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Abstract

We obtain the maximum likelihood estimator of the central subspace under

conditional normality of the predictors given the response. Analytically and in

simulations we found that our new estimator can preform much better than sliced

inverse regression, sliced average variance estimation and directional regression,

and that it seems quite robust to deviations from normality.
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1 Introduction

Since the introduction of sliced inverse regression (SIR; Li, 1991) and sliced average vari-

ance estimation (SAVE; Cook and Weisberg, 1991) there has been considerable interest

in dimension reduction methods for the regression of a real response Y on a random

vector X ∈ Rp of predictors. A common goal of SIR, SAVE and many other dimension

reduction methods is to estimate the central subspace SY |X (Cook, 1994, 1998), which

is defined as the intersection of all subspaces S ⊆ Rp with the property that Y is condi-

tionally independent of X given the projection of X onto S. Informally, these methods

estimate the fewest linear combinations of the predictor that contain all the regression

information on the response. SIR uses a sample version of the first conditional moment

E(X|Y ) to construct an estimator of SY |X, while SAVE uses sample first and second

E(XXT |Y ) conditional moments. Other dimension reduction methods are also based on

the first two conditional moments and as a class we refer to them as F2M methods.

Although SIR and SAVE have found wide-spread use in application, they nevertheless

both have known limitations. In particular, the subspace SSIR estimated by SIR is

typically a proper subset of SY |X when the response surface is symmetric about the origin.

SAVE was developed in response to this limitation and it provides exhaustive estimation

of SY |X under mild conditions (Li and Wang, 2007; Shao, Cook and Weisberg, 2007), but

its ability to detect linear trends is generally inferior to SIR’s. For these reasons, SIR

and SAVE have been used as complementary methods, with satisfactory results often

obtained by informally combining their estimated directions (see, for example, Cook and

Yin, 2001; Bura and Pfeiffer, 2003; Li and Li, 2004; Pardoe, Yin and Cook, 2007).

Several authors, in an effort to develop methodology that retains the advantages of SIR

and SAVE while avoiding their limitations, have proposed alternative F2M methods.

These include combinations of SIR and SIRII (Li, 1991) and combinations of SIR and

SAVE (Ye and Weiss, 2003; Zhu, Ohtaki and Li, 2005). Cook and Ni (2005) proposed a
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method (IRE) of estimating SSIR that is asymptotically efficient among methods based

on first conditional moments. Although IRE can be much more efficient that SIR in

estimation, it nevertheless shares SIR’s scope limitations.

Recently, Li and Wang (2007) proposed a novel F2M method called directional re-

gression (DR). They showed that DR, like SAVE, provides exhaustive estimation of SY |X

under mild conditions, and they argued that it is more accurate than or competitive with

all of the previous F2M dimension reduction proposals. They also concluded that the

class of F2M methods can be expected to yield results of merit in practice, except perhaps

when the regression surface undulates, necessitating the use of higher-order conditional

moments for exhaustive estimation of SY |X.

In this article we take a substantial step forward in the development of F2M dimension

reduction methods. Our new method provides exhaustive estimation of SY |X under the

same mild conditions as DR and SAVE. However, unlike the previous methods we employ

a likelihood-based objective function to acquire the reduced dimensions. Consequently,

when the likelihood is accurate our new method – called LAD (likelihood acquired direc-

tions) – inherits properties and methods from general likelihood theory. The dimension

d of SY |X can be estimated using likelihood ratio testing or an information criterion like

AIC or BIC, and conditional independence hypotheses involving the predictors can be

tested straightforwardly. While likelihood-based estimation can be sensitive to devia-

tions from the underlying assumptions, we demonstrate that LAD has good robustness

properties and can be much more accurate than DR, which is reportedly the “best” of

the known F2M methods. We show in particular that LAD provides an asymptotically

optimal F2M method in a sense described herein.

The advantages of the full likelihood approach developed herein could be anticipated

from the work of Zhu and Hastie (2003) and Pardoe et al. (2007). Zhu and Hastie (2003)

used a marginal pseudo-likelihood approach to sequentially identify optimal discriminat-
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ing directions for non-normal discriminant analysis. Pardoe et al. (2007) showed that

for normal data, and in a population sense, the subspace identified by the Zhu-Hastie

sequential likelihood method and the subspace identified by SAVE are one and the same.

Thus it was to be expected that the full maximum likelihood estimator of the the central

subspace under normality would prove to have advantages over SIR, SAVE, DR and the

Zhu-Hastie method under the same assumptions.

The rest of the article is organized as follows. Section 2 is devoted to population

results. We develop LAD estimation in Section 3. In Section 4 we compare DR, LAD,

SAVE and SIR, and discuss the robustness of LAD and its relationship with a method

for discriminant analysis proposed by Zhu and Hastie (2003). Inference methods for d

and for contributing variables are considered in Sections 5 and 6. Section 7 contains

an illustration of how the proposed methodology might be used in practice. Proofs and

other supporting material are given in the appendices.

For positive integers p and q, Rp×q stands for the class of real p × q matrices. For

A ∈ Rp×p and a subspace S ⊆ Rp, AS ≡ {Ax : x ∈ S}. A semi-orthogonal matrix

A ∈ Rp×q, q < p, has orthogonal columns, ATA = Iq. A basis matrix for a subspace S

is a matrix whose columns form a basis for S. For B ∈ Rp×q, SB ≡ span(B) denotes the

subspace of Rp spanned by the columns of B. If B ∈ Rp×q and Σ ∈ Rp×p is symmetric and

positive definite, then the projection onto SB relative to Σ has the matrix representation

PB(Σ) ≡ B(BTΣB)−1BTΣ. PS indicates the projection onto the subspace S in the

usual inner product, and QS = I − PS . The orthogonal complement S⊥ of a subspace

S is constructed with respect to the usual inner product, unless indicated otherwise. A

tilde ˜ over a parameter indicates its sample version and a hat ̂ indicates its maximum

likelihood estimator (MLE).
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2 Population Results

A q dimensional subspace S of Rp is a dimension reduction subspace if Y X|PSX.

Equivalently, if α is a basis matrix for a subspace S of Rp and Y X|αTX then again S

is a dimension reduction subspace. Under mild conditions the intersection of all dimension

reduction subspaces is itself a dimension reduction subspace and then is called the central

subspace and denoted by SY |X. While the central subspace is a well-defined parameter

in almost all regressions, methods for estimating it depend on additional structure.

Let SY denote the support of Y , which may be continuous, discrete or categorical

in this section. For notational convenience, we frequently use Xy to denote a random

vector distributed as X|(Y = y), y ∈ SY . The full notation X|(Y = y) will be used when

it seems useful for clarity. Further, let µy = E(Xy), µ = E(X), ∆y = var(Xy) > 0,

∆ = E(∆Y ) and Σ = var(X). It is common practice in the literature on F2M methods

to base analysis on the standardized predictor Z = Σ−1/2(X − µ). This involves no loss

of generality at the population level since central subspaces are equivariant under full

rank linear transformations of the predictors, SY |X = Σ−1/2SY |Z. It also facilitates the

development of moment-based methods since Σ can be replaced with its sample version

for use in practice. However, the Z scale is not convenient for maximum likelihood

estimation since it “hides” Σ in the standardized predictor, and the MLE of Σ is not

necessarily its sample version. As a consequence, we stay in the original scale of X

throughout this article, except when making connections with previous methodology.

The following theorem gives necessary and sufficient conditions for a dimension re-

duction subspace when Xy is normally distributed.

Theorem 1 Assume that Xy ∼ N(µy,∆y), y ∈ SY . Let M = span{µy − µ|y ∈ SY }.

Then S ⊆ Rp is a dimension reduction subspace if and only if (a) ∆−1M ⊆ S and (b)

QS∆
−1
Y is a non-random matrix.

The next proposition gives conditions that are equivalent to condition (b) from The-
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orem 1. It is stated in terms of a basis matrix α, but the results do not depend on the

particular basis selected.

Proposition 1 Let α be a basis matrix for S ⊆ Rp and let (α, α0) ∈ Rp×p be a full

rank matrix with αT α0 = 0. Then condition (b) of Theorem 1 and the following five

statements are equivalent. For all y ∈ SY ,

(i) αT
0∆

−1
y = αT

0∆
−1,

(ii) Pα(∆y) and ∆y(Ip −Pα(∆y)) are constant matrices,

(iii) Pα(∆y) = Pα(∆) and ∆y(Ip − Pα(∆y)) = ∆(Ip − Pα(∆)),

(iv) ∆y = ∆+ PT
α(∆)(∆y −∆)Pα(∆),

(v) ∆−1
y = ∆−1 + α{(αT∆yα)−1 − (αT∆α)−1}αT .

This proposition does not require normal distributions. With or without normality,

condition (b) of Theorem 1 constrains the covariance matrices ∆y so that QS∆
−1
y = C,

y ∈ SY , where C is a constant matrix. This moment constraint is equivalent to the

five statements of Proposition 1 without regard to the distribution of Xy, provided that

the required inverses exist. For instance, starting with condition (b) of Theorem 1 we

have QS = C∆y which implies that QS = C∆ and thus that C = QS∆
−1, leading to

condition (i) of Proposition 1. Nevertheless, some useful interpretations still arise within

the normal family. With normal populations, var(X|αTX, y) = ∆y{Ip −Pα(∆y)} (Cook,

1998, p. 131). Thus, condition (ii) of Proposition 1 requires that var(X|αTX, Y ) be

non-random.

Condition (iii) says that the centered means E(X|αTX, y) − µy = PT
α(∆y)(X − µy)

must all lie in the same subspace S∆α. Together, Theorem 1 and Proposition 1 imply

that the deviations ∆y −∆, y ∈ SY , must have common invariant subspace S∆α and

the translated conditional means µy − µ must fall in that same subspace.
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Results to this point are in terms of dimension reduction subspaces, S in Theorem

1 and span(α) in Proposition 1. However, MLEs seem most easily derived in terms of

orthonormal bases. The next proposition, which will facilitate finding MLEs in the next

section, gives a characterization of a dimension reduction subspace in terms of semi-

orthogonal basis matrices.

Proposition 2 Assume that Xy ∼ N(µy,∆y), y ∈ SY . Let α be a semi-orthogonal

basis matrix for S ⊆ Rp and let (α, α0) ∈ Rp×p be an orthogonal matrix. Then S is

a dimension reduction subspace if and only if the following two conditions are satisfied.

For all y ∈ SY ,

1. αTX|(Y = y) ∼ N(αT µ + αT∆ανy, αT∆yα), for some νy ∈ Rdim(S),

2. αT
0 X|(αTX, Y = y) ∼ N(HαTX+(αT

0 −HαT )µ,D) with D = (αT
0∆

−1α0)−1 and

H = (αT
0∆α)(αT∆α)−1.

We see from this theorem that if S is a dimension reduction subspace with basis α,

then the distribution of αT X|(Y = y) can depend on y, while the distribution of

αT
0 X|(αTX, Y = y) cannot. Conversely, if these two distributional conditions hold,

then S = span(α) is a dimension reduction subspace.

The central subspace exists when Xy is normally distributed (Cook, 1998, Prop. 6.4).

Consequently it can be characterized as the intersection of all subspaces S satisfying

Theorem 1. Let d = dim(SY |X). We use η ∈ Rp×d to denote a semi-orthogonal basis

matrix for SY |X. A subspace SY |X ⊆ Rp with dimension d ≤ p corresponds to a hyper-

plane through the origin, which can be generated by a p × d basis matrix. The set

of such planes is called a Grassmann manifold G(d,p) in Rp. The dimension of G(d,p)

is pd − d2 = d(p − d), since a plane is invariant under nonsingular right-side linear

transformations of its basis matrix (Chikuse, 2003).

In the next section we use the model developed here with α = η to derive the MLEs.

We refer to this as the LAD model.
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3 Estimation of SY |X when d is Specified

3.1 LAD maximum likelihood estimators

The population foundations of SIR, SAVE, DR and other F2M methods do not place

constraints on SY . However, the methods themselves do require a discrete or categor-

ical response. To maintain consistency with previous F2M methods we assume in this

section that the response takes values in the support SY = {1, 2, . . . , h}. When the re-

sponse is continuous it is typical to follow Li (1991) and replace it with a discrete version

constructed by partitioning its range into h slices. Slicing is discussed in Section 3.3.

We assume that the data consist of ny independent observations of Xy, y ∈ SY . The

following proposition summarizes maximum likelihood estimation when d is specified.

The choice of d is considered in Section 5. In preparation, let Σ̃ denote the sample

covariance matrix of X, let ∆̃y denote the sample covariance matrix for the data with

Y = y, and let ∆̃ =
∑h

y=1 fy∆̃y, where fy is the fraction of cases observed with Y = y.

Theorem 2 Under the LAD model the MLE of SY |X maximizes over S ∈ G(d,p) the log

likelihood function

Ld(S) = −
np

2
(1 + log(2π)) +

n

2
log |PSΣ̃PS |0 −

n

2
log |Σ̃|−

1

2

h∑

y=1

ny log |PS∆̃yPS|0 (1)

where |A|0 indicates the product of the non-zero eigenvalues of a positive semi-definite

symmetric matrix A. The MLE of ∆−1 is ∆̂
−1

= Σ̃
−1

+ η̂(η̂T∆̃η̂)−1η̂T −η̂(η̂T Σ̃η̂)−1η̂T ,

where η̂ is any semi-orthogonal basis matrix for the MLE of SY |X. The MLE ∆̂y of ∆y

is constructed by substituting η̂, ∆̂ and η̂T∆̃yη̂ for the corresponding quantities on the

right of the equation in part (iv) of Proposition 1.

Using the results of this theorem it can be shown that the MLE of Σ is Σ̂ = ∆̂ +

PT
bη( b∆)

M̂P
bη( b∆), where M̂ is the sample version of var(µY ).
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If SY |X = Rp (d = p) then the log likelihood (1) reduces to the usual log likelihood

for fitting separate means and covariance matrices for the h populations. We refer to

this as the full model. If SY |X is equal to the origin (d = 0) then (1) becomes the log

likelihood for fitting a common mean and common covariance matrix to all populations.

This corresponds to deleting the two terms of (1) that depend on S. Following Shapiro

(1986, Prop. 3.2) we found the analytic dimension of the parameter space for the LAD

model by computing the rank of the Jacobian of the parameters. For h > 1 this rank is

D = p+(h−1)d+p(p+1)/2+d(p−d)+(h−1)d(d+1)/2. In reference to the parameters

of the model representation in Proposition 2, this count can be explained as follows. The

first addend of D corresponds the unconstrained overall mean µ ∈ Rp, and the second

gives the parameter count for the νy ∈ Rd, which are constrained by
∑

y fyνy = 0 so

that they are identified. The third addend corresponds to the positive definite symmetric

matrix ∆ ∈ Rp×p, and the fourth to the dimension of G(d,p). Given these parameters,

condition (iv) of Proposition 1 says that span(∆y −∆) is in the d-dimensional subspace

S∆η and thus ∆y −∆ can be represented as δMyδ
T , where δ ∈ Rp×d is a basis matrix

for S∆η, My ∈ Rd×d is symmetric and
∑

y fyMy = 0. The parameter count for the My’s

is the final addend in D.

Properties of the MLEs from Theorem 2 depend on the nature of the response and

characteristics of the model itself. If Y is categorical and d is specified, as assumed

throughout this section, then the MLE of any identified function of the parameters in

Theorem 2 is asymptotically unbiased and has minimum asymptotic variance out of the

broad class of F2M estimators constructed by minimizing a discrepancy function. We

refer to estimators with this property as asymptotically efficient F2M estimators. This

form of asymptotic efficiency relies on Shapiro’s (1986) theory of over-parameterized

structural models. The connections between LAD and Shapiro’s theory are outlined in

Appendix A.5.
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3.2 Numerical optimization

We were unable to find a closed-form solution to arg maxLd(S), and so it was necessary to

use numerical optimization. Using Newton-Raphson iteration on G(d,p), we adapted Lip-

pert’s sg min 2.4.1 computer code (www-math.mit.edu/∼lippert/sgmin.html) for Grass-

mann optimization with analytic first derivatives and numerical second derivatives. In

our experience Ld(S) may have multiple local maxima, which seems common for log

likelihoods defined on Grassmann manifolds. A standard way to deal with multiple

maxima is to use an estimator that is one Newton-Raphson iteration step away from a
√

n-consistent estimator (See, for example, Small, Wang and Yang, 2000). Since SAVE

and DR are both
√

n-consistent (Li and Wang, 2007), we started with the one that gave

the largest likelihood and then iterated until convergence. We argue later that this LAD

estimator of SY |X dominates DR and SAVE. Nevertheless, DR and SAVE are ingredients

in our method, since addressing the problem of multiple local maxima would be more

difficult without a
√

n-consistent estimator to start iteration.

3.3 Slicing

To facilitate a discussion of slicing, we use W to denote a continuous response, assuming

that X|(W = w) is normal and satisfies the LAD model with central subspace SW |X.

We continue to use Y with support SY = {1, . . . , h} to denote the sliced version of W .

It is known that SY |X ⊆ SW |X with equality when h is sufficiently large. For instance,

if ∆w is constant, then h ≥ d + 1 is necessary to estimate SW |X fully. We assume

that SY |X = SW |X throughout this section, so slicing results in no loss of scope. Two

additional issues arise when loss of scope is not worrisome: (a) Can we still expect good

performance from LAD with h fixed? (b) What are the consequences of varying h?

It can be shown that for any fixed h, the mean µy and covariance ∆y corresponding

to the sliced response still satisfy conditions (a) and (b) of Theorem 1 with S = SY |X, but
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the distribution of Xy is not generally normal. The LAD estimator of SY |X is still
√

n-

consistent (Shapiro, 1986; Appendix A.5), but non-normality mitigates the asymptotic

efficiency that holds when Xy is normal since the third and fourth moments of Xy may

no longer behave as specified under the model. However, we expect that LAD will still

perform quite well relative to the class of F2M estimators when µw and ∆w vary little

within each slice y, because then Xy should be nearly symmetric and the fourth moments

of Zy = ∆−1/2
y (Xy−µy) should not be far from those of a standard normal random vector.

Efficiency can depend also on the number of slices, h. Although much has been written

on choosing h since Li’s (1991) pioneering work on SIR, no widely accepted rules have

emerged. The general consensus seems to be in accord with Li’s original conclusions:

h doesn’t matter much, provided that it is large enough to allow estimation of d and

that there are sufficient observations per slice to estimate the intra-slice parameters, µy

and ∆y in our LAD models. Subject to this informal condition, we tend to use a small

number of slices, say 5 ≤ h ≤ 15. Comparing the estimates of SY |X for a few values

within this range can be a useful diagnostic on the choice of h. Only rarely do we find

that the choice matters materially.

4 Comparison of F2M Methods with d Specified

4.1 Assuming normality

For a first illustration we simulated observations from a simple LAD model using ∆y =

Ip + σ2
yηηT with p = 8, η = (1, 0 . . . , 0)T , h = 3, σ1 = 1, σ2 = 4 and σ3 = 8. The

use of the identity matrix Ip in the construction of ∆y was for convenience only since

the results are invariant under full rank transformations. The predictors were generated

according to Xy = µyη + ε + σyηε, where (εT , ε) ∼ N(0, Ip+1), with ε ∈ Rp and ε ∈ R1,

µ1 = 6, µ2 = 4 and µ3 = 2. Figure 1a shows the quartiles from 400 replications of the
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Figure 1: Quartiles (a) and medians (b) of the angle between SY |X and its estimate versus
sample size.

angle between an estimated basis and SY |X = span(η) for several sample sizes and two

methods, LAD (solid lines) and DR (dashed lines). LAD dominates DR at all sample

sizes. Figure 1b is discussed in the next section.

4.2 Assuming linearity and constant covariance conditions

SIR, SAVE and DR do not require conditional normality, but instead use two weaker

conditions on the marginal distribution of the predictors: (a) E(X|ηTX) is a linear

function of X (linearity condition) and (b) var(X|ηTX) is a nonrandom matrix (constant

covariance condition). We forgo discussion of these conditions since they are well known

and widely regarded as mild, and were discussed in detail by Li and Wang (2007). They

expressed these conditions in the standardized scale of Z = Σ−1/2(X−µ), but these are

equivalent to the X scale conditions used here.

The linearity and constant covariance conditions guarantee that SIR, SAVE and DR

provide consistent estimators of a subspace of SY |X. In particular, they imply that

span(Σ −∆y) ⊆ ΣSY |X, which is the population basis for SAVE represented in the X
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scale. Thus we can define the population SAVE subspace in the X scale as SSAVE =

Σ−1span(Σ −∆1, . . . ,Σ −∆h). We next argue that we can expect good results from

LAD without assuming normality, but requiring the weaker conditions used for SAVE

and DR. This involves considering the robustness to deviations from normality of the

estimator defined by (1).

Holding fy fixed as n → ∞, Ld(S)/n converges to the population function

Kd(S) = −
p

2
(1 + log(2π)) +

1

2
log |PSΣPS|0 −

1

2
log |Σ|−

1

2

h∑

y=1

fy log |PS∆yPS|0.

The population LAD subspace is then SLAD = arg maxS∈G(d,p)
Kd(S). The next proposi-

tion requires no conditions other than the convergence of Ld(S)/n to Kd(S).

Proposition 3 SLAD = SSAVE.

This proposition indicates that LAD and SAVE estimate the same subspace, even when

the distribution of Xy is non-normal and the linearity and constant covariance con-

ditions fail. Proposition 3 may be of little practical importance if there is no useful

connection with SY |X, the subspace we would like to estimate. Let SDR denote the

subspace estimated by directional regression. We know from Li and Wang (2007) that

SSAVE = SDR ⊆ SY |X under the linearity and constant covariance conditions and that

these three subspaces are equal under mild additional conditions. It follows from Propo-

sition 3 that, under these same conditions, SLAD = SSAVE = SDR = SY |X. The moment

relations of Theorem 1 still hold in this setting, but Xy may no longer be normal. As in

Section 3.3, we still have a
√

n-consistent estimator, but non-normality can mitigate the

asymptotic efficiency that holds when Xy is normal. If Xy is substantially skewed or the

fourth moments of Zy deviate substantially from those of a standard normal random vec-

tor then better estimators may exist. Pursuit of improved methods non-parametrically

will likely require large sample sizes for the estimation of third and fourth moments.
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Li and Wang (2007) showed that DR can achieve considerable gains in efficiency over

SAVE and other F2M methods. We next use simulation results to argue that LAD can

perform much better than DR. Recall that Figure 1a shows LAD can be much more

efficient that DR when Xy is normally distributed. Using the same simulation setup,

Figure 1b shows the median over 400 replication of the angle between η̂ and SY |X for

standard normal, t5, χ2
5 and uniform (0, 1) error (εT , ε) distributions. It follows from

Cook and Yin (2001, Prop. 3) that the linearity and constant covariance conditions

hold for this simulation scenario and consequently SSAVE = SDR ⊆ SY |X. The final

condition for equality (Li and Wang, 2007, condition b of Theorem 3) can be verified

straightforwardly and thus we conclude that SSAVE = SDR = SY |X. The lower most LAD

curve of Figure 1b corresponds to the normal errors. The other results for both LAD

and DR are so close that the individual curves were not marked. These results sustain

our previous conclusion that normality is not essential for the likelihood-based objective

function (1) to give good results in estimation. DR did not exhibit any advantages.

It is well-known that SIR is generally better than SAVE at finding linear trends

in the mean function E(Y |X), while SAVE does better at finding quadratic structure.

Simple forward quadratic models have often been used as test cases to illustrate this

phenomenon and compare methods (see, for example, Cook and Weisberg, 1991). Here

we present results from the following four simulation models to provide further contrast

between SIR, SAVE, DR and LAD. For n = 500 we first generated X ∼ N(0, Ip) and

ε ∼ N(0, 1) and then generated Y according to the following four models: (1) Y =

4X1/a + ε, (2) Y = X2
1/(20a) + .1ε, (3) Y = X1/(10a) + aX2

1/100 + .6ε, and (4) Y =

.4a(βT
1 X)2 + 3 sin(βT

2 X/4) + .2ε. For simulation models 1, 2 and 3, p = 8 and SY |X =

span{(1, 0, . . . , 0)T}. For model 4, p = 20, and SY |X is spanned by β1 = (1, 1, 1, 0, . . . , 0)T

and β2 = (1, 0, . . . , 0, 1, 3)T . With a = 1 model 4 is identical to simulation model I used

by Li and Wang (2007). The conditional distribution of Xy is normal for model 1, but
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Figure 2: Comparison of SIR, SAVE, DR and LAD: Plots of the average angle or average
maximum angle between SY |X and its estimates for four regression models at selected
values of a. Solid lines give the LAD results.

non-normal for the other three models. Figures 2a, b and c show plots of the average

angle over 400 replications between SY |X and its estimates for h = 5 and a = 1, . . . , 10.

Since d = 2 for model 4 we summarized each simulation run with the maximum angle

between SY |X and the subspace generated by the estimated directions with h = 10. The

vertical axis of Figure 2d is the average maximum angle over the 400 replicates.

In Figure 2a (model 1) the strength of the linear trend decreases as a increases.

Here the methods perform essentially the same for strong linear trends (small a). SAVE
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and DR deteriorate quickly as a increases, with DR performing better. LAD and SIR

perform similarly, with SIR doing somewhat better for large a. Since ∆y is constant,

LAD overfits by estimating individual covariance matrices. SIR uses only first conditional

moments and thus is not susceptible to this type of overfitting, which may account for

SIR’s advantage when ∆y is constant and the linear effect is small (large a).

In model 2 cov(X, Y ) = 0, and the strength of the quadratic term decreases as a

increases. This is the kind of setting in which it is known that SIR estimates a proper

subset of SY |X, in this case the origin. The simulation results for this model are shown in

Figure 2b, where SAVE, DR and LAD perform similarly, with LAD doing slightly better

at all values of a.

In model 3, which has both linear and quadratic components in X1, the strength of

the linear trend decreases and the strength of the quadratic trend increases as a increases.

We see from Figure 2c that SIR, SAVE and DR perform as might be expected from the

previous plots, while LAD always does at least as well as the best of these methods and

does better for middle values of a.

Model 4 has a linear trend in βT
2 X2 and a quadratic in βT

1 X1. As suggested by Figure

2d, SIR cannot find the quadratic direction and so its maximum angle is always large.

At small values of a the contributions of the linear and quadratic terms to the mean

function are similar and DR and LAD perform similarly. As a increases the quadratic

term dominates the mean function, making it hard for SAVE and DR to find the linear

effect βT
2 X2. However, LAD does quite well at all value of a. Finally, we repeated the

simulations for models 1, 2 and 3 with h = 10 slices and normal and non-normal (t5,χ5,

U(0, 1)) error distributions, finding qualitatively similar behavior.
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4.3 Robustness of ŜY |X to non-normality

The previous simulations indicate that normality is not essential for (1) to provide useful

estimates of SY |X. In this section we give an explanation for why this might be so.

Recalling that η is a semi-orthogonal basis matrix for SY |X and that (η, η0) is an or-

thogonal matrix, the possibly non-normal density J of (ηTX, ηT
0 X)|Y can be represented

as J(ηTX, ηT
0 X|Y ) = k(ηTX|Y )g(ηT

0 X|ηTX), where the density g does not depend on

Y because Y ηT
0 X|ηTX. When X|Y is normal the densities k and g are implied by

Proposition 2. The log likelihood Ld based on this decomposition can be represented

broadly as Ld = L(k) + L(g), where d = dim(SY |X) and the superscripts k and g indicate

the density from which that portion of the log likelihood is derived. Keeping η fixed, we

assume that max Ld = maxL(k) + max L(g). For example, this is true when, for fixed η,

the parameters of k and g are defined on a product space Θk ×Θg so L(k) and L(g) can

be maximized independently. This product space structure holds for the normal model

and was used implicitly when deriving the MLEs in Appendix A.4. We thus have the

partially maximized log likelihood Ld(S) = L(k)(S) + L(g)(S), which is to be maximized

over G(d,g). For the normal model Ld(S) was given in (1).

Repeating the above argument under the assumption that Y X gives the density

decomposition J0(ηTX, ηT
0 X) = k0(ηTX)g(ηT

0 X|ηTX) and partially maximized log like-

lihood L0(S) = L(k0)(S) + L(g)(S). Since Y X, L0(S) is a constant function of S

and thus can be subtracted from Ld(S), giving Ld(S) − L0(S) = L(k)(S) − L(k0)(S),

which does not depend on g. Consequently, the MLE of SY |X can be represented as

arg max Ld(S) = arg max{L(k)(S) − L(k0)(S)}. This says that we do not need g to esti-

mate SY |X alone, provided L(k) and L(g) can be maximized independently while holding

η fixed.

Diaconis and Freedman (1984) show that almost all projections of high dimensional

data are approximately normal. Thus when d is small relative to p it may be reasonable
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to approximate k(ηTX|Y ) and k0(ηTX) with compatible normal densities, leading to

estimates of SY |X that are the same as those from (1).

Zhu and Hastie (2003) proposed an exploratory nonparametric method for discrimi-

nant analysis based on a certain likelihood ratio LR(α) as a function of a single discrim-

inant direction α ∈ Rp. Their method, which was based on reasoning by analogy from

Fisher’s linear discriminant, proceeds sequentially by first finding α1 = arg max LR(α).

Subsequent directions αj ∈ Rp are then defined as αj = arg max LR(α), αTΦαk = 0,

k = 1, . . . , j − 1, where Φ is a user-specified inner product matrix. Assuming normality

of X|Y , Pardoe, et al. (2007, Prop. 3) demonstrated that in the population the Zhu-

Hastie method and SAVE produce the same subspace. More fundamentally, it follows

by definition of LR that log{LR(α)} = L(k)(Sα) − L(k0)(Sα). Consequently, when X|Y

is normal and d = 1 maximizing LR(α) is equivalent to maximizing L1(S) (1). With

its close connection to Fisher’s linear discriminant and its reliance on simple likelihood

ratios, the Zhu-Hastie method is grounded in familiar statistical concepts and thus pro-

vides simple intuitive insight into the workings of the full likelihood estimator developed

in Section 3. However, although the likelihood and MLE in Theorem 2 are not as intu-

itive initially, the full-likelihood approach has the advantages of being compatible with

familiar information-based stopping criteria, and avoids the sequential optimization and

dependence on user-specified inputs of the Zhu-Hastie method.

5 Choice of d

In this section we consider ways in which d = dim(SY |X) can be chosen in practice,

distinguishing the true value d from the value d0 used in fitting. The hypothesis d = d0

can be tested by using the likelihood ratio statistic Λ(d0) = 2{L̂p − L̂d0}, where L̂p

denotes the value of the maximized log likelihood for the full model with d0 = p and

L̂d0 is the maximum value of the log likelihood (1). Under the null hypothesis Λ(d0)
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is distributed asymptotically as a chi-squared random variable with degrees of freedom

(p − d0){(h − 1)(p + 1) + (h − 3)d0 + 2(h − 1)}/2, for h ≥ 2 and d0 < p (Shapiro, 1986

and Appendix A.5). The statistic Λ(d0) can be used in a sequential testing scheme to

choose d: Using a common test level and starting with d0 = 0, choose the estimate of d

as the first hypothesized value that is not rejected. This method for dimension selection

is common in dimension reduction literature (see Cook, 1998, p. 205, for background).

A second approach is to use an information criterion like AIC or BIC. BIC is consistent

for d while AIC is minimax-rate optimal (Burnham and Anderson, 2002). For d ∈

{0, . . . , p}, the dimension is selected that minimizes the information criterion IC(d0) =

−2L̂d0 +h(n)g(d0), where g(d0) is the number of parameters to be estimated as a function

of d0, in our case p + (h− 1)d0 + d0(p− d0) + (h− 1)d0(d0 + 1)/2 + p(p + 1)/2, and h(n)

is equal to log n for BIC and 2 for AIC. This version of AIC is a simple adaptation of

the commonly occurring form for other models.

Consider inference on d in the simulation model with d = 1 introduced in Section 4.1.

Figures 3a and b give the fractions F (1) and F (1, 2) of 500 replications in which the

indicated procedure selected d = 1 and d = 1 or 2 versus ny. BIC gave the best results

for large ny, but the likelihood ratio test (LRT) also performed well and may be a useful

choice when the sample size is not large.

Figures 3c and d display results for inference on d in the simulation model Xy =

ηµy + ε + ηA
1/2
y ε with d = 2, p = 8, h = 3, ηT = ((1, 0, . . . , 0)T , (0, 1, 0, . . . , 0)T ),

∆y = Ip + ηAyη
T , µ1 = (6, 2)T , µ2 = (4, 4)T , µ3 = (6, 2)T , and

A1 =




1 0

0 3



 , A2 =




4 1

1 2



 , A3 =




8 1

1 2



 .

Again, BIC performs the best for large samples, but LRT has advantages otherwise.

Although deviations from normality seem to have little impact on estimation of SY |X
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Figure 3: Inference about d: F (i), F (i, j) are the fraction of runs in which the estimated
d was one of the arguments. Results with same value of d are from the same simulation
model.

when d is known, they can have a pronounced effect on the estimate of d. In such cases

the permutation test proposed by Cook and Weisberg (2001) and developed by Cook and

Yin (2001) can serve as an effective substitute for the LRT or an information criterion.

To confirm that the permutation test applies straightforwardly in the present setting,

Table 1 shows the percentage of time d = 1 was selected by the LRT and permutation

test methods in 200 replications of the simulation model of Figure 1 with n = 40 and

four error distributions. Results for the LRT under normality and all results for the
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permutation test method are within the expected binomial error at the nominal level.

As expected the LRT with χ2
5 and t5 error distributions exhibits clear deviations from

the nominal. It is also possible to derive the asymptotic distribution of the likelihood

ratio statistic under non-normal error distributions. However, the permutation test is

a straightforward and reliable method for choosing d when normality is at issue, and it

avoids the task of assessing if the sample size is large enough for the asymptotic results

to be useful.

Table 1: Percentage of time the nominal 5% likelihood ratio test (LRT) and permuta-
tion test (PT) methods chose d = 1 in 200 replications with n = 40 and four error ε
distributions.

Error Distribution
Method N(0, 1) U(0, 1) χ2

5 t5
LRT 96.5 92.5 47.5 38.5
PT 93.5 96.0 94.5 96.5

6 Testing Variates

With d fixed a priori or after estimation, it may be of interest to test an hypothesis that

a selected subspace H of dimension % ≤ p − d is orthogonal to SY |X in the usual inner

product. The restriction on % is to ensure that the dimension of SY |X is still d under the

hypothesis. Letting H0 ∈ Rp×! be a semi-orthogonal basis matrix for H, the hypothesis

can be restated as PH0SY |X = 0 or PH1η = η, where (H0,H1) is an orthogonal matrix.

For instance, to test the hypothesis that a specific subset of % variables is not directly

involved in the reduction ηTX, set the columns of H0 to be the corresponding % columns

of Ip.

The hypothesis PH0SY |X = 0 can be tested by using a standard likelihood test. The

test statistic is Λd(H0) = 2(L̂d − L̂d,H0), where L̂d is the maximum value of the log
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likelihood (1), and L̂d,H0 is the maximum value of (1) with SY |X constrained by the

hypothesis. Under the hypothesis the statistic Λd(H0) is distributed asymptotically as a

chi-squared random variable with d% degrees of freedom. The maximized log likelihood

L̂d,H0 can be obtained by maximizing over S ∈ G(d,p−!) the constrained log likelihood

Ld(S) = −
np

2
(1 + log(2π)) +

n

2
log |PSH

T
1 Σ̃H1PS |0 −

h∑

g=1

ny

2
log |PSH

T
1 ∆̃yH1PS|0, (2)

where H1 ∈ Rp×(p−!) is a basis matrix for H⊥. When testing that a specific subset of %

variables is not directly involved in the reduction, the role of H1 in (2) is to select the

parts of Σ̃ and ∆̂y that correspond to the other variables.

7 Is it a bird, a plane or a car?

This illustration is from a pilot study to assess the possibility of distinguishing birds,

planes and cars by the sounds they make, the ultimate goal being the construction of

sonic maps that identify both the level and source of sound. A two-hour recording was

made in the city of Ermont, France, and then 5 second snippets of sounds were selected.

This resulted in 58 recordings identified as birds, 43 as cars and 64 as planes. Each

recording was processed and ultimately represented by 13 SDMFCCs (Scale Dependent

Mel-Frequency Cepstrum Coefficients). The 13 SDMFCCs were obtained as follows: the

signal was decomposed using a Gabor dictionary (a set of Gabor frames with differ-

ent window sizes) through a matching pursuit algorithm. Each atom of the dictionary

depends on time, frequency and scale. The algorithm gave for each signal a linear com-

bination of the atoms of the dictionary. A weighted histogram of the coefficients of the

decomposition was then calculated for each signal. The histogram had two dimensions in

terms of frequency and scale, and for each frequency-scale pair the amplitude of the coef-

ficients that falls in that bin were added. After that the two-dimensional cosine discrete
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transform of the histogram was calculated, resulting in the 13 SDMFCCs.

We focus on reducing the dimension of the 13-dimensional feature vector, which may

serve as a preparatory step for developing a classifier. Figure 4a shows a plot of the

first and second IRE predictors (Cook and Ni, 2005) marked by sound source, cars (blue

×’s), planes (black ◦’s) and birds (red .’s). Since there are three sound sources, IRE

can provide only two directions for location separation. Application of predictor tests

associated with IRE gave a strong indication that only four of the 13 predictors are

needed to describe the location differences of Figure 4a.

A plot of the first two SAVE predictors is shown in Figure 4b. To allow greater visual

resolution, three remote cars were removed from this plot, but not from the analysis or

any other plot. Figure 4b shows differences in variation but no location separation is

evident. This agrees with the general observation that SAVE tends to overlook location

separation in the presence of strong variance differences. Here, as in Figures 4c and 4d,

planes and birds are largely overplotted. The plot of the first IRE and SAVE predictors

given in Figure 4c shows separation in location and variance for cars from planes and

birds. The first two DR predictors in Figure 4d show similar results. Incorporating a

third SAVE or DR direction in these plots adds little to the separation between birds and

planes. In contrast to the results for IRE, SAVE and DR, the plot of the first two LAD

predictors shown in Figure 5 exhibits strong separation in both location and variation.

In fact, the first two LAD predictors perfectly separates the sound sources, suggesting

that they may be sufficient for discrimination. The first five DR predictors are needed

to fit linearly the first LAD predictor with R2 ≈ .95, while the first 11 DR predictors are

needed to fit the second LAD predictor with R2 ≈ .95. Clearly, LAD and DR give quite

different representations of the data.
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Figure 4: Plots of IRE, SAVE and DR predictors for the birds-planes-cars example.
Birds, red .’s; planes, black ◦’s; cars, blue ×’s.

8 Discussion

Many dimension reduction methods have been proposed since the original work on SIR

and SAVE. Mostly these are based on nonparametric or semi-parametric method-of-

moment arguments, leading to various spectral estimates of SY |X. Minimizing assump-

tions while still estimating SY |X consistently has been a common theme in their devel-

opment. Little attention was devoted directly to efficiency. The approach we propose

achieves asymptotic F2M efficiency and all results we have indicate that its performance

24



LAD-1

L
A
D

-2

-0.3 -0.2 -0.1 0 0.1 0.2

-0
.4

-0
.3

-0
.2

-0
.1

0

Figure 5: Plot of the first two LAD directions for the birds-planes-cars example. Birds,
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is competitive with or superior to all other F2M methods. We emphasized LAD’s per-

formance relative to that of DR since, judging from the report of Li and Wang (2007),

DR is a top F2M method.

In addition to producing apparently superior dimension reduction methodology, our

work also renewed our appreciation for classical likelihood-based reasoning and we believe

that it will find a central place in the development of future methodology.

A Appendix: Proofs and Justifications

In order to prove various results we need an identity from Rao (1973, p. 77). Let

B ∈ Rp×p be a symmetric positive definite matrix, and let (α, α0) ∈ Rp×p be a full rank

matrix with αT α0 = 0. Then

α(αTBα)−1αT + B−1α0(α
T
0 B−1α0)

−1αT
0 B−1 = B−1. (3)
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As a consequence of (3) we have

Ip −PT
α(B) = Pα0(B−1). (4)

Additionally, if (α, α0) is orthogonal then

|αT
0 Bα0| = |B||αTB−1α|, (5)

(αT
0 B−1α0)

−1 = αT
0 Bα0 − αT

0 Bα(αTBα)−1αTBα0, (6)

−(αT
0 B−1α0)

−1(αT
0 B−1α) = (αT

0 Bα)(αTBα)−1. (7)

A.1 Proof of Proposition 1

We begin by showing that condition b of Theorem 1 implies (i). We then show that

each conclusion of Proposition 1 implies the next, ending by showing that (v) implies

condition b of Theorem 1.

Condition b of Theorem 1 implies (i): αT
0∆

−1
y = C ⇒ αT

0 = C∆y ⇒ αT
0 = C∆ ⇒

C = αT
0∆

−1. Conclusion (i) implies (ii) by from application of (4) with B = ∆y:

Ip − PT
α(∆y) = α0(α

T
0∆

−1
y α0)

−1αT
0∆

−1
y = C1, (8)

(Ip −PT
α(∆y))∆y = α0(α

T
0∆

−1
y α0)

−1αT
0 = C2, (9)

where C1 and C2 are constant matrices since αT
0∆

−1
y is constant by hypothesis (i).

If (ii) is true then (8) and (9) must hold. This implies that αT
0∆

−1
y is constant

and thus equal to αT
0∆

−1. Conclusion (iii) follows by application of (4) with B = ∆.

Condition (iv) follows from (iii) by replacing Pα(∆y) with Pα(∆) in the second condition

of (iii) and rearranging terms: ∆y −∆ = PT
α(∆)(∆y −∆)Pα(∆). Conclusion (v) follows

from (iv) by direct multiplication. Finally, multiplying (v) on the left by α0 immediately

gives condition b of Theorem 1.
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A.2 Proof of Theorem 1

By definition var(X|αTX, y) = (Ip−PT
α(∆y))∆y and E(X|αTX, y) = µ+Γωy+PT

α(∆y)(X−

µ−Γωy), where ωy = ΓT (µy −µ), µ = E(X) and Γ is a semi-orthogonal matrix whose

columns form a basis for M. Consequently E(X|αTX, y) and var(X|αTX, y) are constant

if and only if (Ip −PT
α(∆y))∆y and Pα(∆y) are constant and PT

α(∆y)Γ = Γ. Using Propo-

sition 1 these three conditions are equivalent to αT
0∆

−1
y being constant and PT

α(∆y)Γ =

PT
α(∆)Γ = Γ. Now, PT

α(∆)Γ = Γ ⇔ Pα(∆)(∆
−1Γ) = ∆−1Γ ⇔ span(∆−1Γ) ⊆ span(α).

A.3 Proof of Proposition 2

Let ρy = αT
0 µ+αT

0∆ανy +(αT
0∆yα)(αT∆yα)−1αT (X−µ−∆ανy). Since X|y is nor-

mal, αT
0 X|(αT X, y) ∼ N(ρy,Θy), with Θy = αT

0∆yα0 − αT
0∆yα(αT∆yα)−1αT∆yα0.

Assume that S is a dimension reduction subspace. The first conclusion of Proposi-

tion 2 follows immediately. Using (6), (7), Theorem 1 and Proposition 1(i) we have

Θy = (αT
0∆

−1
y α0)−1 and ρy = HαTX + (αT

0 − HαT )µ, which are equivalent to the

second conclusion of Proposition 2.

Assume that the distributions of Proposition 2 hold. Using the forms for Θy and

ρy we have αT
0∆

−1
y α0 = αT

0∆
−1α0 and (αT

0∆yα)(αT∆yα)−1 = (αT
0∆α)(αT∆α)−1.

Using these plus (7) we get

αT
0∆

−1
y α = −(αT

0∆
−1
y α0)(α

T
0∆yα)(αT∆yα)−1

= −(αT
0∆

−1α0)(α
T
0∆α)(αT∆α)−1 = αT

0∆
−1α.

It follows that QS∆
−1
Y is constant. Using Proposition 2(1) implies E(X|Y ) − E(X) =

∆ανy and therefore S is a dimension reduction subspace.
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A.4 Proof of Theorem 2

Recalling that η is a semi-orthogonal basis matrix for SY |X, the log likelihood based on

the representation of the distribution of (ηTX, ηT
0 X|Y ) given in Proposition (2) can be

written as

Ld = −
np

2
log(2π) −

n

2
log |D|−

1

2

∑

y

ny log |ηT∆yη|

−
1

2

∑

y

ny[η
T (X̄y − µ −∆ηνy)]

T (ηT∆yη)−1[ηT (X̄y − µ −∆ηνy)]

−
1

2

∑

y

ny(X̄y − µ)TKD−1KT (X̄y − µ)

−
∑

y

ny

2
tr{ηT∆̃yη(ηT∆yη)−1}−

∑

y

ny

2
tr{KD−1KT∆̃y} (10)

where K = (η0 − ηHT ), and H and D were defined in Proposition 2. Consider the

fourth term T4 of (10), the only one that involves the ν’s. For any quantity ay, let

ā =
∑

y fyay, where fy = ny/n. We use a Lagrange multiplier λ ∈ Rd to minimize

T4/n =
∑

y fy(Zy − B̄νy)TB−1
y (Zy − B̄νy) + λT ν̄ subject to the constraint ν̄ = 0, where

Zy = ηT (X̄y − µ), By = ηT∆yη, and B̄ = ηT∆η. Differentiating with respect to

νy we get −2fyB̄B−1
y Zy + 2fyB̄B−1

y B̄νy + fyλ = 0. Equivalently, −2fyZy + 2fyB̄νy +

fyByB̄
−1λ = 0. Adding over y the second term is 0, giving the Lagrangian λ = 2Z̄.

Substituting back and solving for νy, νy = B̄−1(Zy −ByB̄
−1Z̄). Substituting into T4 we

get the optimized version

T̃4/n =
∑

y

fyZ̄
T B̄−1BjB

−1
j BjB̄

−1Z̄ = Z̄T B̄−1Z̄ = (ηT X̄ − ηT µ)T B̄−1(ηT X̄− ηT µ).

To find the maximum for µ we consider

∂Ld/∂µ = nη(ηT∆η)−1ηT (X̄ − µ) + nKD−1KT (X̄ − µ). (11)
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Using (4) and the definitions of H and Pη(∆), we have

KT = ηT
0 − (ηT

0∆η)(ηT∆η)−1ηT = ηT
0 (Ip −PT

η(∆)) = ηT
0 Pη0(∆−1)

= (ηT
0∆

−1η0)
−1ηT

0∆
−1

KD−1KT = (η0 − ηHT )TD−1(ηT
0 −HηT ) = ∆−1η0(η

T
0∆

−1η0)
−1ηT

0∆
−1. (12)

Plugging (12) into (11) and using (3) we get ∂Ld/∂µ = n∆−1(X̄ − µ). Then Ld is

maximized on µ when µ = X̄ and, with Σ̃y = ∆̃y + (X̄y − X̄)(X̄y − X̄)T ,

Ld = −
np

2
log(2π) −

n

2
log |D|−

1

2

∑

y

ny log |ηT∆yη|

−
1

2

∑

y

ny tr{ηT∆̃yη(ηT∆yη)−1}−
1

2

∑

y

ny tr{KD−1KT Σ̃y}.

Now, the MLE for ηT∆yη will be such that η̂T∆yη = ηT∆̃yη and therefore

Ld = −
np

2
log 2π −

nd

2
−

n

2
log |D|−

1

2

∑

y

ny log |ηT∆̃yη|

−
1

2

∑

y

ny tr{KD−1KT Σ̃y}.

To find the MLE for H, recall that K = η0 − ηHT and consider

∂Ld

∂H
= −

∑

y

nyD
−1ηT

0 Σ̃yη +
∑

y

nyD
−1HηT Σ̃yη.

This gives the maximum at Ĥ = (
∑

y nyη
T
0 Σ̃yη)(

∑
y nyη

T Σ̃yη)−1 = ηT
0 Σ̃η(ηT Σ̃η)−1,

where Σ̃ =
∑

y fyΣ̃y. The maximum over D will be at, using (3),

D̂ = (ηT
0 − ĤηT )Σ̃(ηT

0 − ĤηT )T

= [(ηT
0 Σ̃

−1
η0)

−1ηT
0 Σ̃

−1
]Σ̃[(ηT

0 Σ̃
−1

η0)
−1ηT

0 Σ̃
−1

]T = (ηT
0 Σ̃

−1
η0)

−1.
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Using (5) we get the log-likelihood in η as

Ld = −
np

2
(1 + log 2π) +

n

2
log |ηT

0 Σ̃
−1

η0|−
1

2

∑

y

ny log |ηT∆̃yη|

= −
np

2
(1 + log 2π) +

n

2
log |ηT Σ̃η|−

n

2
log |Σ̃|−

1

2

∑

y

ny log |ηT∆̃yη|.

The partially maximized log likelihood (1) now follows since |PSηΣ̂PSη|0 = |ηT Σ̂η|.

It can be seen that specifying values for η, A = ηT∆η, H and D uniquely determines

∆. From the MLEs of those quantities, we can obtain the MLE for∆−1 as follows. Using

(12) with (3) gives ∆−1 = ηA−1ηT +KD−1KT . The MLE for ∆−1 can now be obtained

by substituting the previous estimators for η, A, H and D on the right hand side. With

K̂ = η̂0 − η̂ĤT and using a previous form for D̂ this estimator can be written as

∆̂
−1

= η̂(η̂T∆̃η̂)−1η̂T + K̂(K̂T Σ̃K̂)−1K̂T

= η̂(η̂T∆̃η̂)−1η̂T + Σ̃
−1 − η̂(η̂T Σ̃η̂)−1η̂T .

A.5 Asymptotic Efficiency

In this appendix we establish our connection with Shapiro’s (1986) theory of over-

parameterized structural models and discuss the conditions necessary for application

of his results. This is not intended to be a comprehensive review. We assume throughout

this appendix that SLAD = SY |X. This assumption holds under normality of Xy and

under the weaker conditions discussed in Section 4.2.

In our context, Shapiro’s x̂ is the vector of length ph + p(p + 1)h/2 consisting of the

h means X̄y followed by vech(∆̃y), y = 1, . . . , h, where vech is the operator that maps a

symmetric p×p matrix to Rp(p+1)/2 by stacking its unique elements. Shapiro’s ξ is defined

in the same way using the population means µy and variances ∆y. Then
√

n(x̂ − ξ0) is

asymptotically normal with mean 0 and covariance matrix Γ > 0, where ξ0 denotes the
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true value of ξ and Γ depends on the distribution of Xy. The structure of Γ is conveniently

viewed in blocks corresponding to the asymptotic variances ‘avar’ and covariances ‘acov’

of the X̄y’s and vech(∆̃y)’s. The diagonal blocks are of the form avar(X̄y) = f−1
y ∆y

and avar{ vech(∆̃y)} = f−1
y H(∆1/2

y ⊗∆1/2
y )var(Zy ⊗ Zy)(∆

1/2
y ⊗∆1/2

y )HT , where Zy =

∆−1/2
y (Xy − µy) and H is the linear transformation vech(∆y) = H vec(∆y). The off-

diagonal blocks are all 0 except for acov{ vech(∆̃y), X̄y} = f−1
y HE{(Xy − µy) ⊗ (Xy −

µy)(Xy − µy)
T}.

The next step is to define Shapiro’s ξ = g(θ) to connect with LAD. This is conve-

niently done by using the reparameterization δ = ∆η. Then from Theorem 1 and part

(iv) of Proposition 1 we have µy = µ + δνy,
∑h

y=1 fyνy = 0, and ∆y = ∆ + δMyδ
T ,

where the My’s are symmetric d × d matrices with
∑h

y=1 fyMy = 0. Let θ consist of

the parameters µ, ν1 . . . , νh−1, vech(∆), δ, vech(M1), . . . , vech(Mh−1), with parame-

ter space Θ being the product of the parameter spaces for the individual components.

The parameter δ ∈ Rp×d is not identified and thus ξ is over-parameterized. Since the

elements of g are analytic functions they are twice continuously differentiable on Θ and

every point in Θ is regular, except perhaps on a set of Lebesgue measure 0 (Shapiro,

1986, Section 3).

A discrepancy function F (x̂, ξ) for fitting ξ = g(θ) must have the properties that

F ≥ 0, F = 0 if and only if x̂ = ξ and F is twice continously differentiable in x̂ and

ξ. The LAD discrepancy function is defined as FLAD(x̂, ξ) = (2/n){Lp(x̂|x̂) − Ld(ξ|x̂)},

where Ld is as given in (10). To emphasize its connection with ξ, Ld can also be written,

apart from additive constants, as

Ld(ξ|x̂) = −
h∑

y=1

(ny/2){log |∆y| + tr(∆̃y∆
−1
y ) + (X̄y − µy)

T∆−1
y (X̄y − µy)}.

It can be seen from the properties of Ld that FLAD satisfies the conditions necessary for a

discrepancy function. For instance, since FLAD is an analytic function of x̂ and ξ it is twice
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continuously differentiable in its arguments. All arguments that minimize FLAD(x̂, g(θ))

are unique except for δ which is over-parameterized: If δ1 minimizes FLAD and span(δ1) =

span(δ2) then δ2 also minimizes FLAD. Identified and estimable functions of θ are of the

form k(θ) = t{g(θ)}. Then k(θ̂) is unique for any θ̂ = arg minFLAD(x̂, g(θ)) and is a
√

n-consistent estimator of k(θ). Also, nFLAD(x̂, g(θ̂)) is equal to the likelihood ratio

statistic Λ used in Section 5.

Let V = (1/2)∂2FLAD(x̂, ξ)/∂ξ∂ξT , evaluated the point (ξ0, ξ0). This block diagonal

matrix is equal to the Fisher information matrix for ξ based on the full model. The

block diagonal elements of V−1 have one of two forms: f−1
y ∆y and 2f−1

y H(∆y ⊗∆y)HT .

Now V−1 = Γ is a sufficient condition for LAD to give asymptotically efficient F2M

estimators (Shapiro, 1986, eq. 5.1.). If Xy is normal then this relation holds and it

follows that the LAD estimator of any identified function of θ has the smallest asymptotic

variances out of the class of minimum discrepancy estimators based on x̂ . If Xy is not

normal then the agreement between V−1 and Γ depends only on acov{ vech(∆̃y), X̄y} and

avar{ vech(∆̃y)}, since avar(X̄y) = f−1
y ∆y is the same as the corresponding element of

V−1. If Xy is symmetric for each y ∈ SY then acov{ vech(∆̃y), X̄y} = 0 and asymptotic

efficiency depends only on the relation between the fourth moments of Zy and those of a

standard normal random vector.

A.6 Proof of Proposition 3

To show that SSAVE = SLAD we use (5) to write

Kd(S) = c +
1

2
log |BT

0Σ
−1B0|−

h∑

y=1

fy

2
log |BT

0∆
−1
y B0|−

1

2
log |Σ| +

h∑

g=1

fy

2
log |∆y|

≤ c −
1

2
log |Σ| +

h∑

g=1

fy

2
log |∆y|,
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where (B,B0) ∈ Rp×p is an orthogonal matrix and S = span(B). The inequality follows

since log |BT
0Σ

−1B0| ≤ log |BT
0∆

−1B0| and the function log |BT
0∆

−1B0| is convex in ∆.

Let (β, β0) denote an orthogonal matrix with the columns of β ∈ Rp×d forming a basis

for SSAVE. The desired conclusion will follow if we show that

1

2
log |βT

0Σ
−1β0|−

h∑

g=1

fy

2
log |βT

0∆
−1
y β0| = 0, (13)

since Kd(S) will then attain its upper bound at S = SSAVE.

It follows from the definition of β that for each y ∈ SY there is a vector ωy so

that Σ−1(Σ −∆y) = βωy. Consequently, Σ−1(Σ −∆y) = Pβ(Σ)Σ
−1(Σ −∆y). Thus

Σ−∆y = PT
β(Σ)(Σ−∆y) = PT

β(Σ)(Σ−∆y)Pβ(Σ). From this it can be verified by direct

multiplication that ∆−1
y = Σ−1 +β{(βT∆yβ)−1−(βTΣβ)−1}βT . Substituting this ∆−1

y

into the left side of (13) shows that (13) holds.
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