 ≤ m ≤ k− 1, also belong to Lp(R+, yδdy), then
equation (??), Proposition ?? and the fact that limN 7→∞

arN−m
arN

= 1, imply that the
sequence δα+m−1 ◦ . . . ◦ δα+1 ◦ δα ◦CrN (f) converges to δα+m−1 ◦ . . . ◦ δα+1 ◦ δαf in
the Lp(yδdy)-norm, for 1 ≤ m ≤ k − 1. �

Now we give the proof of Theorem ??.

Proof of Theorem ??. As Sα is a dense subspace of Wk,p
α,δ and W k,p

α,δ , it is enough
to show the equivalence of the norms for functions f ∈ Sα. Let g such that
(Lα)−k/2g = f . For 0 ≤ m ≤ k − 1, we have

‖f‖Wk,p
α,δ

= ‖f‖p,δ +
k−1∑
m=1

∥∥δα+m ◦ . . . ◦ δα+1 ◦ δαf
∥∥
p,δ

= ‖(Lα)−k/2g‖p,δ +
k−1∑
m=1

∥∥∥δα+m ◦ . . . ◦ δα+1 ◦ δα(Lα)−k/2g
∥∥∥
p,δ

= ‖(Lα)−k/2g‖p,δ +
k−1∑
m=1

∥∥∥Rmα (Lα)−(k−m)/2g
∥∥∥
p,δ

≤ C‖g‖p,δ = C‖f‖Wk,p
α,δ
.

Where in the last inequality we have used Theorem ?? and Theorem ??.
For the converse inequality it is clearly enough to prove that for all functions

f ∈ Sα, there exists a constant C such that

(15) ‖(Lα)k/2f‖p,δ ≤ C
(
‖f‖p,δ +

∥∥δα+k−1 ◦ . . . ◦ δα+1 ◦ δαf
∥∥
p,δ

)
.

Let α > −1 and k ∈ N. We call Πk
α the set of linear combinations of Laguerre

functions of type α up to order k. If f ∈ Sα, we split f = f1 + f2, with f1 ∈ Πk
α
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and f2 ∈ Sα \ Πk
α. Since (Lα)k is a linear operator on a finite dimensional space

Πk
α, there exists a constant C that depends on k such that

‖(Lα)k/2f1‖p,δ ≤ C‖f1‖p,δ.

On the other hand, since (Lα)−k/2 is bounded on Lp(R+, yδdy) (Theorem ??), we
have

‖f1‖p,δ = ‖f−f2‖p,δ ≤ ‖f‖p,δ+‖(Lα)−k/2(Lα)k/2f2‖p,δ ≤ ‖f‖p,δ+C‖(Lα)k/2f2‖p,δ,
thus

‖(Lα)k/2f‖p,δ ≤ ‖(Lα)k/2f1‖p,δ + ‖(Lα)k/2f2‖p,δ ≤ C
(
‖f‖p,δ + ‖(Lα)k/2f2‖p,δ

)
.

Therefore, it is enough to prove (??) for f2. By using Lemma ?? we can easily
show the following identity for each integer k

Tk = R̃kα ◦Rkα

= (Lα −
k

2
)−k/2 ◦ (Lα −

α+ 1
2
− k − 1) ◦ (Lα −

α+ 1
2
− k − 2) . . .

. . . ◦ (Lα −
α+ 1

2
− 1) ◦ (Lα −

α+ 1
2

)(Lα)−k/2

and consider the function

µk(t) =

(
t+ α+1

2

)k/2 (
t+ α+1

2 − k
2

)k/2∏k−1
j=0 (t− j)

χ[k,∞)(t).

which satisfies (??). Then, the proof follows the same lines as in the Hermite case
in Theorem ?? using the multiplier Theorem ?? and Theorem ?? in order to control
the operator R̃kα. �

4. Alternative definitions of Riesz transforms. Consequences for
Sobolev spaces

In this section we analyse the role of the “natural” Riesz transforms

(δα)k(Lα)−k/2,

relating to Sobolev spaces. Some commutation properties of the operators δα with
the operator of multiplication by x`/2 will be essential. We shall write δα 1

x`/2
and

x`/2δα as a shorthand to denote the action δα
(

1
(·)`/2 f(·)

)
(x) and x`/2δα(f)(x). We

state the following lemma whose proof (by using (??)) is left to the reader.

Lemma 6. Let β, α > −1, and ` ∈ N.

(i) δβ = δα +
α− β
2
√
x
.

(ii) δβ
1
x`/2

=
1
x`/2

δβ+`.

(iii) If β > `− 1, then
1
x`/2

δβ+` =
1
x`/2

δβ−` − `

x(`+1)/2
.

(iv) If β > `− 1, then δβx`/2 = x`/2δβ−`.

(v) (δβ)∗ = −δα +
1
2

(√
x− α√

x

)
+

1
2

(√
x− β + 1√

x

)
.
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Lemma 7. Let α > −1, and k ∈ N, then

(δα)k =
∑

0≤p≤m+1,p+m=k−1

cm
xp/2

δα+m ◦ · · · ◦ δα.

Proof. Let p < m+ 1, by using Lemma ?? we have

δα(
1

xp/2
δα+m ◦ · · · ◦ δα) =

1
xp/2

δα+p ◦ δα+m ◦ · · · ◦ δα

=
1

xp/2

(
δα+m+1 +

m+ 1− p
2
√
x

)
◦ δα+m ◦ · · · ◦ δα

=
1

xp/2
δα+m+1 ◦ δα+m ◦ · · · ◦ δα

+
1

xp/2
m+ 1− p

2
√
x

δα+m ◦ · · · ◦ δα.

If p = m+ 1 we have

δα(
1

xp/2
δα+m ◦ · · · ◦ δα) =

1
xp/2

δα+m+1 ◦ δα+m ◦ · · · ◦ δα.

Then

(δα)k+1 = δα
( ∑

0≤p≤m+1, p+m=k−1

cm
xp/2

δα+m ◦ · · · ◦ δα
)

=
∑

0≤p<m+1, p+m=k−1

cm
xp/2

δα+m+1 ◦ δα+m ◦ · · · ◦ δα

+
∑

0≤p<m+1, p+m=k−1

cm
xp/2

m+ 1− p
2
√
x

δα+m ◦ · · · ◦ δα

+
∑

0≤p=m+1, p+m=k−1

1
xp/2

δα+m+1 ◦ δα+m ◦ · · · ◦ δα

=
∑

0≤p<m, p+m=k

cm
xp/2

δα+m ◦ · · · ◦ δα

+
∑

0≤q<m+1, q+m=k

cm
xq/2

δα+m ◦ · · · ◦ δα

+
∑

0≤p=m, p+m=k

1
xp/2

δα+m ◦ · · · ◦ δα

=
∑

0≤p≤m+1,p+m=k

cm
xp/2

δα+m ◦ · · · ◦ δα.

The standard induction argument gives now the proof. �

Lemma 8. Let Pm(u, v) be a polynomial of degree m and variables u, v, i.e.

Pm(u, v) = a0u
m + a1u

m−1v + · · ·+ amv
m.

Assume that β > m− 1, then

δβ Pm(
√
x,

1√
x

) = P 1
m(
√
x,

1√
x

) δβ−m + P 2
m+1(

√
x,

1√
x

)

where P 1
m and P 2

m+1 are polynomials of degrees m and m+ 1.
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Proof. Observe that

Pm(
√
x,

1√
x

) = a0 x
m/2 + a1 x

(m−2)/2 + · · ·+ am−1 x
−(m−2)/2 + am x

−m/2.

Let 0 < ` ≤ m, then by using Lemma ?? we have

δβ(x`/2) = x`/2δβ−` = x`/2
(
δβ−m +

`−m
2
√
x

)
= x`/2δβ−m +

`−m
2

x(`−1)/2.

Let ` = −q < 0, again by Lemma ?? we have

δβ(x`/2) = δβ
1

xq/2
=

1
xq/2

δβ−q − q

x(q+1)/2

=
1

xq/2
δβ−m +

1
xq/2

(q −m
x1/2

)
− q

x(q+1)/2

=
1

xq/2
δβ−m − m

x(q+1)/2

= x`/2δβ−m −mx(`−1)/2

�

Lemma 9. Let `,m natural numbers such that 0 < ` ≤ m. Given α > −1 and

(δ, p) satisfying (Cα), then the operators 1
x`/2

(
Lα+m

)−`/2
and x`/2(Lα+m)−`/2 are

bounded on Lp(R+, yδdy).

Proof. Case 1 = ` = m. We already mention that the operator

(δα)∗(Lα+1)−1/2 =
{
−
√
x
d

dx
+

1
2

(√
x− α+ 1√

x

)}
(Lα+1)−1/2,

is bounded in Lp(R+, yδdy), for p, δ satisfying (Cα), see (??). Also the operator

(δα+1)(Lα+1)−1/2 =
{√

x
d

dx
+

1
2

(√
x− α+ 1√

x

)}
(Lα+1)−1/2

is bounded in Lp(R+, yδdy), for p, δ satisfying (Cα+1). Hence both operators are
bounded in Lp(R+, yδdy), for p, δ satisfying (Cα). Consequently the operator

(√
x−

α+ 1√
x

)
(Lα+1)−1/2 is also bounded.

If 2(α + 1) < x then 0 <
√
x ≤ 2

(√
x − α+1√

x

)
. We already know that (Lβ)−1/2

has positive kernel, hence for positive functions f we have
√
x(Lα+1)−1/2f(x) ≤

√
x(Lα+1)−1/2(f)(x)χ[0,2(α+1)](x)

+
(√

x− α+ 1√
x

)
(Lα+1)−1/2(f)(x)χ[2(α+1),∞)(x)

≤
√

2(α+ 1)(Lα+1)−1/2(f)(x)χ[0,2(α+1)](x)

+
(√

x− α+ 1√
x

)
(Lα+1)−1/2(f)(x)χ[2(α+1),∞)(x)

The case ` = 1 and ` < m, can be proved as the previous one by using
(δα+m−1)∗(Lα+m)−1/2 and δα+m(Lα+m)−1/2. Then we would obtain boundedness
in Lp(R+, yδdy), for δ, p satisfying (Cα+m−1). By Remark ?? we obtain bounded-
ness for δ, p satisfying (Cα).
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In order to prove the case 1 < ` ≤ m we shall apply an induction argument. The
operators

R`α+m =
(
δα+m+`−1 ◦ · · · ◦ δα+m+1 ◦ δα+m

)
(Lα+m)`/2,

are bounded in Lp(R+, yδdy), for δ, p satisfying (Cα+m). On the other hand the
operators

R̃`α+m−` =
(

(δα+m−`)∗ ◦ (δα+m−`+1)∗ ◦ · · · ◦ (δα+m−1)∗
)

(Lα+m)−`/2

are bounded in Lp(R+, yδdy), for δ, p satisfying (Cα+m−`), see Theorem ??. In
particular, both operators are bounded on Lp(R+, yδdy), for δ, p satisfying (Cα).

We observe that due to Lemma ?? we have for j = 0, . . . , `

(δα+m−j)∗ = −δα+m+(j−1)

+
1
2

(√
x− α+m+ (j − 1)√

x

)
+

1
2

(√
x− (α+m− j) + 1√

x

)
= −δα+m+(j−1) +

(√
x− α+m√

x

)
.

Therefore

(δα+m−`)∗ ◦ (δα+m−`+1)∗ ◦ · · · ◦ (δα+m−1)∗

=
(
− δα+m+`−1 +

(√
x− α+m√

x

))
◦
(
− δα+m+`−2 +

(√
x− α+m√

x

))
◦ . . .

· · · ◦
(
− δα+m +

(√
x− α+m√

x

))
=

(
− δα+m+`−1 + P1(

√
x,

1√
x

)
)
◦
(
− δα+m+`−2 + P1(

√
x,

1√
x

)
)
◦ . . .

· · · ◦
(
− δα+m + P1(

√
x,

1√
x

)
)
,

where P1(
√
x, 1√

x
) is the polynomial of first degree

√
x − α+m√

x
. Hence, by using

Lemma ?? and an induction argument we get

(δα+m−`)∗ ◦ (δα+m−`+1)∗ ◦ · · · ◦ (δα+m−1)∗

= (−1)`δα+m+`−1 ◦ δα+m+`−2 ◦ · · · ◦ δα+m + P1(
√
x,

1√
x

)δα+m+`−2 ◦ · · · ◦ δα+m

+P2(
√
x,

1√
x

)δα+m+`−3 ◦ · · · ◦ δα+m + · · ·+ P`(
√
x,

1√
x

),

where as usual Pj(
√
x, 1√

x
) denotes a polynomial of degree j.Now by using Lemma ??

we get

R̃`α+m−` = (−1)`R`α+m + P1(
√
x,

1√
x

) ◦ (Lα+m+`−1)−1/2 ◦ Tm,α+m+`−1 ◦R(`−1)/2
α+m

+P`−1(
√
x,

1√
x

) ◦ (Lα+m+1)−(`−1)/2 ◦ Tm,α+m+1 ◦R1
α+m

+ · · ·+ P`(
√
x,

1√
x

) ◦ (Lα+m)−`/2.

Where Tm,α+m+`−1 are multipliers analogous to the multipliers appearing in The-
orem ??. By using Theorem ??, Theorem ?? and induction hypotheses on `, the
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operators R̃`α+m−`, R
`
α+m, P1(

√
x, 1√

x
) ◦ (Lα+m+`−1)−1/2 ◦ Tm,α+m+`−1 ◦R(`−1)/2

α+m

and P`−1(
√
x, 1√

x
) ◦ (Lα+m+1)−(`−1)/2 ◦ Tm,α+m+1 ◦ R1

α+m are bounded for (δ, p)

satisfying (Cα) hence the operator P`(
√
x, 1√

x
)◦ (Lα+m)−`/2 will be bounded in the

same range. Therefore by using induction hypotheses on ` again, we get that an
operator of the type (ax`/2 + bx−`/2) ◦ (Lα+m)−`/2 will be bounded. By using an
argument similar to the beginning of this proof we get the lemma.

�

Theorem 10. Let α > −1 then the “Riesz” transforms (δα)k(Lα)−k/2 are bounded
in Lp(yδdy) for (δ, p) satisfying (Cα).

Proof. Let 0 ≤ p ≤ m+ 1 and p+m = k − 1, by using Lemma ?? we have

(
1

xp/2
δα+m ◦ · · · ◦ δα)(Lα)−k/2 =

1
xp/2

(Lα+m+1)−p/2TµRm+1
α

Where Tµ is a multiplier defined on the system {Lα+m+1
n }n≥0 which satisfies the

hypothesis in Theorem ??. Now Lemmas ?? and ??, and Theorem ?? give the
result. �

In order to analyze the possible coincidence for certain α, δ and p of the spaces
Wk,p
α (yδ), see Definition ??, with the spaces considered in Section ?? we shall need

the following lemma whose statement is just a reformulation of Lemma ??.

Lemma 10. Let `,m natural numbers such that 0 < ` ≤ m + 1. Given α > 0

and (δ, p) satisfying (Cα−1), then the operators 1
x`/2

(
Lα+m

)−`/2
are bounded on

Lp(R+, yδdy).

Now we present the proof of Theorem ??.

Proof of Theorem ??. By using Theorem ?? and same arguments in the beginning
of the proof of Theorem ??, it is easy to prove (i). To see (ii), consider the function
f with support in [0, 1] such that f(y) = y(α+1)/2 for 0 < y < 1/2, f(1) = 0 and f
smooth in [1/3, 1]. It is easy to see that f, δαf and δα ◦ δαf belong to L2(R+, dy).
However, for y ∼ 0, δα+1◦δ0f ∼ y

α−1
2 , that is to say δα+1◦δαf is not in L2(R+, dy).

Finally, let f be a function in W2,p
α (yδ) then we have δαf, (δα)2f ∈ Lp(yδ),

therefore (by Theorem ??) there exist h ∈ Lp such that (δα)f = (Lα)−1/2h. Hence,
by using Lemma ??, we have

δα+1 ◦ δαf = δα ◦ δαf − 1
2
√
x
δαf = δα ◦ δαf − 1

2
√
x

(Lα)−1/2h.

Lemma ?? gives (iii). �

5. Other Laguerre systems

The Laguerre functions {ϕαk}∞k=0, α > −1. We consider the orthonormal system
in L2((0,∞), dy) given by ϕαk (y) = Lαk (y2)(2y)1/2, where Lαk are the functions
defined in (??). The functions ϕαk are eigenfunctions of the operator

Lα =
1
4

{
− d2

dy2
+ y2 +

1
y2

(
α2 − 1

4

)}
.
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In fact,

Lα(ϕαk ) =
(
k +

α+ 1
2

)
ϕαk .

The operator Lα can be “factorized” as:

Lα −
(α+ 1

2

)
= (Dα)∗Dα,

being Dα =
1
2

{
d

dy
+ y − 1

y
(α+

1
2

)
}

and (Dα)∗ =
1
2

{
− d

dy
+ y − 1

y
(α+

1
2

)
}
,

where (Dα)∗ is the formal adjoint of Dα with respect to the Lebesgue measure.
Then

Dα(ϕαk ) = −
√
kϕα+1

k−1 and (Dβ−1)∗(ϕβk) = −
√
k + 1ϕβ−1

k+1 .

As in Sections ?? and ?? the Riesz transforms can be defined as

Rk
α = Dα+k−1 ◦ · · · ◦Dα(Lα)−k/2, alternatively (Dα)k(Lα)−k/2, α > −1.

Let V be the operator defined by V f(y) = (2y)1/2f(y2). Let 2δ = γ +
p

2
− 1,

then ‖V f‖Lp(yγ dy) = 2
1
2−

1
p ‖f‖Lp(yδ dy).

Proposition 1. Let 1 < p <∞, and δ, γ be real numbers. Let T be an operator de-
fined over the set of finite linear combination of Laguerre functions {Lαk}k. The op-
erator T has a bounded extension from Lp((0,∞), yδdy) into Lp((0,∞), yδdy) if and
only if the operator T = V T V −1 has a bounded extension from Lp((0,∞), yγdy)
into Lp((0,∞), yγdy), where 2δ = γ +

p

2
− 1.

An easy consequence of the above proposition, and Theorems ?? and ?? is the
following.

Theorem 11. Let α > −1 and let f be a finite linear combination of Laguerre
functions {Lαk}k. Then

(i) e−tLαf = V −1e−tLαV f,
(ii) Given s > 0, (Lα)−sf = V −1(Lα)−sV f and
(iii) δαf = V −1DαV f.
(iv) Rkαf = V −1Rk

α V f.

Proposition 2. Let α > −1, 1 < p <∞, and γ be real number. Let S be any one
of the operators L−s, s > 0, Rk

α, (Dα)kL−k/2, s > 0. Then the operator S has a
bounded extension from Lp((0,∞), yγdy) into itself, for γ satisfying

(Cα) − 1− αp− p

2
< γ < αp+

3p
2
− 1.(16)

Now in a parallel way as we did in Section ?? and ??, we can define potential
spaces and Sobolev spaces for the class of Laguerre functions {ϕαk}k, α > −1. Thus,
given α > −1, 1 < p <∞, s > 0 and γ satisfying (Cα), see (??), we define

Upα,s(y
γ) = (Lα)−s/2[Lp(R+, yγdy)]

with the norm ‖f‖Upα,s(yγ) = ‖g‖p,γ , where (Lα)−s/2g = f .
We shall denote by Uk,pα (yδ), the set of functions f in Lp(R+, yγdy) such that

Dα+m ◦ . . . ◦Dα+1 ◦Dαf ∈ Lp(R+, yγdy), 0 ≤ m ≤ k − 1
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with the norm

‖f‖Uk,pα (yγ) = ‖f‖p,γ +
k−1∑
m=0

∥∥Dα+m ◦ . . . ◦Dα+1 ◦Dαf
∥∥
p,γ

.

Finally, Uk,pα (yδ), will denote the set of functions f in Lp(R+, yγdy) such that
(Dα)mf ∈ Lp(R+, yγdy), 0 ≤ m ≤ k, with the norm

‖f‖Uk,pα (yγ) =
k∑

m=0

‖(Dα)mf‖p,γ .

The following theorems are direct consequences of Theorems ??, ?? and Propo-
sitions ?? and ??.

Theorem 12. Let α > −1, 1 < p <∞, k ∈ N and γ satisfies (Cα). Then,
(i) Uk,pα,γ = Uk,pα,γ , and the norms are equivalent.
(ii) Let γ satisfying (Cα). Then Uk,pα (yγ) ⊂ Uk,pα (yγ).
(ii) Let −1 < α ≤ 0. Then U2,2

α 6= U2,2
α .

(iii) Let γ satisfying (Cα−1). Then U2,p
α (yγ) = U2,p

α (yγ).

Analogous results could be obtained for the systems of Laguerre fucntionss
`αk (y) = Lαk (y)y−α/2 and ψαk (y) =

√
2y−αLαk (y2), α > −1. These systems are

eigenfunctions of the differential operators

Lα = −y d
2

dy2
− (α+ 1)

d

dy
+
y

4
.

and

Lα = −1
4

{ d2

dy2
+
(2α+ 1

y

) d
dy
− y2

}
.

We leave to the interested reader the easy work, but boring unless the statements
were needed for some application, of establishing the corresponding Theorem ?? in
these systems.

6. Schrödinger equation

Consider the equation

(17)

i
∂u(y, t)
∂t

= Lαu(y, t)

u(y, 0) = f(y) y ∈ R+, t ∈ R,

for some initial data f. Consider its solution

u(y, t) = eitLαf(y),

for f in the space L2(R+, dy). From some general result in [?] one can get that if
f ∈ W2

α,s, with s > 1, then limt→0 e
itLαf(y) = f(y) a.e y. On the other hand it

is known, see [?] and [?], that limt→0 e
it∆f(y) = f(y) for f such that ∆1/8f ∈ L2.

We give the following intermediate result.

Theorem 13. If f ∈W2
α,s with s > 1

2 then,

(18) lim
t→0

eitLαf(y) = f(y),

for almost everywhere y ∈ R+.
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Proof. It is enough to prove that the maximal function

T ∗f = sup
t∈R
|eitLαf |

satisfies the inequality ∫
I

T ∗f ≤ C ‖f‖w2
α,s

,

for all compact interval I of the real line not containing the origin, and C a constant
that may depend on the interval I but not on f .

From [?] (Theorem 8.91.2, pp. 241) and (??), if I is an interval that does not
contains the origin, then there exist constants C and n0 such that

(19) Lαn(x) ≤ C

n1/4

for all x ∈ I and n ≥ n0.
Now, if f belongs to W2

α,s we can write

f(y) =
∞∑
n=0

an Lαn(y),

and thus

‖f‖W2
α,s

=

( ∞∑
n=0

|an|2 (n+
α+ 1

2
)s
)1/2

.

By Tonelli’s theorem, estimate (??) and Hölder’s inequality, we get∫
I

|T ∗f(y)| dy ≤
∫
I

sup
t>0

∣∣∣∣∣
∞∑
n=0

an e
it(n+α+1

2 ) Ln(y)

∣∣∣∣∣ dy ≤
∞∑
n=0

|an|
∫
I

|Lαn(y)| dy

≤ C

(
C +

∞∑
n=n0

1
n1/2(n+ α+1

2 )s

)1/2( ∞∑
n=0

|an|2 (n+
α+ 1

2
)s
)1/2

≤ C

(
C +

∞∑
n=n0

1
n1/2+s

)1/2

‖f‖W2
α,s

.

Since s > 1/2, we have 1/2 + s > 1 and the last series is convergent.
�
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[8] P. Graczyk, J. Loeb, I.A.López , A. Nowak, W.O. Urbina Higher order Riesz transforms,

fractional derivatives, and Sobolev spaces for Laguerre expansions. J. Math. Pures Appl. (9)

84 (2005), no. 3, 375-405.

[9] E. Harboure, J.L. Torrea, and B. Viviani, Riesz transforms for Laguerre expansions, Indiana

Univ. Math. J. 55 (2006), no. 3, 999–1014.

[10] E. Harboure, C. Segovia, J.L. Torrea, and B. Viviani, Power weigthed Lp-inequalities for

Laguerre Riesz transforms. Arkiv Mat. (to appear).

[11] B. Muckenhoupt and D.W. Webb, Two-weight norm inequalities for the Cesàro means of
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