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Abstract. A discretization method for the study of the weak type (1, 1) for
the maximal of a sequence of convolution operators on Rn has been introduced

by Miguel de Guzmán and Teresa Carrillo, by replacing the integrable func-
tions by finite sums of Dirac deltas. Trying to extend the above mentioned
result to integral operators defined on metric measure spaces, a general setting
containing at once continuous, discrete and mixed contexts, a caveat comes
from the result in On restricted weak type (1, 1); the discrete case (Akcoglu
M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285–297).
There a sequence of convolution operators in ℓ1(Z) is constructed such that
the maximal operator is of restricted weak type (1, 1), or equivalently of weak
type (1, 1) over finite sums of Dirac deltas, but not of weak type (1, 1). The
purpose of this note is twofold. First we prove that, in a general metric mea-
sure space with a measure that is absolutely continuous with respect to some
doubling measure, the weak type (1, 1) of the maximal operator associated to
a given sequence of integral operators is equivalent to the weak type (1, 1) over
linear combinations of Dirac deltas with positive integer coefficients. Second,
for the non-atomic case we obtain as a corollary that any of these weak type
properties is equivalent to the weak type (1, 1) over finite sums of Dirac deltas
supported at different points.

1. Introduction

The problem of determination of the weak type (1, 1) of maximal operators
associated to a sequence of convolution kernels from its behavior on classes of special
functions or distributions has as starting point the results of Moon in [14]. There,
the weak type (1, q) of the maximal operator associated to the convolution operators
induced by a sequence of integrable kernels in Rn, is proved to be equivalent to the
restricted weak type (1, q), with q ≥ 1. This means that to guarantee the weak
type (1, q) of such operator, is enough to test its action over the collection of all
characteristic functions of measurable sets in Rn with finite measure.

The next relevant step was introduced by T. Carrillo y M. de Guzmán (see [8]
and [5]), where characteristic functions are substituted by Dirac deltas, again in
the Euclidean space. A generalization of these results concerning the structure of
the class of special functions providing the weak type (1, q) (1 ≤ q < ∞) of such
a maximal operator on Rn, is proved by F. Chiarenza and A. Villani in [6]. Later
on, in [13], T. Menárguez y F. Soria showed how to applied the discrete approach
to obtain the best constants for the weak type of maximal operator, which for the
Hardy-Littlewood maximal operator is finally achieved by Melas in [10]. Extensions
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to weighted inequalities and for non convolution integral operators in Rn are proved
by T. Menárguez (see [11] and [12]). Let us also mention some recent results by
J. Aldaz and J. Varona in [4], where Dirac deltas are substituted by more general
measures for convolution type operators.

A natural question, taking into account the recent developments of real and
harmonic analysis on metric spaces, is whether or not these results can be extended
to a metric measure space, for example to a space of homogeneous type or even to
non doubling settings.

Being the integers with the restriction of the usual distance and with the counting
measure a space of homogeneous type, the remarkable example given by Akcoglu,
Baxter, Bellow and Jones in [3] gives us the answer to our general aim: no, it is
not posible to deduce the weak type of a maximal of a sequence of convolution
operators on Z from its weak type on Dirac deltas.

These facts together leads us to at least two problems. First, if we consider non
atomic metric measure spaces and sequences of integral operators with continuous
kernels, we ask for the natural extension of the result in [5]. Second, in a general
context containing at once discrete, continuous and mixed situations, look for small
classes of functions which are enough in order to test the weak type (1, 1) of such
a maximal operator. Actually we shall solve the first problem as a corollary of our
approach to the second one.

We would like to mention that the main tool for our proof is the dyadic analysis
on spaces of homogeneous type started by Christ in [7].

The paper is organized as follows. In Section 2 we introduce the geometric setting
and the basic properties of the dyadic families introduced by M. Christ in [7]. In
Section 3 we introduce the basic properties of the kernels defining the sequence of
integral operators and we state and prove the main results of this paper.

2. Dyadic sets on spaces of homogeneous type

In this section we introduce the geometric setting and we remind some properties
of the “dyadic cubes” constructed by Christ. Even when the results hold on quasi-
metric spaces, a theorem due to Maćıas an Segovia (see [9]) allows us to work on a
metric setting. Let (X, d) be a metric space and let µ be a positive Borel measure
on X . We shall say that µ is regular on X if

µ(E) = inf{µ(U) : E ⊆ U, U open} = sup{µ(K) : K ⊆ E, K compact},

for every Borel subset E of X . The measure µ satisfies the doubling property on X
if there exists a constant A ≥ 1 such that the inequalities

0 < µ(Bd(x, 2r)) ≤ Aµ(Bd(x, r)) < ∞

hold for every x ∈ X and every r > 0, where Bd(x, s) = {y ∈ X : d(x, y) < s}. We
shall say that a metric measure space (X, d, µ) is a space of homogeneous type if µ is
a regular measure satisfying the doubling property on X . Then if (X, d, µ) is a space
of homogeneous type, the set of all the continuous functions on X with compact
support is dense in L1(X, µ). Notice that if (X, d) is a complete metric space and
µ is a finite doubling measure on X , then (X, d, µ) is a space of homogeneous type
(see [1]).

Given (X, d, µ) a space of homogeneous type, let us state as a theorem the main
properties of the dyadic families constructed by M. Christ in [7]. For 0 < δ < 1,
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and for each n ∈ Z let Nn = {xn,k : k ∈ K(n)} be a maximal δn-disperse subset of
X , where K(n) is an initial interval of natural numbers that may coincide with N,
and K(n) is finite for every n if and only if X is bounded. Set A = {(n, k) : n ∈
Z, k ∈ K(n)}.

Theorem 1 (Christ). Let (X, d, µ) be a space of homogeneous type. Then there
exist a > 0, c > 0, 0 < δ < 1, and a family {Qn

k : (n, k) ∈ A} of subsets of X
satisfying the following properties.

(1) Qn
k is an open subset of X, for every (n, k) ∈ A;

(2) Bd(xn,k, aδn) ⊆ Qn
k for every (n, k) ∈ A;

(3) Qn
k ⊆ Bd(xn,k, cδn) for every (n, k) ∈ A;

(4) for each n ∈ Z, Qn
k ∩ Qn

i 6= ∅ implies k = i;
(5) for every (n, k) ∈ A and every ℓ < n there exists a unique i ∈ K(n) such

that Qn
k ⊆ Qℓ

i;
(6) if n ≥ ℓ, then either Qn

k ⊆ Qℓ
i , or Qn

k∩Qℓ
i = ∅, for each k ∈ K(n), i ∈ K(ℓ);

(7) µ
(
X\

⋃
k∈K(n) Qn

k

)
= 0, for every n ∈ Z;

(8) µ(∂Qn
k ) = 0, for every (n, k) ∈ A, where ∂Qn

k denotes the boundary of Qn
k .

(9) µ(Qn
k ) =

∑
i:Qℓ

i
⊂Qn

k
µ(Qℓ

i), for each n ∈ Z, ℓ ≥ n + 1 and k ∈ K(n).

(10) X is bounded if and only if there exists (n, k) ∈ A such that X = Qn
k .

For the proof see [7] and [2]. Let us write D to denote the class of all “dyadic
sets” Qn

k in the above theorem, i.e.

D =
⋃

n∈Z

{Qn
k : k ∈ K(n)}.

As already mentioned, in a space of homogeneous type the set of all the contin-
uous functions with compact support is dense in L1. This fact allows to prove that
in this case the set of all linear combinations of characteristic functions of dyadic
sets is also dense in L1, which will be essential in the proof of the main result of
this paper.

3. The main results

Let us start by introducing some terminology and notation. Let (X, d, ν) be a
metric measure space, where ν is a σ-finite positive Borel measure on X . Let us
consider a sequence {kℓ} of kernels, where each kℓ : X × X → R is a measurable
function such that kℓ(·, y) ∈ L1(X, ν) uniformly in y ∈ X . This means that for
each ℓ there exists Cℓ < ∞ such that

‖kℓ(·, y)‖L1(X,ν) ≤ Cℓ, for every y ∈ X.

Given f ∈ L1(X) we define

Kℓf(x) =

∫

X

kℓ(x, y)f(y) dν(y),

K∗f(x) = sup
ℓ

|Kℓf(x)| .

Notice that by Fubini-Tonelli’s theorem, Kℓf(x) ∈ R for almost every x ∈ X , and
then K∗f is a measurable function defined on X .



4 M. CARENA

If k : X × X → R is a continuous function, x1, x2, . . . , xH ∈ X are different

points and ε > 0, taking

fε(x) =

H∑

i=1

XBd(xi,ε)(x)

ν(Bd(xi, ε))

we have that

Kfε(x) =

H∑

i=1

1

ν(Bd(xi, ε))

∫

Bd(xi,ε)

k(x, y) dν(y).

On the continuity of k we have that Kfε(x) converges to
∑H

i=1 k(x, xi) when ε

tends to zero. By the other hand, fε → f =
∑H

i=1 δxi
in the weak sense when ε

tends to zero, where δxi
denotes the Dirac delta concentrated at the point xi. In

this sense we can consider the operator K acting over this kind of measures f , given
by

Kf(x) =
H∑

i=1

k(x, xi).

We shall say that K is of weak type (1,1) over finite sums of Dirac deltas (in
(X, ν)) if there exists a constant C > 0 such that for each λ > 0 the inequality

ν
(
{|Kf | > λ}

)
≤ C

H

λ

holds for every f =
∑H

i=1 δxi
, where x1, x2, . . . , xH are H different points in X .

Notice that H is the total variation of the measure f .
Also we shall say that the maximal operator K∗ is of weak type (1, 1) over finite

sums of Dirac deltas if there exists C > 0 such that for every λ > 0 and every

f =
∑H

i=1 δxi
we have

ν
(
{K∗f > λ}

)
≤ C

H

λ
.

Let us observe that both definitions given above can be written forgetting about
Dirac deltas. In particular, for the case of the maximal operator K∗ we have that

the condition ν
(
{K∗f > λ}

)
≤ C H

λ
for every f =

∑H

i=1 δxi
and every λ > 0, is

equivalent to say that the inequality

ν

({
x ∈ X : sup

ℓ

∣∣∣∣∣

H∑

i=1

kℓ(x, xi)

∣∣∣∣∣ > λ

})
≤ C

H

λ

holds for every collection x1, x2, . . . , xH of different points in X , for every H ∈ N

and for every λ > 0.

Notice finally that if each kℓ : X ×X → R is a continuos function with compact
support, Fubini-Tonelli’s theorem implies that each Kℓf(x) is well defined for every
x ∈ X and for every f ∈ L1(X, ν), and it is an integrable function. Moreover, Kℓf
is bounded and with compact support. Then K∗f is a measurable function defined
on every point of X , provided that f ∈ L1(X, ν).

With the above definitions we are in position to state and prove the extensions
of the above mentioned theorem of Miguel de Guzmán to metric measure spaces.
As we already noticed, the characterization of the weak type (1, 1) contained in
that theorem is not true in general measure spaces. Actually this is the case of
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spaces with isolated points, even for convolution operators. In fact, K. H. Moon
proves in [14] that the maximal operator associated to a sequence of convolution
operators in L1(Rn) is of weak type (1, q), q ≥ 1, if and only if is of restricted weak
type (1, q), i.e., if the weak type inequality holds for characteristic functions of sets
with finite measure. A somehow surprising situation occurs when the extension of
Moon’s result is considered in such a simple discrete setting as is Z. In fact, in
[3] the authors construct a sequence of convolution operators on Z whose maximal
operator is of restricted weak type (1, 1) but not of weak type (1, 1). Notice that
if E is any finite subset of Z, let us say E = {x1, x2, . . . , xH} with x1, x2 . . . , xH

different integer numbers, we have that

K∗XE(x) = sup
n∈N

∣∣∣∣∣∣

∑

j∈Z

kn(x − j)XE(j)

∣∣∣∣∣∣
= sup

n∈N

∣∣∣∣∣

H∑

i=1

kn(x − xi)

∣∣∣∣∣ .

The above considerations show that a direct extension of the result of M. de Guzmán
y T. Carrillo to general metric measure spaces is impossible. Nevertheless the weak
type (1, 1) for the maximal of a given sequence of operators is equivalent to its
weak type (1, 1) of the class of all linear combinations of Dirac deltas with positive
integer coefficients. In fact our result in this direction is the following.

Theorem 2. Let (X, d, ν) be a metric measure space, where ν is a measure such
that dν = g dµ, with g ∈ L1

loc(X, d, µ) and (X, d, µ) a space of homogeneous type.
Let {kℓ} be a sequence of continuous kernels with compact support on X×X. Then
K∗ is of weak type (1, 1) if and only if there exists a constant C > 0 such that
for every λ > 0 and every finite collection x1, x2, . . . , xH ∈ X of not necessarily

different points, we have

ν

({
x ∈ X : sup

ℓ

∣∣∣∣∣

H∑

i=1

kℓ(x, xi)

∣∣∣∣∣ > λ

})
≤ C

H

λ
.

Proof. Let us start by proving that the weak type (1, 1) over linear combina-
tions of Dirac deltas with positive integer coefficients of K∗ implies the weak
type (1, 1) of K∗ on (X, ν). If for a fixed natural number N we call K∗

Nf(x) =
max1≤ℓ≤N |Kℓf(x)|, then it is clear that

∞⋃

N=1

{x ∈ X : K∗
Nf(x) > λ} = {x ∈ X : K∗f(x) > λ} ,

and that K∗
N ≤ K∗

N+1. Hence it is enough to prove that for each fixed N the
inequality

ν ({x ∈ X : K∗
Nf(x) > λ}) ≤ C

∑H

i=1 ci

λ
,

holds with C independent of N . So we take a fix N and we will show the weak
type (1, 1) of K∗

N in three steps.

Step 1. We first prove that if f =
∑H

i=1 ciδxi
with ci ∈ R+, then for every λ > 0

we have that

ν ({x ∈ X : K∗f(x) > λ}) ≤ C

∑H

i=1 ci

λ
.
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If ci ∈ Q+, we write ci = ni/mi, with ni, mi ∈ N, and

H∑

i=1

cikℓ(x, xi) =
1

∏H

j=1 mj

H∑

i=1

c̃ikℓ(x, xi) ,

where c̃i = ni

∏H
j=1
j 6=i

mj ∈ N. Then, if f̃ =
∑H

i=1 c̃iδi we have

ν ({x ∈ X : K∗f(x) > λ}) = ν







x ∈ X : K∗f̃(x) > λ

H∏

j=1

mj









≤ C

∑H

i=1 c̃i

λ
∏H

j=1 mj

= C

∑H

i=1 ci

λ
.

Now take ci ∈ R+ and write ci = di + ri, with di ∈ Q+ and ri ≥ 0 will be

conveniently chosen later, so small as needed. Then taking f =
∑H

i=1 diδxi
, for

every 0 < α < λ we have

ν ({x ∈ X : K∗
Nf(x) > λ}) ≤ ν

({
x ∈ X : K∗

Nf(x) > λ − α
})

+ ν
({

x ∈ X : K∗
N(f − f)(x) > α

})

≤ C

∑H

i=1 di

λ − α

+ ν

({
x ∈ X : max

1≤ℓ≤N

∣∣∣∣∣

H∑

i=1

rikℓ(x, xi)

∣∣∣∣∣ > α

})

≤ C

∑H

i=1 ci

λ − α
+

1

α

N∑

ℓ=1

H∑

i=1

ri

∫

X

|kℓ(x, xi)| dν(x)

= C

∑H

i=1 ci

λ − α
+

1

α

H∑

i=1

ri

N∑

ℓ=1

‖kℓ(·, xi)‖1 .

Since each ri can be chosen arbitrarily small, we have

ν ({x ∈ X : K∗
Nf(x) > λ}) ≤ C

∑H

i=1 ci

λ − α

for every 0 < α < λ. The desired inequality follows taking limit for α → 0.

Step 2. We want to prove now that K∗
N is of weak type (1, 1) over linear

combinations of characteristic functions of the dyadic sets constructed by Christ

(see Section 2). Let h =
∑H

i=1 ciXQi
, with Qi ∈ D. Notice that we may assume

that ci > 0 and that the sets Qi are disjoint. We want to see that for every λ > 0
and for every function h as above,

ν ({x ∈ X : K∗
Nh(x) > λ}) ≤ C

‖h‖1

λ
= C

∑H

i=1 ciν(Qi)

λ
.

Let us observe first that if h =
∑H

i=1 ciXQi
is the given simple function, and if η is a

given positive real number, then we can write, except on a set with ν-measure equal

to zero, h =
∑M

j=1 djXQ̃j
with Q̃j disjoint dyadic sets in D such that diam(Q̃j) < η

and dj > 0 for every j = 1, 2, . . . , M (see properties (3), (4), (6) and (8) in Theo-

rem 1). Then we will keep writing h =
∑H

i=1 ciXQi
and when necessary we shall



WEAK TYPE (1, 1) OF MAXIMAL OPERATORS ON METRIC MEASURE SPACES 7

assume that the diameter of each Qi is as small as we need.

Let f =
∑H

i=1 ciν(Qi)δxi
, where δxi

denotes the Dirac delta concentrated at xi,
the “center” of Qi (see properties 2 and 3 in Theorem 1). For the fixed N and for
0 < α < λ we write

ν ({x ∈ X : K∗
Nh(x) > λ}) ≤ ν ({x ∈ X : K∗

Nf(x) > λ − α})

+ ν ({x ∈ X : K∗
N (h − f)(x) > α})

≤ C
‖f‖1

λ − α
+ ν ({x ∈ X : K∗

N(h − f)(x) > α})

= C
‖h‖1

λ − α
+ ν ({x ∈ X : K∗

N(h − f)(x) > α}) .

Then all we have to do is to show that the second term in the last member of the
above inequalities can be made arbitrarily small by an adequate choice of the size
of the dyadic sets Qi in the definition of the function h. In fact, since

|Kℓ(h − f)(x)| =

∣∣∣∣∣

H∑

i=1

ci

∫

Qi

kℓ(x, y) dν(y) −
H∑

i=1

ciν(Qi)kℓ(x, xi)

∣∣∣∣∣

=

∣∣∣∣∣

H∑

i=1

ci

[∫

Qi

kℓ(x, y) dν(y) −

∫

Qi

kℓ(x, xi) dν(y)

]∣∣∣∣∣

≤
H∑

i=1

ci

∫

Qi

|kℓ(x, y) − kℓ(x, xi)| dν(y) ,

we have
N∑

ℓ=1

ν({|Kℓ(h − f)| > α}) ≤
N∑

ℓ=1

1

α

∫

X

|Kℓ(h − f)(x)| dν(x)

≤
N∑

ℓ=1

1

α

∫

X

(
H∑

i=1

ci

∫

Qi

|kℓ(x, y) − kℓ(x, xi)| dν(y)

)
dν(x)

=
1

α

N∑

ℓ=1

H∑

i=1

ci

∫

Qi

(∫

Fℓ

|kℓ(x, y) − kℓ(x, xi)| dν(x)

)
dν(y) .

where Fℓ denotes the projection in the first variable of the support of kℓ, so it
is a bounded set and with finite measure. Since each kℓ is a continuous func-
tion with compact support, given ε > 0 there exists δ = δ(ℓ, ε) > 0 such that
|kℓ(x, y) − kℓ(x, z)| < ε for every x ∈ X , provided that d(y, z) < δ. Since we can
take the diameter of each Qi small, we conclude the proof of the Step 2.

Step 3. From the technique of reduction to a dense subspace (see for example
[8], Thm. 3.1.1) and the previous step prove we obtain the theorem in one direction.

For the converse, let us assume now that K∗ is of weak type (1, 1). We want to
prove that K∗ is of weak type (1, 1) over linear combinations of Dirac deltas with
positive integer coefficients. In fact, let x1, x2, . . . , xH a set of different points in

X , and let f =
∑H

i=1 niδxi
with ni a positive integer for every i. Defining

β = min{d(xi, xh) : 1 ≤ i, h ≤ H, i 6= h} ,
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we have that d(xi, xh) ≥ β > 0 when i 6= h. Fix real numbers δ and c as in
Christ’s Theorem (Thm. 1), and let n be a positive integer satisfying cδn < β/4.
For each i = 1, 2, . . . , H, there exists Qn

j(i) ∈ D such that xi ∈ Qn
j(i). Notice

that if i 6= h then Qn
j(i) ∩ Qn

j(h) = ∅. In fact, let us suppose that there exists

x ∈ Qn
j(i) ∩ Qn

j(h) ⊆ B(xn,j(i), cδ
n) ∩ B(xn,j(h), cδ

n). Then

d(xi, xh) ≤ d(xi, xn,j(i)) + d(xn,j(i), x) + d(x, xn,j(h)) + d(xn,j(h), xh)

< 4cδn

< β ,

which is absurd if i 6= h. Let us define the function f as

f(y) =

H∑

i=1

ni

ν
(
Qn

j(i)

)XQn
j(i)

(y) .

As before, fix N , λ > 0 and α such that 0 < α < λ, and write

ν({K∗
Nf > λ}) ≤ ν({K∗

Nf > λ − α}) + ν({K∗
N (f − f) > α})

≤ C
‖f‖1

λ − α
+

N∑

ℓ=1

ν({|Kℓ(f − f)| > α})

= C

∑H

i=1 ni

λ − α
+

N∑

ℓ=1

ν({|Kℓ(f − f)| > α}),

where Kℓ(f − f)(x) means

Kℓ(f − f)(x) =

H∑

i=1

ni

ν
(
Qn

j(i)

)
∫

Qn
j(i)

[kℓ(x, y) − kℓ(x, xi)] dν(y) .

Hence

N∑

ℓ=1

ν({|Kℓ(f − f)| > α}) ≤
H∑

i=1

ni

αν
(
Qn

j(i)

)
N∑

ℓ=1

∫

X

(∫

Qn
j(i)

|kℓ(x, y) − kℓ(x, xi)| dν(y)

)
dν(x)

≤
H∑

i=1

ni

αν
(
Qn

j(i)

)
N∑

ℓ=1

∫

Fℓ

(∫

Qn
j(i)

|kℓ(x, y) − kℓ(x, xi)| dν(y)

)
dν(x).

As in the Step 2 given ε > 0 we get

N∑

ℓ=1

ν({|Kℓ(f − f)| > α}) < ε

by an adequate choice for the diameter of the dyadic sets, since the each kernel kℓ

is a continuous function and we have a finite number of them. Then we have shown
that

ν({K∗
Nf > λ}) ≤ C

∑H

i=1 ni

λ
,

as desired. �
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As we already mentioned, for the non-atomic case we obtain as a corollary that
the theorem of de Guzmán and Carrillo can be extended to certain metric measure
spaces. More precisely, the following result state that the weak type (1, 1) for the
maximal operator of a sequence of integral operators with continuous kernels with
compact support, is equivalent to the weak type (1, 1) over finite sums of Dirac
deltas supported at different points.

Theorem 3. Let (X, d, ν) be a metric measure space without isolated points, where
ν is a measure such that dν = g dµ, with g ∈ L1

loc(X, d, µ) and (X, d, µ) a space
of homogeneous type. Let {kℓ} be a sequence of continuous kernels with compact
support on X ×X. Then K∗ is of weak type (1, 1) if and only if K∗ is of weak type
(1, 1) over finite sums of Dirac deltas. In other words, K∗ is of weak type (1, 1) if
and only if there exists a constant C > 0 such that for every λ > 0 and every finite
set x1, x2, . . . , xH of different points in X, we have

ν

({
x ∈ X : sup

ℓ

∣∣∣∣∣

H∑

i=1

kℓ(x, xi)

∣∣∣∣∣ > λ

})
≤ C

H

λ
.

Proof. Notice that after Theorem 2, we only have to prove that if K∗ is of weak
type (1, 1) over finite sums of Dirac deltas, then it is of weak type (1, 1) over linear
combinations of Dirac deltas with positive integer coefficients. In fact, we know
that there exists a constant C > 0 such that for every finite set x1, x2, . . . , xH ∈ X
of different points and for every λ > 0, we have

ν

({
x ∈ X : sup

ℓ

∣∣∣∣∣

H∑

i=1

kℓ(x, xi)

∣∣∣∣∣ > λ

})
≤ C

H

λ
.

We want to see that for every finite set x1, x2, . . . , xH ∈ X of different points and

for every λ > 0, if f =
∑H

i=1 niδxi
with ni ∈ N, then

ν ({x ∈ X : K∗f(x) > λ}) = ν

({
x ∈ X : sup

ℓ

∣∣∣∣∣

H∑

i=1

nikℓ(x, xi)

∣∣∣∣∣ > λ

})

≤ C

∑H

i=1 ni

λ
.

As in the proof of Theorem 2, it will be sufficient to prove that if N is a fixed
natural number, then

ν ({x ∈ X : K∗
Nf(x) > λ}) ≤ C

∑H

i=1 ni

λ
,

where C is independent of N . Then let us fix N . Since X does not have isolated
points, for each xi ∈ X we can chose ni different points b1

i , b
2
i , . . . , b

ni

i in X suffi-
ciently close to xi, and such that the set {br

i : 1 ≤ i ≤ H, 1 ≤ r ≤ ni} is also a
collection of different points. For each fixed ℓ we write

Kℓf(x) =

H∑

i=1

nikℓ(x, xi)

=

H∑

i=1

ni∑

r=1

[kℓ(x, xi) − kℓ(x, br
i )] +

H∑

i=1

ni∑

r=1

kℓ(x, br
i ).
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Hence for every α such that 0 < α < λ, we have

ν ({x ∈ X : K∗
Nf(x) > λ}) ≤ ν

({
x ∈ X : max

1≤ℓ≤N

∣∣∣∣∣

H∑

i=1

ni∑

r=1

[kℓ(x, xi) − kℓ(x, br
i )]

∣∣∣∣∣ > α

})

+ ν

({
x ∈ X : max

1≤ℓ≤N

∣∣∣∣∣

H∑

i=1

ni∑

r=1

kℓ(x, br
i )

∣∣∣∣∣ > λ − α

})

= I1 + I2.

We know that

I2 ≤ C

∑H

i=1 ni

λ − α
,

so all we have to do is to show that given ε > 0 and α satisfying 0 < α < λ, we can
chose the elements br

i such that I1 < ε. In fact, let

Aℓ(x) =

H∑

i=1

ni∑

r=1

[kℓ(x, xi) − kℓ(x, br
i )] .

Then

I1 = ν

({
x ∈ X : max

1≤ℓ≤N
|Aℓ(x)| > α

})
≤

N∑

ℓ=1

ν
({

x ∈ X : |Aℓ(x)| > α
})

.

For a fixed ℓ, from Chebyshev’s inequality we have

ν
({

x ∈ X : |Aℓ(x)| > α
})

≤
1

α

H∑

i=1

ni∑

r=1

∫

X

|kℓ(x, xi) − kℓ(x, br
i )| dν(x)

=
1

α

H∑

i=1

ni∑

r=1

∫

Fℓ

|kℓ(x, xi) − kℓ(x, br
i )| dν(x),

where as before Fℓ denotes the projection in the first variable of the support of
kℓ, so it is a bounded set and with finite measure. Since each kℓ is a continuous
function with compact support, given ε > 0 there exists δ = δ(ℓ, ε) > 0 such that
|kℓ(x, y)−kℓ(x, z)| < ε for every x ∈ X , provided that d(y, z) < δ. Notice also that
only a finite number of kernels kℓ are involved, so that I1 becomes small after an
appropriate choice of br

i . Hence

I1 + I2 ≤ C

∑H

i=1 ni

λ − α
,

and taking α → 0 we obtain the result.
�

The next result of this section is devoted to relax the regularity hypothesis on
kℓ. Its proof is obtained by inspection of the proof of Theorem 2.

Theorem 4. Let (X, d, ν) be a metric measure space, where ν is a measure such
that dν = g dµ, with g ∈ L1

loc(X, d, µ) and (X, d, µ) a space of homogeneous type.
Let {kℓ} be a sequence of kernels such that each kℓ : X × X → R is a measurable
function satisfying

(1) kℓ(·, y) ∈ L1(X, ν) uniformly in y ∈ X,
(2)

∫
X
|kℓ(x, y) − kℓ(x, z)| dν(x) → 0 when d(y, z) → 0.
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Then K∗ is of weak type (1, 1) if and only if there exists a constant C > 0 such
that for every λ > 0 and every finite collection x1, x2, . . . , xH ∈ X of points not
necessarily different, we have

ν

({
x ∈ X : sup

ℓ

∣∣∣∣∣

H∑

i=1

kℓ(x, xi)

∣∣∣∣∣ > λ

})
≤ C

H

λ
.

It is clear that an analogous extension of Theorem 3 can be proved.

Notice that it is possible to obtain a refined result for spaces wich are neither
discrete nor purely continuous. For example, for the set

X =
⋃

n∈Z

(2n, 2n + 1) ∪
⋃

n∈Z

{2n + 3/2} =: X1 ∪ X2

endowed with the usual distance on R and the measure that counts on X2 and
measures lengths on X1, is a space of homogeneous type (see [15]).

Moreover, Maćıas and Segovia prove in [9] that in spaces of homogeneous type
the set of points with positive measure (atoms) is countable and coincides with the
set of isolated points. With this characterization for the atoms we have that K∗

if of weak type (1, 1) if and only if there exists a constant C such that for every
finite set {x1, x2, . . . , xH} of different points in X and for every choice of natural
numbers n1, n2, . . . , nH satisfying ni = 1 when ν({xi}) = 0, we have that

ν

({
x ∈ X : sup

ℓ

∣∣∣∣∣

H∑

i=1

nikℓ(x, xi)

∣∣∣∣∣ > λ

})
≤ C

∑H

i=1 ni

λ

for every λ > 0.

We shall finally mention that the hypotheses of the above theorems concerning
continuity sometimes can be relaxed. For the basic case of Hardy-Littlewood type
operator defined on a space of homogeneous type (X, d, ν) by

Mf(x) = sup
ℓ∈Z

1

ν (Bd(x, 2−ℓ))

∫

Bd(x,2−ℓ)

|f(y)| dν(y)

= sup
ℓ∈Z

∫

X

kℓ(x, y)|f(y)| dν(y),

for f ∈ L1(ν), where

kℓ(x, y) =
1

ν (Bd(x, 2−ℓ))
XBd(x,2−ℓ)(y),

the continuity required in Theorem 2 does not hold even in Euclidean situations.
On the other hand, the L1 continuity required in Theorem 4 does not hold in typical
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spaces of homogeneous type. In fact,
∫

|kℓ(x, y) − kℓ(x, z)| dν(x) =

∫
1

ν(Bd(x, 2−ℓ))

∣∣XBd(x,2−ℓ)(y) −XBd(x,2−ℓ)(z)
∣∣ dν(x)

=

∫

X

1

ν(Bd(x, 2−ℓ))

∣∣XBd(y,2−ℓ)(x) −XBd(z,2−ℓ)(x)
∣∣ dν(x)

=

∫

Bd(y,2−ℓ)△Bd(z,2−ℓ)

1

ν(Bd(x, 2−ℓ))
dν(x)

where E△F denotes the symmetric difference of the sets E and F , i.e. E△F =
(E − F ) ∪ (F − E). The convergence to zero of the last integral when d(y, z) → 0
is equivalent to the convergence to zero of ν

(
Bd(y, 2−ℓ) − Bd(z, 2−ℓ)

)
for each ℓ.

The next example shows a non-atomic space of homogeneous type for which this
property does not hold. In R2 endowed with the distance d̄((x1, y1), (x2, y2)) =
max{|x2 − x1|, |y2 − y1|}, let X be the subset defined as

X = {(x, y) ∈ R2 : d̄((x, y), (0, 0)) = 2} ∪ {(x, 0) : −1 ≤ x ≤ 1}

(see Figure 1) with the arch length measure λ.

1

1

Figure 1. X = {(x, y) ∈ R2 : d̄((x, y), (0, 0)) = 2} ∪ {(x, 0) : −1 ≤ x ≤ 1}

It is not difficult to see that (X, d̄, λ) is a space of homogeneous type. Take the
sequence {zn} in X defined as zn = (1/n, 0). this sequence converges to the point
z = (0, 0), and for each n (see Figure 2), we have

Bd̄(zn, 2) − Bd̄(z, 2) = {(2, y) : −2 < y < 2}.

1

1

b

zn

.
Bd̄(zn, 2) − Bd̄(z, 2)

Figure 2. Bd̄(zn, 2) − Bd̄(z, 2) = {(2, y) : −2 < y < 2}
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Then λ(Bd̄(zn, 2) − Bd̄(z, 2)) = λ({(2, y) : −2 < y < 2}) = 4 for each n, so that
λ(Bd̄(zn, 2) − Bd̄(z, 2)) does not tend to zero when n tends to infinity.

Nevertheless, the kernels kℓ(x, y) in such a general situation can be controlled
by a sequence of continuous kernels. For instance consider

k̃ℓ(x, y) =
ϕ
(
2ℓd(x, y)

)
∫

ϕ (2ℓd(x, z)) dν(z)
,

where ϕ is the continuous function defined on the non-negative real numbers by
ϕ(t) = 1 for every t in the interval [0, 1], ϕ(t) = 0 if t ≥ 2, and linear on [1, 2]. It is

not difficult to show that each k̃ℓ is continuous and that

1

A
kℓ(x, y) ≤ k̃ℓ(x, y) ≤ Akℓ−1(x, y),

where A denotes the doubling constant for ν. Then the weak type for the maximal
operator M associated with the kernels kℓ is equivalent to the weak type for the

maximal operator associated with the kernels k̃ℓ.

The new sequence {k̃ℓ} falls under the scope of Theorem 2, so that the next
result holds even when the kernels are not smooth.

Corollary 5. Let (X, d, ν) be a space of homogeneous type. Then the Hardy-
Littlewood maximal function is of weak type (1, 1) if and only if there exists a con-
stant C > 0 such that for every λ > 0 and every finite collection x1, x2, . . . , xH ∈ X
of not necessarily different points,

ν

({
x ∈ X : sup

ℓ∈Z

H∑

i=1

kℓ(x, xi) > λ

})
≤ C

H

λ
,

where

kℓ(x, y) =
1

ν (Bd(x, 2−ℓ))
XBd(x,2−ℓ)(y).
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