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Principal Fitted Components for Dimension
Reduction in Regression
R. Dennis Cook and Liliana Forzani

Abstract. We provide a remedy for two concerns that have dogged the use
of principal components in regression: (i) principal components are com-
puted from the predictors alone and do not make apparent use of the response,
and (ii) principal components are not invariant or equivariant under full rank
linear transformation of the predictors. The development begins with princi-
pal fitted components [Cook, R. D. (2007). Fisher lecture: Dimension reduc-
tion in regression (with discussion). Statist. Sci. 22 1–26] and uses normal
models for the inverse regression of the predictors on the response to gain
reductive information for the forward regression of interest. This approach
includes methodology for testing hypotheses about the number of compo-
nents and about conditional independencies among the predictors.

Key words and phrases: Central subspace, dimension reduction, inverse re-
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1. INTRODUCTION

Principal components have a long history of use as
a dimension reduction method in regression, and today
are widely represented in the applied sciences. The ba-
sic idea is to replace the predictor vector X ∈ Rp with
a few of the principal components v̂T

j X, j = 1, . . . , p,
prior to regression with response Y ∈ R1, where v̂j is
the eigenvector of the sample covariance matrix !̂ of X
corresponding to its j th largest eigenvalue. The leading
components, those corresponding to the larger eigen-
values, are typically chosen. Collinearity is the main
and often the only motivation for the use of principal
components in regression, but our results show no nec-
essary link between the presence of collinearity and the
effectiveness of principal component reduction.

Although collinearity is perhaps the primary histor-
ical reason for interest in principal components, they
have been widely used in recent years for dimension
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reduction in regressions where the sample size n is less
than p. This motivation is prevalent in the genomics
literature (see, e.g., Bura and Pfeiffer, 2003, and Li
and Li, 2004) and is an important ingredient in the
method of supervised principal components by Bair et
al. (2006). Principal components can also be useful re-
gardless of the presence of collinearity or the relation-
ship between n and p, depending on the goals of the
analysis. For instance, it is often desirable to have an
informative low-dimensional graphical representation
of the data to facilitate model building and aid under-
standing (Cook, 1998). If p ≤ 2 we can use computer
graphics to view the data in full. If p = 3 and the re-
sponse is categorical we can use a three-dimensional
plot of the predictors with points marked according to
the value of the response to view the full data. How-
ever, if p > 3 or p = 3 and the response is continuous
we cannot view the data in full and dimension reduc-
tion may be useful.

Two general concerns have dogged the use of princi-
pal components. The first is that principal components
are computed from the marginal distribution of X and
there is no reason in principle why the leading prin-
cipal components should carry the essential informa-
tion about Y (Cox, 1968). The second is that principal
components are not invariant or equivariant under full
rank linear transformations of X, leading to problems
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in practice when the predictors are in different scales or
have different variances. Some authors standardize the
predictors so !̂ is a correlation matrix prior to comput-
ing the components.

In this article we propose a model-based approach to
principal component reduction that can be adapted to
a specific response Y and that is equivariant under full
rank linear transformations of X. Our results build on
Cook’s (2007) formulation, which uses model-based
inverse regression of X on Y to gain reductive informa-
tion for the forward regression of Y on X. In Section 2
we introduce the models: Cook’s models are reviewed
in Section 2.1 and our extension is described in Sec-
tion 2.2. We address estimation in Section 3 and rela-
tionships with other methods in Section 4. Inference is
considered in Sections 5 and 6, and Section 7 contains
illustrations of the proposed methodology. We regard
the developments to this point as perhaps the most use-
ful in practice. Nevertheless, in Section 8 we discuss
model variations that may also be useful. Proofs can be
found in the Appendices.

2. MODELS

We assume that the data consist of n independent
observations on (X, Y ). Let Xy denote a random vec-
tor distributed as X|(Y = y), and assume that Xy is
normally distributed with mean µy and constant vari-
ance " > 0. Let µ̄ = E(X) and let S# = span{µy −
µ̄|y ∈ SY }, where SY denotes the sample space of
Y and # ∈ Rp×d denotes a semi-orthogonal matrix
whose columns form a basis for the d-dimensional sub-
space S# . Then we can write

Xy = µ̄ + #νy + ε,(1)

where ε is independent of Y and normally distrib-
uted with mean 0 and covariance matrix ", and νy =
#T (µy − µ̄) ∈ Rd ; we assume that var(νY ) > 0. This
model represents the fact that the translated conditional
means µy − µ̄ fall in the d-dimensional subspace S# .
In full generality, a reduction T : Rp → Rq , q ≤ p,
is sufficient if Y |X ∼ Y |T (X), or equivalently if Y ⊥⊥
X|T (X), since X can then be replaced by T (X) without
loss of information on the regression. Under model (1)
the specific reduction R(X) = #T "−1X is sufficient
(Cook, 2007) and the goal is to estimate the dimension
reduction subspace "−1S# = {"−1z : z ∈ S#}, since
# is not generally identified. Then R(X) = ηT X is a
sufficient reduction for any matrix η ∈ Rp×d whose
columns form a basis for "−1S# . The parameter space
for "−1S# and S# is the d-dimensional Grassmann

manifold G(d,p) in Rp . The manifold G(d,p) has an-
alytic dimension d(p − d) (Chikuse, 2003, page 9),
which is the number of reals needed to specify uniquely
a single subspace in G(d,p). This count will be used
later when determining degrees of freedom.

Let Sd(A,B) denote the span of A−1/2 times the
first d eigenvectors of A−1/2BA−1/2, where A and B
are symmetric matrices and, as used in this article,
A will always be a nonsingular covariance matrix. Be-
ginning with B we apply the transformation A−1/2 be-
fore computing the first d eigenvectors. Multiplying
these eigenvectors by A−1/2 then converts them to vec-
tors that span the desired subspace in the original scale.
The subspace Sd(A,B) can also be described as the
span of the first d eigenvectors of B relative to A. This
notation is intended as a convenient way of describing
estimators of "−1S# under various conditions.

2.1 PC and Isotonic PFC Models

Cook (2007) developed estimation methods for two
special cases of model (1). In the first, νy is unknown
for all y ∈ SY but the errors are isotonic; that is, " =
σ 2Ip . This is called the PC model since the maxi-
mum likelihood estimator (MLE) of "−1S# = S# is
Sd(Ip, !̂), the span of the first d eigenvectors of !̂.
Thus R(X) is estimated by the first d principal compo-
nents. This relatively simple result arises because of
the nature ". Since the errors are isotonic, the con-
tours of " are circular. When the signal #νy is added
the contours of ! = # var(νY )#T + σ 2Ip become p-
dimensional ellipses with their longest d axes span-
ning S# .

In the second version of model (1), the coordinate
vectors are modeled as νy = β{fy − E(fY )}, where fy ∈
Rr is a known vector-valued function of y with linearly
independent elements and β ∈ Rd×r , d ≤ min(r,p), is
an unrestricted rank d matrix. Under this model for νy

each coordinate Xyj , j = 1, . . . , p, of Xy follows a lin-
ear model with predictor vector fy . Consequently, we
are able to use inverse response plots (Cook, 1998,
Chapter 10) of Xyj versus y, j = 1, . . . , p, to gain
information about suitable choices for fy , which is
an ability that is not generally available in the for-
ward regression of Y on X. For example, Bura and
Cook (2001), Figure 1b, present a scatterplot matrix
of the five variables in a regression with four predic-
tors. The inverse response plots can all be fitted reason-
ably with log(y), indicating that in their example fy =
log(y) may be adequate. In some regressions there may
be a natural choice for fy . Suppose for instance that Y
is categorical, taking values in one of h categories Ck ,



PRINCIPAL FITTED COMPONENTS 487

k = 1, . . . , h. We can then set r = h − 1 and specify
the kth element of fy to be J (y ∈ Ck), where J is the
indicator function. When Y is continuous we can con-
sider fy’s that contain a reasonably flexible set of basis
functions, like polynomial terms in Y , which may be
useful when it is impractical to apply graphical meth-
ods to all of the predictors. Another option consists of
“slicing” the observed values of Y into h bins (cate-
gories) Ck , k = 1, . . . , h, and then specifying the kth
coordinate of fy as for the case of a categorical Y . This
has the effect of approximating each conditional mean
E(Xyj ) as a step function of y with h steps,

E(Xyj ) ≈ µ̄j +
h−1∑

k=1

γ T
j bk{J (y ∈ Ck) − Pr(Y ∈ Ck)},

where γ T
j is the j th row of # and bk is the kth column

of β . Piecewise polynomials could also be used.
Models with νy = β{fy − E(fY )} are called princi-

pal fitted component (PFC) models. When the errors
are isotonic the MLE of S# is Sd(Ip, !̂fit), where !̂fit
is the sample covariance matrix of the fitted vectors
from the multivariate linear regression of Xy on fy , in-
cluding an intercept. In more detail, let X denote the
n × p matrix with rows (Xy − X̄)T and let F denote
the n × r matrix with rows (fy − f̄)T . Then the n × p
matrix of fitted vectors from the regression of Xy on
fy is X̂ = PFX and !̂fit = XT PFX/n, where PF de-
notes the linear operator that projects onto the subspace
spanned by the columns of F. Under this isotonic PFC
model the MLE of R(X) consists of the first d prin-
cipal fitted components, with eigenvectors computed
from !̂fit instead of !̂ = XT X/n. The covariance ma-
trix of the residual vectors from the fit of Xy on fy
can be represented as !̂res = !̂ − !̂fit = XT QFX/n,
where QF = In − PF. This matrix plays no direct role
in the isotonic PFC model, since we have specified
" = σ 2Ip . However, !̂res will play a role in the ex-
tensions that follow.

2.2 The PFC Model

Principal fitted components are an adaptation of
principal components to a particular response Y . How-
ever, the isotonic error structure " = σ 2Ip is restrictive
and does not address the invariance issue. In this arti-
cle we extend principal fitted components to allow for
a general error structure. Our specific goal is to develop
maximum likelihood estimation of "−1S# and related
inference methods under the following PFC model,

Xy = µ̄+#β{fy −E(fY )}+ε = µ+#βfy +ε,(2)

where µ = µ̄−#βE(fY ) and var(ε) = " > 0. This ap-
proach will then provide a solution to the two long-
standing issues that have plagued the application of
principal components. Assuming that !̂res > 0, we will
show that the MLE of the sufficient reduction R(X) can
be computed straightforwardly as the first d principal
components based on the standardized predictor vector
!̂res

−1/2X. We found this result to be surprising since
it does not depend explicitly on the MLE of ", which
is a necessary ingredient for the MLE of "−1S# .

In Section 3 we give the MLE of " and five equiv-
alent forms for the MLE of "−1S# under model (2).
Relationships with some other methods are discussed
in Section 4. We turn to inference in Sections 5 and 6,
presenting ways of inferring about d and about the
active predictors. In Section 8 we discuss versions of
model (2) in which " is structured, providing modeling
possibilities between the PFC models with " = σ 2Ip

and " > 0.

2.3 Identifying "−1S# as the Central Subspace

In this section we provide a connection between the
model-based dimension reduction considered in this
article and the theory of model-free sufficient dimen-
sion reduction.

In the model-based approach, sufficient reductions
R(X) can in principle be determined from the model
itself. For example, in the case of model (1) we saw
previously that R(X) = #T "−1X is a sufficient re-
duction. In model-free dimension reduction there is
no specific law to guide the choice of a reduction.
However, progress is still possible by restricting at-
tention to the class of linear reductions. A linear re-
duction always exists since R(X) = X is trivially suf-
ficient. If R(X) = ηT X is a k-dimensional sufficient
reduction, then so is R(X) = (ηA)T X for any k × k

full rank matrix A. Consequently, only the subspace
span(η) spanned by the columns of η can be identified
—span(η) is called a dimension reduction subspace.

If span(η) is a dimension reduction subspace then
so is span(η,η1) for any matrix p × k1 matrix η1. As
a result there may be many linear sufficient reductions
in a particular regression and we seek the one with the
smallest dimension. If span(η1) and span(η2) are both
dimension reduction subspaces, then under mild condi-
tions (Cook, 1998) so is span(η1) ∩ span(η2). Conse-
quently, the inferential target in model-free sufficient
dimension reduction is often taken to be the central
subspace SY |X, defined as the intersection of all dimen-
sion reduction subspaces (Cook, 1994, 1998).
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The following theorem enables us to conclude that
under model (2) "−1S# = SY |X; that is, the inferential
targets for model-free and model-based reductions co-
incide in the context of model (2). The first part was
given by Cook (2007), Proposition 6, but here we es-
tablish minimality as well.

THEOREM 2.1. Let R(X) = #T "−1X, and
let T (X) be any sufficient reduction. Then, under
model (2), R is a sufficient reduction and R is a func-
tion of T .

3. ESTIMATION UNDER PFC MODEL (2)

3.1 Maximum Likelihood Estimators

First we derive the MLE for the parameters of
model (2) and then show how to linearly transform the
predictors to yield a sufficient reduction. Our deriva-
tion requires that !̂ > 0, !̂res > 0 and d ≤ min(r,p).
The full parameter space (µ, S#,β,") for model (2)
has analytic dimension p + d(p − d) + dr + p(p +
1)/2. We hold d fixed while maximizing over the other
parameters, and then consider inference for d in Sec-
tion 5.

The full log likelihood is

Ld(µ, S#,β,")

= −np

2
log(2π) − (n/2) log |"|

− (1/2)
∑

y

(
Xy − µ − #β(fy − f̄)T

)

· "−1(
Xy − µ − #β(fy − f̄)

)
,

where we have used the centered fy’s without loss of
generality. For fixed " and #, this log likelihood is
maximized over µ and β by the arguments µ̂ = X̄ and
β̃ = #T P#("−1)B̂, where P#("−1) = #(#T "−1#)−1 ·
#T "−1 is the projection onto S# in the "−1 inner
product and B̂ = XT F(FT F)−1 is the coefficient ma-
trix from the multivariate linear regression of Xy on fy .
From the form of β̃ we see that the MLE of #β will be
the projection of B̂ onto Ŝ# in the "̂−1 inner product.
To find Ŝ# and "̂ we substitute µ̂ and β̃ into the log
likelihood to obtain the partially maximized form

Ld(S#,")

= −np

2
log(2π) − (n/2) log |"|

(3)
− (n/2) trace{"−1/2!̂"−1/2

− P"−1/2#"−1/2!̂fit"
−1/2}.

Holding " fixed, this is maximized by choosing
P"−1/2# to project onto the space spanned by the first
d eigenvectors of "−1/2!̂fit"

−1/2. This leads to the
final partially maximized log likelihood (Cook, 2007,
Section 7.2)

Ld(") = −np

2
log(2π) − n

2
log |"|

(4)

− n

2
tr("−1!̂res) − n

2

p∑

i=d+1

λi("
−1!̂fit),

where λi (A) indicates the ith eigenvalue of the ma-
trix A. The MLE "̂ of " is then obtained by maxi-
mizing (4). The MLEs of the remaining parameters are
µ̂ = X̄, Ŝ# = "̂Sd("̂, !̂fit), and β̂ = (#̂T "̂−1#̂)−1 ·
#̂−T "̂−1B̂, where #̂ is any orthonormal basis for Ŝ# .
It follows that the sufficient reduction is of the form
R̂(X) = (̂vT

1 "̂−1/2X, . . . , v̂T
d "̂−1/2X)T , where v̂j is

the j th eigenvector of "̂−1/2!̂fit"̂
−1/2. The following

theorem shows how to construct "̂.

THEOREM 3.1. Let V̂ and )̂= diag(̂λ1, . . . , λ̂p) be
the matrices of the ordered eigenvectors and eigenval-
ues of !̂

−1/2
res !̂fit!̂

−1/2
res , and assume that the nonzero

λ̂i’s are distinct. Then, the maximum of
Ld(") (4) over " > 0 is attained at "̂ = !̂res +
!̂

1/2
res V̂K̂V̂T !̂

1/2
res , where K̂ = diag(0, . . . ,0,

λ̂d+1, . . . , λ̂p). The maximum value of the log likeli-
hood is

Ld = −np

2
− np

2
log(2π)

(5)

− n

2
log |!̂res| −

n

2

p∑

i=d+1

log(1 + λ̂i ).

In this theorem, λ̂i = 0 for i = r + 1, . . . , p. Con-
sequently, if r = d then "̂ = !̂res, and the last term
of Ld does not appear. The maximum value of the
log likelihood can also be expressed in terms of
the squared sample canonical correlations r2

j , j =
1, . . . ,min(p, r), between X and fy :

COROLLARY 3.2.

Ld = −np

2
− np

2
log(2π)

− n

2
log |!̂res| +

n

2

min(p,r)∑

i=d+1

log(1 − r2
i ).

The following corollary confirms the invariance of R̂
under full rank linear transformations of X.

COROLLARY 3.3. If A ∈ Rp×p has full rank, then
R̂(X) = R̂(AX).
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The next corollary gives five equivalent forms for the
MLE of "−1S# .

COROLLARY 3.4. The following are equivalent ex-
pressions for the MLE of "−1S# under model (2):
Sd("̂, !̂) = Sd(!̂res, !̂) = Sd("̂, !̂fit) = Sd(!̂res,
!̂fit) = Sd(!̂, !̂fit).

The first and second forms—Sd("̂, !̂) = Sd ×
(!̂res, !̂)—indicate that the sufficient reduction un-
der model (2) can be computed as the principal com-
ponents based on the linearly transformed predictors
"̂−1/2X or !̂

−1/2
res X, as mentioned in the Introduction.

The remaining forms indicate that a sufficient reduc-
tion can be computed also as the principal fitted com-
ponents for A−1/2X, where A is "̂, !̂res or !̂. Al-
though "̂ and !̂res make explicit use of the response
and !̂ does not, the response still enters when using !̂
because we regress !−1/2Xy on fy to obtain the prin-
cipal fitted components. Any of these five form can
be used in practice since they each give the same esti-
mated subspace, but we tend to use Sd(!̂res, !̂fit) for
no compelling reason.

3.2 Robustness

In this section we consider the robustness of Sd(!̂,
!̂fit) as an estimator "−1S# under nonnormality of the
errors and misspecification of the model for νy . Specif-
ically, we still assume that model (1) holds, but now
with possibly nonnormal errors that are independent
of Y and have finite moments. The fitted model has
mean function as given in (2), but we no longer assume
that νy = β{fy − E(fY )}. This then allows for misspec-
ification of fy . Let ρ be the d × r matrix of correlations
between the elements of νY and fY . Then, with this un-
derstanding:

THEOREM 3.5. Sd(!̂, !̂fit) is a
√

n consistent es-
timator of "−1S# if and only if ρ has rank d .

This result indicates that we may still expect Sd(!̂,
!̂fit) to be a reasonable estimator when fy is misspeci-
fied, provided that it is sufficiently correlated with νy .
It also places the present methodology on an equal
footing with other

√
n consistent methods that do not

explicitly assume normality at the outset.
While

√
n consistency does not necessarily guar-

antee good performance in practice, our experiences
with simulations suggest that it is not difficult to
choose an adequate fy . To illustrate we generated
n = 200 observations from model (1) with d = 1, Y ∼
U(0,4), νy = exp(y), p = 20, # = (1, . . . ,1)T /

√
20

and " = Ip . This choice for " involves no loss of

FIG. 1. Boxplots of the angle between each of eight estima-
tors and "−1 S# . The first boxplot is for the lasso. Boxplots 2–8
are for the PFC estimators Sd(!̂, !̂fit) under various choices
for fy : boxplots 2–7 are labeled according to the last term
in fy = (y, y2, . . . , yk)T , k = 1, . . . ,6. The last boxplot is for
fy = exp(y).

generality because of the invariance property in Corol-
lary 3.3. Each data set was fitted with d = 1, fy =
(y, y2, . . . , yk)T for k = 1, . . . ,6 and with fy = exp(y).
At the suggestion of a referee, we also included the
lasso regression of Y on X (Tibshirani, 1996) con-
structed by using the R library “relaxo” (Meinshausen,
2006), which selects the tuning parameter by cross val-
idation. For each choice of fy we computed with d = 1
the angle between Sd(!̂, !̂fit) and "−1S# . We also
computed the angle between the lasso coefficient vec-
tor and "−1S# . Figure 1 shows boxplots of the angles
for 100 replications. For reference, the expected angle
between "−1S# and a randomly chosen vector in R20

is about 80 degrees. The quadratic fy shows consider-
able improvement over the linear case, and the results
for the 3rd through 6th degree are indistinguishable
from those for the model used to generate the data.

The lasso performance was better than PFC with
fy = y, but not otherwise. However, the performance of
the lasso may improve in sparse regressions with rela-
tively few active predictors. To address this possibility,
we repeated the simulations of Figure 1 after setting
elements of # to zero and renormalizing to length 1.
The performance of all PFC estimators was essentially
the same as those shown in Figure 1. The lasso did im-
prove, but was still noticeably less accurate than PFC
with fy = (y, y2, . . . , yk)T and k ≥ 2. For example,
with only five active predictors, the median lasso angle
was about 41 degrees. Section 7.2 contains additional
discussion of the lasso.
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4. RELATIONSHIPS WITH OTHER METHODS

4.1 Sliced Inverse Regression

Cook (2007) proved that when Y is categorical and
fy is an indicator vector for the Y categories, the
SIR estimator (Li, 1991) of the central subspace is
Sd(!̂, !̂fit). Theorem 2.1 and Corollary 3.4 then imply
that, under model (2) with Y categorical, the SIR es-
timator is the MLE of "−1S# . This and Theorem 3.5
help explain many of the empirical findings on the op-
erating characteristics of SIR. If Y is categorical and
model (2) is accurate, SIR will inherit optimality prop-
erties from general likelihood theory. If Y is contin-
uous and slicing is used then SIR will provide a

√
n

consistent estimator when ρ, the matrix of correlations
between the elements of νY and the vector fY of slice
indicators, has rank d . However, in practice SIRs step
functions may provide only a rough approximation to
E(Xy) and, as a consequence, can leave useful intra
slice information behind. While this information might
be recovered by intra slice fitting (Cook and Ni, 2006),
we expect that PFC modeling is not as prone to such
information loss.

4.2 Partial and Ordinary Least Squares

To develop connections between PFC, partial least
squares (PLS) and ordinary least squares (OLS), con-
sider regressing Y on X in two steps, assuming that
d = 1. First we reduce X linearly to GT X using some
methodology that produces G ∈ Rp×q , q ≤ p. The sec-
ond step consists of using OLS to fit the regression of Y
on GT X. Letting β̂G denote the resulting vector of co-
efficient for X, we have

β̂G = PG(!̂)β̂ols = G(GT !̂G)−1GT XT Y/n,

where Y is the n × 1 vector of centered responses
and β̂ols is the vector of coefficients from the OLS fit
of Y on X. This estimator, which is the projection of
β̂ols onto span(G) in the !̂ inner product, does not re-
quire computation of !̂−1 if q < p and thus may be
useful when n < p, depending on the size of q .

Clearly, if G = Ip then β̂G = β̂ols. Consider next
constructing G from PFC using fy = y. In that case
span(G) = S1(!̂, !̂fit) = span(β̂ols), and consequently
using PFC with fy = y to construct G produces the
OLS estimator. The simulations shown in the boxplot
of Figure 1 with fy = y then correspond to OLS.

Let C = cov(X, Y ) and Ĉ = XT Y/n. Setting G =
(Ĉ, !̂Ĉ, . . . , !̂q−1Ĉ) yields the PLS estimator with q
factors (Helland, 1990). PLS works best when C can be
expressed as a linear combination of q eigenvectors of

! with unique eigenvalues (Helland and Almøy, 1994),
and then span(G) is an estimator of the span of those
eigenvectors. From these results it can be seen that us-
ing the isotonic PFC subspace G = S1(Ip, !̂fit) with
fy = y produces a β̂G that is equal to the PLS estima-
tor with q = 1. Connections between PLS and PFC are
less clear when q > 1.

4.3 Seeded Reductions

As mentioned in the Introduction, there has been re-
cent interest in principal components as a reductive
method for regressions in which n < p. Isotonic PFC
applies directly when n < p, as do the methods with
a structured " discussed in Section 8. The PFC esti-
mator with unstructured " > 0 is not directly applica-
ble to n < p regressions, but it does provide a seed for
recently methodology that is applicable. Cook, Li and
Chiaromonte (2007) developed methodology for esti-
mating the central subspace SY |X in n < p regressions
when there is a population seed matrix φ ∈ Rp×d such
that span(φ) = !SY |X. It follows from Corollary 3.4
that, in the context of this article, SY |X = "−1S# =
!−1span(!fit), where !fit is the population version of
!̂fit. Let the columns of φfit be the eigenvectors of
!fit corresponding to its d largest eigenvalues. Then
span(φfit) = !SY |X and φfit qualifies as a population
seed matrix. The sample version of φfit is constructed
in the same way using !̂fit. At this point the method-
ology of Cook, Li and Chiaromonte (2007) applies di-
rectly.

5. CHOICE OF d

The dimension d of the central subspace was so far
assumed to be specified. There are at least two ways
to choose d in practice. The first is based on using
likelihood ratio statistics $w = 2(Lmin(r,p) − Lw) =
−n

∑min(p,r)
i=d+1 log(1−r2

i ) to test the null hypothesis d =
w against the general alternative d > w. Under the null
hypothesis d = w, $w has an asymptotic chi-square
distribution with (r − w)(p − w) degrees of freedom.
This statistic is the same as the usual likelihood ratio
statistic for testing if the last min(p, r) − d canonical
correlations are 0 in two sets of jointly normal random
variables (see, e.g., Muirhead, 1982, page 567). In the
present application the conditional random vector Xy

is normal, but marginally X and fY will typically be
nonnormal. The likelihood ratio test (LRT) is used se-
quentially, starting with w = 0 and estimating d as the
first hypothesized value that is not rejected.
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The second approach is to use an information crite-
rion like AIC or BIC. BIC is consistent for d while
AIC is minimax-rate optimal (Burnham and Ander-
son, 2002). For w ∈ {0, . . . ,min(r,p)}, the dimension
is selected that minimizes the information criterion
IC(w) = −2Lw + h(n)g(w), where Lw was defined
in (5), g(w) is the number of parameters to be esti-
mated as a function of w, in our case, p(p + 3)/2 +
rw+w(p−w) and h(n) is equal to logn for BIC and 2
for AIC. These versions are simple adaptations of the
commonly occurring asymptotic forms for other mod-
els.

Since the choice of d is essential to the proposed
methodology, we next discuss selected results from
a simulation study to demonstrate that reasonable in-
ference on d is possible. We first generated Y ∼
N(0,σ 2

y ), and then with d = 2 generated Xy = #βfy +
ε, where ε ∼ N(0,"), β = I2, fy = (y, |y|)T and
# = (#1,#2) ∈ Rp×2, with #1 = (1,1,−1,−1,0, . . . ,
0)T /

√
4 and #2 = (1,0,1,0,1,0, . . . ,0)T /

√
3. For

each p, " was generated once as " = AT A, where
A is a p × p matrix of independent standard normal
random variables. Let F(2), F(2,3) and F(2,3,4) de-
note the fractions of simulation runs in which d was
estimated to be one of the integer arguments.

Using fy = (y, |y|, y3)T when fitting with model (2),
Figures 2a–2d give the fraction F(2) of runs in which
the indicated procedure selected d = 2 versus n for
p = 5, four values of σy and the three methods un-
der consideration. The number of repetitions was 500.
Here and in other figures the variation in the results for
adjacent sample sizes reflects simulation error in addi-
tion to systematic trends. The relative performance of
the methods in Figure 2a depends on the sample n and
signal σy size, and all three method improve as n and
σy increase.

In Figure 3 σy = 2 and n = 200. For Figures 3a
and 3c, model (2) was fitted with fy = (y, |y|, y3)T ,
while for the other two figures fitting was done with
fy = (y, |y|, y3, . . . , y10)T . Figures 3a and 3b show, as
expected, that the chance of choosing the correct value
of d decreases with p for all procedures. Figures 3c
and 3d show that, with increasing p, LRT and AIC
slightly overestimate d , while BIC underestimates d .
In the case of AIC, we estimated nearly a 100 percent
chance that the estimated d is 2, 3 or 4 with 80 predic-
tors, r = 10 and 200 observations. A little overestima-
tion seems tolerable in the context of this article, since
then R̂ will still estimate a sufficient reduction and we
can always pursue further refinement based on the sub-
sequent forward regressions. With underestimation R̂

no longer estimates a sufficient reduction. While we
believe this to be a useful practical result, it is possible
that the development of Bartlett-type corrections will
reduce the tendency to overestimate. Based on these
and other simulations we judged AIC to be the best
overall method for selecting d , although in the right sit-
uation either of the other methods may perform better.
For instance, comparing the results in Figures 3a with
the results in Figure 2c, we can see that for n = 200 and
p = 5, the performance of BIC was better than AIC.
Nevertheless that is reversed after p ∼ 10 where AIC
consistently gave better results.

6. TESTING PREDICTORS

In this section we develop tests for hypotheses of the
form Y ⊥⊥ X2|X1 where the predictor vector is par-
titioned as X = (XT

1 ,XT
2 )T with X1 ∈ Rp1 and X2 ∈

Rp2 , p = p1 +p2. Under this hypothesis, X2 furnishes
no information about the response once X1 is known.
The following lemma facilitates the development of
a likelihood ratio test statistic under model (2). In
preparation, partition # = (#T

1 ,#T
2 )T , ! = (!ij ), " =

("ij ), !̂res = (!̂ij,res), ! = (!ij ), and "−1 = ("ij ),
i = 1,2, j = 1,2, to conform to the partitioning of X.
Let "−ii = ("ii)−1. For a square partitioned matrix
A = (Aij ), i, j = 1,2, let Aii·j = Aii − Aij A−1

jj Aji .

LEMMA 6.1. Assume model (2). Then Y ⊥⊥ X2|X1
if and only if #2 = −"−22"21#1.

The log likelihood for the alternative of dependence
is as given in Theorem 3.1. The following theorem
gives the maximum likelihood estimators under the hy-
pothesis Y ⊥⊥ X2|X1.

THEOREM 6.2. Assume that #2 = −"−22"21#1
and that d ≤ τ1 = min(r,p1). Then, the MLE of " is

given in blocks by "̂11 = !̂
1/2
11,resV̂(Ip1 + K̂)V̂T !̂

1/2
11,res,

with K̂ = diag(0, . . . ,0, λ̂d+1, . . . , λ̂p1) and V̂ and
λ̂1, . . . , λ̂p1 the ordered eigenvectors and eigenval-
ues of !̂

−1/2
11,res!̂11,fit!̂

−1/2
11,res; "̂12 = "̂11!̂

−1
11 !̂12 and

"̂22 = !̂22.1 + !̂21!̂
−1
11 "̂11!̂

−1
11 !̂12. The MLE of the

central subspace is span{(!̂−1/2
11,resĜ1,0)T }, with Ĝ1 the

first d eigenvectors of !̂
−1/2
11,res!̂11,fit!̂

−1/2
11,res. The maxi-

mum value of the log likelihood is

L1
d = −np

2
log(2π) − np

2
− n

2
log |!̂11,res|

(6)

− n

2
log |!̂22.1| −

n

2

τ1∑

i=d+1

log(1 + λ̂i ).
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(a) (b)

(c) (d)

FIG. 2. Inference about d : Fraction F(2) of replications in which d = 2 was chosen by the LRT, AIC and BIC versus the sample size n for
four values of σy . (a) σy = 0.5, (b) σy = 1, (c) σy = 2, (d) σy = 5.

Under the hypothesis Y ⊥⊥ X2|X1 the likelihood ra-
tio statistic &d = 2(Ld − L1

d) has an asymptotic chi-
squared distribution with dp2 degrees of freedom. By
following Corollary 3.2 this test statistic can be ex-
pressed also as

&d = n log |!̂22.1| − n log |!̂22.1,res|

+ n

min(p,r)∑

i=d+1

log(1 − r2
i )

− n

min(p1,r)∑

i=d+1

log(1 − t2
i ),

where t1, . . . , tmin(p1,r) are the sample canonical corre-
lations between X1 and fy .

By using a working dimension w = min(r,p1) when
constructing the likelihood ratio statistic, we can test
predictors without first inferring about d , in the same

way that we set w = min(r,p) when testing hypotheses
about the structure of ". In that case, the final term
of &d does not appear.

To study the proposed tests of Y ⊥⊥ X2|X1, we
generated data from the model Xy = #y + ε, where
ε ∼ N(0,") and Y ∼ N(0,σ 2

y ); " was generated as
in Section 5, and # = c(#T

1 ,#T
2 )T ∈ R10 with #1 =

(1, . . . ,1)T ∈ R7, #2 = −"−22"21#1, and c is a nor-
malizing constant. Predictor testing is best done af-
ter choice of d , so the fitted model was (2) with
d = r = 1 and fy = y. Partition X = (XT

1 ,XT
2 )T with

dim(X1) = 7. Our general conclusion from this and
other simulations is that the actual and nominal levels
of the test are usefully close, except when the sample
size n or signal size σy is quite small. For instance,
the estimated levels of nominal 5 percent tests based
on 500 runs were 0.18, 0.08, 0.06 and 0.05 for sample
sizes 20, 40, 100 and 120. The test tends to reject too
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(a) (b)

(c) (d)

FIG. 3. Inference about d with varying p and two versions of fy used in fitting for LRT, AIC and BIC. (a) r = 3, (b) r = 10, (c) r = 3,
(d) r = 10.

frequently for weak signals or small samples. We see
that there is again a tendency for likelihood methods to
overestimate, in this case the active predictors. As with
inference on d we do not judge this to be a serious issue
in the context of this article.

7. ILLUSTRATIONS

We use two small examples in this section to illus-
trate the proposed methodology. The first is the most
thorough, while the second focuses on selected aspects
of the methodology.

7.1 Wheat Protein

We use Fearn’s (1983) wheat protein data for this
illustration. The response is the protein content of
a sample of ground wheat, and the predictors are
−log(reflectance) of NIR radiation at p = 6 wave-
lengths. We chose this example because the predic-

tors are highly correlated, with pairwise sample corre-
lations ranging between 0.9118 and 0.9991. Principal
components are often considered in such regressions
to mitigate the variance inflation that can be caused by
collinearity.

Plots of each predictor versus Y (not shown) sug-
gest that E(X|Y = y) might be modeled adequately as
a quadratic function of y and thus fy = (y, y2)T , but
for this illustration we decided to allow more flexibil-
ity and so set fy = (y, y2, y3)T . Fitting model (2) with
this cubic fy resulted in AIC, BIC and LRT all choosing
d = 1, suggesting that only one linear combination of
the predictors R̂1 is sufficient. The plot in Figure 4a of
Y versus R̂1 shows a strong linear relation. In contrast,
there is no relationship evident in the plot of Y versus
the first principal component shown in Figure 4b. The
first four principal components are needed to linearly
reconstruct R̂1.
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(a) (b)

FIG. 4. Wheat protein data: (a) Response versus the first sufficient component; (b) Response versus the first principal component.

Application of the likelihood ratio test &d of Sec-
tion 6 with d = 1 to each predictor gave three small
p-values (3.8 × 10−11,4.6 × 10−12,2.5 × 10−5) for
the third, fourth and sixth wavelengths. The p-values
for the remaining three wavelengths were all greater
than 0.33. Evidently, not all wavelengths are neces-
sary for estimating protein content. Predictor selection
could be continued by using standard likelihood-based
methods, including backward elimination or an infor-
mation criterion.

The estimated PFC is R̂1 = η̂T X, where η̂ = (0.11,
0.11,−0.84,0.50,−0.01,0.12)T is normalized to have
length 1. Although the predictors with the three largest
absolute coefficients are same as those found to be
significant, such coefficients are not generally useful
indicators of the importance of a predictor. As in lin-
ear regression, the coefficients depend on the scales of
the predictors. Multiplying the predictors by a diago-
nal matrix D−1 to give scaled predictors D−1X results
in new coefficients Dη̂ because, from Corollary 3.3,
the reduction itself is invariant under full-rank linear
transformations of X: R̂1 = η̂T X = η̂T DD−1X. If an
informal comparison of coefficients is desirable, then
it seems necessary to at least standardize the predic-
tor by choosing the diagonal elements of D to be the
square roots of the diagonal elements of !̂, !̂res or "̂.
Use of !̂ seems least desirable because it is affected
by the signal, ! = " + #β var(fY )βT #T .

We found no clear indications in this example that
the errors deviate significantly from normality. How-
ever, even if the errors in model (2) are not normal or fy
is misspecified, we would still expect reasonable esti-
mates because of Theorem 3.5.

We can use these results to gain insights about
the types of regressions in which principal compo-
nents might be effective and about why they appar-

ently fail in this example. Suppose that there are d

eigenvectors of " that span S# to a good approxi-
mation. This happens when " = σ 2Ip , as in the PC
model. Then "−1S# ≈ S# , R(X) ≈ #T X and there is
a d ×d orthogonal matrix O so that the columns of #O
are approximately eigenvectors of ". It then follows
that there are d eigenvectors of ! that approximately
span S# . If the signal represented by β var(fY )βT is
sufficiently strong then these should be the first d

eigenvectors of ! with relatively large eigenvalues. In
short, if the signal is sufficiently strong and the eigen-
vectors of " cooperate, then ! will exhibit collinear-
ity in the direction of #. The reverse implication does
not necessarily hold, however. As the present illustra-
tion shows, collinearity in ! does not necessarily im-
ply that it has d eigenvectors that span S# to a useful
approximation. Additionally, the correlations between
the errors ε estimated from "̂ range between 0.911
and 0.9993, so the observed collinearity in !̂ is coming
largely from "̂ and does not reflect a strong signal.

7.2 Naphthalene

These data consist of 80 observations from an exper-
iment to study the effects of three process variables in
the vapor phase oxidation of naphthalene (Franklin et
al., 1956). The response is the percentage conversion
of naphthalene to naphthoquinone, and the three pre-
dictors are air to naphthalene ratio, contact time and
bed temperature. Although there are only three predic-
tors in this regression, dimension reduction may still
be useful for visualization, as discussed in the Intro-
duction.

Based on smoothed plots of the predictors versus the
response, we used fy = (y, y2)T to fit the PFC model.
The three methods for selecting d discussed in Sec-
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(a) (b)

FIG. 5. Naphthalene data: (a) Response versus the first PFC component; (b) Response versus the lasso fitted values.

tion 5 all chose d = 1. Figure 5a gives a plot of re-
sponse versus the first principal fitted component R̂1.
A plot of the response versus the first principal com-
ponents failed to show any useful relationship, as in
the wheat protein data. We also included in Figure 5b
a plot of the response versus lasso fitted values. A plot
of the response versus the PLS fitted values with q = 1
is quite similar to that shown in Figure 5b.

The lasso and similar penalization methods are de-
signed to fit a single linear combination of the predic-
tors while forcing some of the coefficients to 0, and
thereby provide predictor selection along with the fit.
If d = 1 and the forward linear model is accurate then
the lasso should perform well. In the wheat protein data
the lasso fitted values are essentially the same as those
from PFC shown in Figure 4. If d = 1 and the forward
linear model is not accurate, then PFC and the lasso can
give quite different summaries of the data, as illustrated
in Figure 5. Evidently the lasso favors projections of
the data that have linear mean functions, and tends to
neglect projections with nonlinear mean functions.

The are many examples in the literature where the
dimension of the central subspace was inferred to be
larger than 1 (see, e.g., Cook, 1998). As presently de-
signed, the lasso cannot respond to such regressions
since it fits a single linear combination of the predic-
tors. Similar comments hold for partial least squares
and other methods that are constrained by fitting one
linear combination of the predictors.

As presently developed, penalization methods like
the lasso do not address the issues that drive suffi-
cient dimension reduction. Relatedly, sufficient dimen-
sion reduction methods are not designed for automated
predictor selection per se. Nevertheless, there is noth-
ing in principle to prohibit using penalization meth-

ods within the context of sufficient dimension reduc-
tion in an effort to gain the best of both worlds. One
might proceed in the context of this article by adding
a penalty in "−1S# to the partially maximized log like-
lihood (3).

8. STRUCTURED "

We would expect the previous methodology to be the
most useful in practice. Nevertheless, models between
the PFC model with " = σ 2Ip and the PFC model with
" > 0 may be useful in some applications. In this sec-
tion we consider models that allow, for example, " to
be a diagonal matrix. This will result in a rescaling
of the predictors prior to component computation, al-
though that scaling is not the same as the common scal-
ing by marginal standard deviations to produce a corre-
lation matrix. The models discussed here may involve
substantially fewer parameters, perhaps resulting in no-
table efficiency gains when they are reasonable.

Following Anderson (1969) and Rogers and
Young (1977), we consider modeling " with a lin-
ear structure: " = ∑m

i=1 δiGi , where m ≤ p(p + 1)/2,
G1, . . . ,Gm are known real symmetric p × p lin-
early independent matrices and the elements of δ =
(δ1, . . . , δm)T are functionally independent. We re-
quire also that "−1 have the same linear structure as
": "−1 = ∑m

i=1 siGi . To model a diagonal " we set
Gi = eieT

i , where ei ∈ Rp contains a 1 in the ith po-
sition and zeros elsewhere. This basic structure can be
modified straightforwardly to allow for a diagonal "
with sets of equal diagonal elements, and for a non-
diagonal " with equal off-diagonal entries and equal
diagonal entries. In the latter case, there are only two
matrices G1 = Ip and G2 = eeT , where e ∈ Rp has all
elements equal to 1.
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FIG. 6. Tests of a diagonal ": The x-axis represents sample size
and the y-axis represents the fraction P of time the null hypothesis
is not rejected.

Estimation of the central subspace "−1S# with a
constrained " follows that of Section 3 up to The-
orem 3.1. The change is that " is now a function
of δ ∈ Rm. Thus Ld{"(δ)} (4) is to be maximized
over δ. In contrast to the case with a general ", here
were unable to find a closed-form solution to the max-
imization problem, but any of the standard nonlin-
ear optimization methods should be sufficient to find
arg maxδ L{"(δ)} numerically. We have used an algo-
rithm (Appendix B) to solve ∂L{"(δ)}/∂δ = 0 itera-
tively. The starting point is the value that maximizes Ld

when r = d since then the maximum can be found ex-
plicitly. The resulting estimator of the central subspace
can be described as Sd("̃, !̂fit), where "̃ is the MLE
of the constrained ", but Corollary 3.4 no longer holds.

A model with constrained " can be tested against (2)
by using a likelihood ratio test: under the constrained
model )d = 2{Ld − Ld("̃)} is distributed asymptot-
ically as a chi-squared random variable with p(p +
1)/2 − m degrees of freedom. This test requires that d
be specified first, but in practice it may be useful to
infer about " prior to inference about d . This can be
accomplished with some loss of power by overfitting
the conditional mean and using the statistic )min(r,p),
which has the same asymptotic null distribution as )d .

To confirm our asymptotic calculations, we gener-
ated data from the simulation model Xy = #y + ε,
with Y ∼ N(0,1), # = (1, . . . ,1)T /

√
p ∈ Rp and ε ∼

N(0,"), where " is a diagonal matrix with entry (i, i)
equal to 10i−1. For the fitted model we used the work-
ing dimension w = r , since inference on " will likely
be made prior to inference on d , and fy = (y, . . . , yr)T .
Testing was done at the 5 percent level and the number

of repetitions was 500. Figure 6 gives graphs of the
fraction of runs in which the null hypothesis was not
rejected versus sample size for various values of r and
p = 6. These and other simulation results show that the
test performs as expected when n is large relative to p.
As indicated in Figure 6, our simulation results indi-
cate that, with d fixed, the sample size needed to obtain
good agreement between the nominal and actual levels
of the test increases with r .

9. DISCUSSION

The methods proposed in this article provide likeli-
hood-based solutions to the two long-standing prob-
lems that have hounded principal components, estab-
lish a likelihood-based connection between principal
fitted components and model-free sufficient dimension
reduction and provide insights about the types of re-
gressions in which principal components might be use-
ful. When model (2) is accurate, the methodology will
inherit optimality properties from general likelihood
theory, while otherwise providing

√
n consistent esti-

mators under relatively weak conditions. Additionally,
there are no restrictions on the nature of the response,
which may be continuous, categorical or even multi-
variate. Perhaps the main limitations are that var(X|Y)
must be constant or approximately so, and the methods
are not designed for discrete or categorical predictors.
Investigations into extensions that address these limi-
tations are in progress (Cook and Forzani, 2009).

APPENDIX A: PROOFS OF THE RESULTS FROM
SECTIONS 3 AND 6

PROOF OF THEOREM 2.1. The condition Y |X ∼
Y |T holds if and only if X|(T ,Y ) ∼ X|T . Thus, think-
ing of Y as the parameter and X as the data, T can be
regarded as a sufficient statistic for X|Y . The conclu-
sion will follow if we can show that R is a minimal
sufficient statistic for X|Y . Note that in this treatment
the actual unknown parameters (µ, S#,β,") play no
essential role.

Let g(x|y) denote the conditional density of X|(Y =
y). To show that R is a minimal sufficient statistic for
X|Y it is sufficient to consider the log likelihood ratio

logg(z|y)/g(x|y)

= −(1/2)zT "−1z + (1/2)xT "−1x

+ (z − x)T "−1µy.

If logg(z|y)/g(x|y) is to be a constant in y then we
must have logg(z|y)/g(x|y) = E{logg(z|Y )/g(x|Y)}
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for all y. Equivalently, we must have (z − x)T "−1 ·
(µy −µY ) = 0. Let # ∈ Rp×d be a basis for span(µy −
µY ). Then the condition can be expressed equivalently
as (z − x)T #βfy = 0, and the conclusion follows. !

Let S+
q denote the set of q × q positive definite ma-

trices.

PROOF OF THEOREM 3.1. We use f as a generic
function whose definition changes and is given in con-
text. We will make a series of changes of variables
to rewrite the problem. Let U = !̂

1/2
res "−1!̂

1/2
res so that

maximizing (4) is equivalent to maximizing

f (U) = log |U| − tr(U)
(7)

−
p∑

i=d+1

λi (U!̂−1/2
res !̂fit!̂

−1/2
res ).

Let τ = min(r,p) and use the singular value decompo-
sition to write !̂

−1/2
res !̂fit!̂

−1/2
res = V̂)̂τ V̂T where V̂ ∈

Rp×p is an orthogonal matrix and )̂τ = diag(̂λ1, . . . ,
λ̂τ ,0, . . . ,0), with λ̂1 > λ̂2 > · · · > λ̂τ > 0. Calling
H = V̂T UV̂ ∈ S+

p , (7) becomes

f (H) = log |H| − tr(H) −
τ∑

i=d+1

λi (H)̂τ ).(8)

We now partition H as H = (Hij )i,j=1,2, with H11 ∈
S+
τ ,H22 ∈ S+

p−τ [for p = τ we take H = H11 and go
directly to (9)]. Consider the transformation S+

p to the
space S+

τ × S+
p−τ × Rτ×(p−τ ) given by V11 = H11,

V22 = H22 − HT
12H−1

11 H12 and V12 = H−1
11 H12. This

transformation is one to one and onto (Eaton, 1983,
Proposition 5.8). As a function of V11, V22 and V12, (8)
can be written as

log |V11||V22| − tr(V11) − tr(V22)

− tr(VT
12V11V12) −

τ∑

i=d+1

λi (V11)̃τ ),

where )̃τ = diag(̂λ1, . . . , λ̂τ ), and we have used the
fact that the nonzero eigenvalues of H)̂τ are the same
as those of H11)̃τ . The term − tr(VT

12V11V12) is the
only one that depends on V12. Since V11 is positive
definite, VT

12V11V12 is positive semidefinite. Thus, the
maximum occurs when V12 = 0. This implies that
H12 = 0, H11 = V11, H22 = V22, and we next need to
maximize

f (H11,H22)

= log |H11| + log |H22|

− tr(H11) − tr(H22) −
τ∑

i=d+1

λi (H11)̃τ ).

This function is maximized over H22 at H22 = Ip−τ ,
then we need to maximize

f (H11) = log |H11| − tr(H11)
(9)

−
τ∑

i=d+1

λi (H11)̃τ ).

Letting Z = )̃
1/2
τ H11)̃

1/2
τ leads us to maximize

f (Z) = log |Z| − tr(Z)̃−1
τ ) − ∑τ

i=d+1 λi (Z). Since
Z ∈ S+

τ , there exists an F = diag(f1, . . . , fτ ) with
fi > 0 in decreasing order and an orthogonal matrix
W in Rτ×τ such that Z = WT FW. As a function of W
and F, we can rewrite the function f as

f (F,W) = log |F| − tr(WT FW)̃−1
τ ) −

τ∑

i=d+1

fi

= log |F| − tr(FW)̃−1
τ WT ) −

τ∑

i=d+1

fi.

Now, using a lemma from Anderson (1971), Theo-
rem A.4.7, minW tr(FW)̃−1

τ WT ) = ∑τ
i=1 fi λ̂

−1
i , and

if the diagonal element of F and )̃τ are distinct, the
minimum occur when Ŵ = Iτ . Knowing this, we can
rewrite the problem one last time, as that of maximiz-
ing in (f1, . . . , fτ ), all greater than zero, the function

f (f1, . . . , fτ )
(10)

=
τ∑

i=1

logfi −
τ∑

i=1

fi λ̂
−1
i −

τ∑

i=d+1

fi.

Clearly the maximum will occur at fi = λ̂i for i =
1, . . . , d and for i = d + 1, . . . , τ , fi = λ̂i/(̂λi + 1).

Since λ̂i are positive and decreasing order, fi are posi-
tive and decreasing in order. Since all the λ̂i are differ-
ent, the fi are different. Collecting all the results, the
value of " that maximizes (4) is

"̂ = !̂1/2
res Û−1!̂1/2

res = !̂1/2
res V̂Ĥ−1V̂T !̂1/2

res

= !̂1/2
res V̂

(
)̃

1/2
τ Ẑ−1)̃

1/2
τ 0τ×(p−τ )

0(p−τ )×τ Ip−τ×(p−τ )

)
V̂T !̂1/2

res ,

where )̃
1/2
τ Ẑ−1)̃

1/2
τ = diag(Id, λ̂d+1 +1, . . . , λ̂τ +1).

Now, to obtained the maximum value we replace "
by "̂ in (4),

Ld("̂) = −np

2
log(2π) − n

2
log |"̂|

(11)

− n

2
tr("̂−1!̂res) − n

2

τ∑

i=d+1

λi("̂
−1!̂fit).
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Since the trace and the eigenvalues are cyclic opera-
tions,

tr("̂−1!̂res) = tr("̂−1/2!̂res"̂
−1/2)

= tr{V̂(Ip + K̂)−1V̂T }
(12)

= d +
τ∑

i=d+1

1/(1 + λ̂i ) + (p − τ ),

τ∑

i=d+1

λi ("̂
−1!̂fit) =

τ∑

i=d+1

λi{V̂(I + K̂)−1

· V̂T !̂−1/2
res !̂fit!̂

−1/2
res }

=
τ∑

i=d+1

λ̂i{V̂(I + K̂)−1V̂T V̂K̂V̂T }(13)

=
τ∑

i=d+1

λ̂i{(I + K̂)−1K̂}

=
τ∑

i=d+1

λ̂i

1 + λ̂i
.

Since !̂res > 0 we have

log |"̂| = log |!̂1/2
res V̂(I + K̂)V̂T !̂1/2

res |
(14)

= log |!̂res| +
τ∑

i=d+1

log(1 + λ̂i ).

Plugging (12), (14) and (15) into (12) we obtain (5).
!

PROOF OF COROLLARY 3.2. The eigenvalues λ̂i

of !̂
−1/2
res !̂fit!̂

−1/2
res are the same as those of !̂−1

res !̂fit.
These eigenvalues are related to the eigenvalues r2

i of
!̂−1!̂fit by 1 + λ̂i = (1 − r2

i )−1 (Cook, 2007, Appen-
dix 7). Now the eigenvalues of !̂−1!̂fit are the same as
those of

!̂−1/2!̂fit!̂
−1/2 = !̂−1/2(XT F/n)(FT F/n)−1

· (FT X/n)!̂−1/2,

where XT F/n is the p × r matrix of sample correla-
tions between X and f and FT F/n is the sample co-
variance matrix of f. !

PROOF OF COROLLARY 3.3. Recall from Theo-
rem 3.1 that "̂ = !̂res + !̂

1/2
res V̂K̂V̂T !̂

1/2
res , where V̂

contains the eigenvectors of B = !̂
−1/2
res !̂fit!̂

−1/2
res .

The transformation X → AX transforms B → OBOT ,
where O = (A!̂resAT )−1/2A!̂

1/2
res is an orthogonal

matrix. Consequently, under the transformation K̂ is

invariant, V̂ → OV̂ and "̂ → A"̂AT . The rest of the
proof follows similarly. !

To prove Corollary 3.4 we need a lemma.

LEMMA A.1. Let Ṽ = !̂
−1/2
res V̂M1/2, where M =

(Ip + K̂)−1, with V̂ and K̂ as in Theorem 3.1. Then

"̂
1/2Ṽ are the normalized eigenvectors of "̂−1/2!̂fit ×

"̂−1/2.

PROOF. From Theorem 3.1,

"̂ = !̂res + !̂1/2
res V̂K̂V̂T ̂̂

!
1/2
res

= !̂res
1/2V̂(Ip + K̂)V̂T !̂res

1/2.

Then, "̂−1 = !̂
−1/2
res V̂(Ip + K̂)−1V̂T !̂

−1/2
res

= !̂
−1/2
res V̂MV̂T !̂

−1/2
res . Using the fact that V̂ are the

eigenvectors of !̂
−1/2
res !̂fit!̂

−1/2
res we get

"̂−1!̂fitṼ = !̂−1/2
res V̂MV̂T !̂−1/2

res !̂fit!̂
−1/2
res V̂M1/2

= !̂−1/2
res V̂M"τM1/2 = ṼM1/2"τM1/2

= ṼM"τ ,

where M"τ = diag(̂λ1, . . . , λ̂d, λ̂d+1/(̂λd+1 + 1), . . . ,

λ̂τ/(̂λτ + 1),0, . . . ,0). Therefore "̂−1!̂fit has eigen-
values λ̂1, . . . , λ̂d, λ̂d+1/(̂λd+1 + 1), . . . , λ̂τ/(̂λτ + 1),

0, . . . ,0 with eigenvectors Ṽ, and ṼT "̂Ṽ = Ip. !
PROOF OF COROLLARY 3.4. From the develop-

ment leading to Theorem 3.1, the MLE of span("−1#)
is Sd("̂, !̂fit), which establishes the first form. Now,
from Lemma A.1, span of the first d columns of
"̂−1/2"̂1/2Ṽ = Ṽ is the MLE for span("−1#). Since
Ṽ = !̂

−1/2
res V̂M1/2 and M is diagonal full rank with the

first d elements equal 1, the span of the first d columns
of Ṽ is the same of the first d columns of !̂

−1/2
res V̂

where V̂ are the eigenvectors of !̂
−1/2
res !̂fit!̂

−1/2
res . This

prove the fourth form. The proof of the fifth form
can be found in Cook (2007) and it follows from
the fact that the eigenvectors of !̂−1!̂fit and !̂−1

res !̂fit
are identically, with corresponding eigenvalues λ̂i and
λ̂i/(1 − λ̂i ). The corollary follows now from the re-
lation between the eigenvectors of the product of
the symmetric matrices AB and the eigenvectors of
A1/2BA1/2. The second and the third forms follow
from the fourth and fifth forms and from the fact that
!̂ = !̂res + !̂fit. !

PROOF OF THEOREM 3.5. It is sufficient to con-
sider the limiting behavior of !̂−1!̂fit, because
Sd(!̂, !̂fit) = !̂−1/2spand(!̂−1/2!̂fit!̂

−1/2) =
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spand(!̂−1!̂fit), where spand(A) indicates the span of
the first d eigenvectors of A.

The following statements on large sample behavior
follow the general line that Li (1991), Section 5, used in
his demonstration of

√
n consistency for SIR. Since !̂

is the marginal sample covariance matrix of X, its as-
ymptotic behavior depends only on the true model.
It is know that under the stated assumptions !̂ is
a

√
n consistent estimator of ! = #V#T + ", where

V = var(νY ) > 0. Consequently, !̂−1 is a
√

n consis-
tent estimator of !−1. Next, as given in Section 2.1,
!̂fit = (XT F/n)(FT F/n)−1(FT X/n) which converges
at

√
n rate to !fit = cov(X, f)cov(X, f)T , where we

have assumed var(fY ) = Ir without loss of generality.
Using model (1) for X we have, cov(X, f) = #C, where
C = cov(νY , fY ). Consequently, !̂−1!̂fit converges at√

n rate to !−1!fit = (#V#T + ")−1#CCT #−1, and
the first d eigenvectors of !̂−1!̂fit converge at the

√
n

rate to corresponding eigenvectors of !−1!fit.
Using the form !−1 = "−1 − "−1#(V−1 + #T ·

"−1#)−1#T "−1 and simplifying we find !−1!fit =
"−1#KCCT #T , where K = (V−1 +#T "−1#)−1V−1

is a full rank d × d matrix. Clearly, span(!−1!fit) ⊆
"−1S# with equality if and only if the rank of #KC ·
CT #T is equal to d . Since # has full column rank and
K is nonsingular, the rank of #KCCT #T is equal to d
if and only if the rank of CCT is equal to d . The re-
sult follows since ρ = V−1/2C, recalling that we have
assumed var(fY ) = Ir . !

PROOF OF LEMMA 6.1. Y ⊥⊥ X2|X1 if and only
if Y ⊥⊥ X|X1. Suppose that Y ⊥⊥ X|X1. We know that
#T "−1X is the minimal sufficient reduction and thus
it should not depend on X2. Now,

#T "−1X = (#T
1 "11 + #T

2 "21)X1
(15)

+ (#T
1 "12 + #T

2 "22)X2

will not depend on X2 if and only if #T
1 "12 +#T

2 "22 =
0 equivalently #2 = −"−22"21#1. The reciprocal fol-
lows directly if we replace #2 by −"−22"21#1 on
equation (15). !

PROOF OF THEOREM 6.2. After maximizing the
log likelihood over (µ,β), we need to maximize
on # and "−1 f (#,"−1) = log |"−1| − tr("−1!̂) +
tr("−1P#("−1)!̂fit). From the hypotheses on #, we
have #T "−1 = (#T

1 "11.2,0) where "11.2 = "11 −
"12"−22"21. Then #T "−1# = #T

1 "11.2#1. For fixed
", the last term is maximized by choosing ("11.2)1/2 ·
#1 to be a basis for the span the first d eigenvectors of

("11.2)1/2!̂11,fit("
11.2)1/2, yielding another partially

maximized log likelihood

f ("−1) = log |"−1| − tr("−1!̂)
(16)

+
d∑

i=1

λi{("11.2)1/2!̂11,fit("
11.2)1/2}.

Let us take the one-to-one and onto transformation de-
fined by L11 = "11 − "12"−22"21, L22 = "22 and
L12 = "12"−22. As a function of L11, L22, L12 we get

f (L11,L22,L12)

= log |L11| + log |L22|
− tr(L22!̂22 + L22LT

12!̂12)

− tr{(L11 + L12L22LT
12)!̂11

+ L12L22!̂21}

+
d∑

i=1

λi (L
1/2
11 !̂11,fitL

1/2
11 ).

Now, differentiating with respect to L12 in the last ex-
pression, we get that

∂f

∂L12
= −2!̂12L22 − 2!̂11L12L22 and

∂2f

∂L2
12

= −2!̂11 ⊗ L22.

Therefore the maximum occurs when L12 = −!̂
−1
11 ·

!̂12. Replacing this in the last log likelihood function
we next need to maximize

f (L11,L22) = log |L11| + log |L22|
− tr(L22!̂22) − tr(L11!̂11)

+ tr(L22!̂12!̂
−1
11 !̂12)

+
d∑

i=1

λi (L
1/2
11 !̂11,fitL

1/2
11 ),

since for L12 = −!̂−1
11 !̂12, −2 tr(L22LT

12!̂12) −
tr(L12L22LT

12!̂11) = tr(L22!̂12!̂
−1
11 !̂12). The maxi-

mum on L22 is at L22 = !̂−1
22.1 so that we need to max-

imize on L11

f (L11) = log |L11| − tr(L11!̂11)

+
d∑

i=1

λi (L
1/2
11 !̂11,fitL

1/2
11 ).
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From Theorem 3.1 the MLE for L−1
11 is !̂

1/2
11,resV̂(Id +

K̂)V̂T !̂
1/2
11,res, where K̂ and V̂ are as defined in The-

orem 6.2. Since L11 = "11 − "12"−22"21 = "−1
11 it

follows that "̂11 = !̂
1/2
11,resV̂(Id + K̂)V̂T !̂

1/2
11,res. The

MLE for "22 is !̂−1
22.1 and for "12 is −!̂−1

11 !̂12!̂
−1
22.1.

Consequently, "̂12 = "̂11!̂
−1
11 !̂12 and "̂22 = !̂22.1 +

!̂21!̂
−1
11 "̂11!̂

−1
11 !̂12.

The MLE for the span of "−1# = ("11.2#1,0)T is
the span of ("̂

−1/2
11 #̂1,0)T with #̂1 the first d eigenvec-

tors of "̂
−1/2
11 !̂11,fit"̂

−1/2
11 . Using the logic of Corol-

lary 3.3 it can be proved that the MLE of span("−1#)

is in this case the span of (!̂
−1/2
11,res#̂1,0)T , with #̂1 the

first d eigenvectors of !̂
−1/2
11,res!̂11,fit!̂

−1/2
11,res.

The proof of (6) can be done essentially as the proof
of (5). !

APPENDIX B: ALGORITHM FOR " WITH LINEAR
STRUCTURE

We will maximize (4) as a function f of S = "−1.
We first find the derivative with respect to S without
considering any structure. Because !̂fit is symmetric
we get

∂f (S)

∂S
= S−1 − !̂res −

r∑

i=d+1

vi (S!̂fit)uT
i (S*̂fit)!̂fit,

where ui and vi indicate respectively the normalized
right and left eigenvectors corresponding to the eigen-
value λi of S!̂fit. Now, ∂S/∂sh = Gh and

∂f (S)

∂sh
= tr(S−1Gh) − tr(!̂resGh)

(17)

−
r∑

i=d+1

tr{!̂fitui (S!̂fit)vT
i (S!̂fit)Gh}.

Denote by ūi the ith eigenvector of S1/2!̂fitS1/2 =
"−1/2!̂fit"

−1/2 corresponding to the λi eigenvalue
(in decreasing order) normalized with unit norm.
Then ui = S1/2ūi = D−1/2ūi , vi = S−1/2ūi = D1/2ūi ,
!̂fitui = λiD1/2ūi and vT

i uj = 0 if i .= j and 1 other-
wise. We can rewrite (17) as

∂f (S)

∂sh
= tr("Gh) − tr(!̂resGh)

(18)

−
r∑

i=d+1

λi tr("1/2ūi ūT
i "1/2Gh).

To find the MLE we need to solve ∂f (S)/∂sh = 0 for
h = 1, . . . ,m. Using (18) we can rewrite ∂f (S)/∂sh =

0 using the vec operator as

vec(Gh)
T vec(")

= vec(Gh)
T vec(!̂res)(19)

+ vec(Gh)
T

r∑

i=d+1

λivec("1/2ūi ūT
i "1/2)

for h = 1, . . . ,m. Let G̃ = {vec(G1), . . . ,vec(Gm)}.
Since " = ∑m

i=1 δiGi , vec(") = G̃δ we can
rewrite (19) for all h as

G̃T G̃δ = G̃T

{

vec(!̂res)

(20)

+
r∑

i=d+1

λivec("1/2ūi ūT
i "1/2)

}

.

Now, if r = d we get δ = (G̃T G̃)−1G̃T vec(!̂res) and
"−1 = (

∑m
i=1 δiGi)

−1. The algorithm will be:

1. Set δ0 = (δ0
1, . . . , δ0

m) = (G̃T G̃)−1G̃T vec(!̂res).
2. Compute "0 = ∑m

i=1 δ
0
i Gi and S0 = "−1

0 .
3. Compute until convergence, n = 1,2, . . . ,

"n = (G̃T G̃)−1G̃T

·
[

vec(!̂res)

+
r∑

i=d+1

λ
Sn−1
i vec{"1/2

n−1ūSn−1
i (ūSn−1

i )T "
1/2
n−1}

]

with Sn−1 = "−1
n−1 and λSn−1 and ūSn−1 denoting

respectively the eigenvalues and eigenvectors of
S1/2

n−1!̂fitS
1/2
n−1.
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