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We consider finite elements that are adapted to a (semi)norm that is weaker
than the one of the trial space. We establish convergence of the finite element
solutions to the exact one under the following conditions: refinement relies on
unique quasi-regular element subdivisions and generates locally quasi-uniform
grids; the finite element spaces are conforming, nested, and satisfy the inf-sup
condition; the error estimator is reliable and appropriately locally efficient; the
indicator of a non-marked element is bounded by the estimator contribution
associated with the marked elements, and each marked element is subdivided
at least once. This abstract convergence result is illustrated by two examples.
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1. Introduction and Outline

Adaptivity has become a popular technique to increase the efficiency of
finite element methods for boundary values problems. In practice, finite
element grids are adapted to various error notions: the energy norm, other
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norms, or the output of certain functionals applied to the solution. However,
the theoretical underpinning of the methods in terms of convergence and
complexity results essentially restrict, up to now, to the most immediate
cases of the energy norm and the norm of the trial space.2,5,6,8–10,14

This paper presents a basic convergence result for finite elements that
are adapted to a (semi)norm that is possibly weaker than the one of the trial
space. To this end, §2 gives general assumptions on the problem itself, the
refinement framework, the finite element spaces, the approximate solution,
the a posteriori error estimator, the marking strategy, and the step REFINE.
They ensure the convergence of both error in the weaker (semi)norm and
associated estimator. The proof is obtained by generalizing the convergence
proof of Ref. 11 in a straight-forward manner.

In §3 we illustrate this convergence result by two examples: Lagrange
elements for the Poisson problem that are adapted for the mean square
error and Raviart-Thomas or Brezzi-Douglas-Marini elements in a mixed
discretization that are adapted for the mean square error of the flux.

2. Abstract Convergence for Weak Norms

We first describe the problem class and adaptive algorithm and then present
the convergence result.

2.1. Problem Class and Error Notion

We consider linear boundary value problems that can be reformulated in
the following weak form: given a real Hilbert space V with norm ‖ · ‖, a
continuous bilinear form B : V×V → R, and an element f ∈ V∗ of the dual
space of V, find

u ∈ V : B(u,w) = 〈f, w〉 ∀w ∈ V. (1)

We suppose that the so-called inf-sup (or Babuška-Brezzi) condition holds:
there exists α > 0 such that

inf
v∈V
‖v‖=1

sup
w∈V
‖w‖=1

B(v, w) ≥ α, inf
w∈V
‖w‖=1

sup
v∈V
‖v‖=1

B(v, w) ≥ α. (2a)

Concerning the error notion, we are interested in a seminorm | · | that
is weaker than ‖ · ‖: there exists C ≥ 0 such that

∀ v ∈ V |v| ≤ C‖v‖. (2b)

Below, we will introduce ‘local features’ into (1) by making assumptions
on a mesh-dependent counterpart of | · | and its interplay with B. To this
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end, we suppose that V is a subspace of Lp(Ω; Rm), where p ∈ (1,∞),
m ∈ N, and Ω is the underlying domain in Rd, d ≥ 2, that can be meshed.
In what follows, we suppress the dependence on the data Ω, f , and B.

2.2. Adaptive Algorithm

The adaptive algorithm for approximating u in (1) is an iteration of the
following main steps:

(1) uk := SOLVE
(
V(Gk)).

(2) {Ek(E)}E∈Gk
:= ESTIMATE

(
uk,Gk

)
.

(3) Mk := MARK
(
{Ek(E)}E∈Gk

, Gk

)
.

(4) Gk+1 := REFINE
(
Gk, Mk

)
, increment k.

(3)

In practice, a stopping test is used after step (2) for terminating the itera-
tion; here we shall ignore it for notational convenience. The realization of
these steps requires the following objects and modules:

Initial Grid and Framework for Refinement. An initial grid G0 of the
domain Ω and a refinement procedure REFINE. The refinement procedure
has two input arguments: a grid G and a subset M ⊂ G. All elements
E ∈M must be ‘refined’. The input grid G can be the initial grid G0 or the
output of a previous application of REFINE. A grid G′ is called refinement
of G whenever G′ can be produced from G by a finite number of applications
of REFINE. Initial grid and refinement procedure thus generate the set

G := {G | G is a refinement of G0}.

We shall write ‘4’ for ‘≤ C’ where C may depend on data of (1), the class
G, and the modules ESTIMATE, MARK below, but not on a particular grid
or the iteration number. Similarly, we say that some object is ‘fixed’ if it
has the same dependencies.

We suppose that REFINE relies on unique quasi-regular element subdi-
visions. More precisely, there exist constants q1, q2 ∈ (0, 1) such that, irre-
spective of the grid G, any element E ∈ G can be subdivided into n(E) ≥ 2
subelements E′

1, . . . , E
′
n(E) such that

E = E′
1 ∪ · · · ∪ E′

n(E), |E| = |E′
1|+ · · ·+ |E′

n(E)|, (4a)

q1|E| ≤ |E′
i| ≤ q2|E|, i = 1, . . . , n(E), (4b)

where |E| stands for the d-dimensional Lebesgue measure of E.
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These unique element subdivisions generate a ‘master forest’ F of infi-
nite trees, where each node corresponds to an element, its direct successors
to its subelements, and the roots to the elements of the initial grid G0. A
subforest F̂ ⊂ F is called finite if it has a finite number of nodes. Any finite
tree may have interior nodes, i.e. nodes with successors, and does have leaf
nodes, i.e. nodes without any successor.

Any subdivision S of the domain Ω that is subordinated to G0 is uniquely
associated with a finite subforest F(S) of F , where the leaf nodes are the
elements of the subdivision. Given n ∈ N and a subset Ŝ of such subdivision
S, we denote by Fn(S, Ŝ) the subforest of F that consists of F(S) and all
successors of elements in Ŝ up to generation n.

We suppose that the class G is a subclass of the subdivisions of Ω
subordinated to G0 and is locally quasi-uniform in that

sup
G∈G

max
E∈G

#NG(E) 4 1, sup
G∈G

max
E′∈NG(E)

|E|
|E′|

4 1, (4c)

where NG(E) := {E′ ∈ G | E′ ∩ E 6= ∅} denotes the set of neighbors of E
in G. The grids in G may have additional properties like conformity.

Finite Element Spaces and Mesh-Dependent Norms. We suppose
that the finite element spaces V(G), G ∈ G, are conforming, nested, and
satisfy a discrete inf-sup condition: for any G,G′ ∈ G, there hold

V(G) ⊂ V (5a)

G′ is a refinement of G =⇒ V(G) ⊂ V(G′) (5b)

inf
v∈V(G)
‖v‖=1

sup
w∈V(G)
‖w‖=1

B(v, w) ≥ β (5c)

with some fixed β > 0.
Moreover, we suppose that, for each grid G ∈ G, there is a pair | · |G ,

|||·|||G of possibly mesh-dependent seminorms that is associated with the
weak seminorm | · | of the error notion and has the following properties:

• | · |G = | · |G;Ω is a seminorm on V that is close to | · |, p-subadditive
with respect to the domain, and absolutely continuous with respect to
the Lebesgue measure in the following sense: for all v ∈ V,

|v| 4 |v|G 4 ‖v‖, (5d)
n∑

i=1

|v|pG;ωi
4 |v|pG;Ω, (5e)

|v|Gk;Ωk
→ 0, (5f)
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where {ωi}n
i=1 are disjoint subdomains of Ω, each one being a union of

elements of G, and {Ωk}k is a sequence of subdomains such that |Ωk| → 0
and each Ωk is a union of elements of a grid Gk.

• |||·|||G is a seminorm on a subspace Ṽ(G) of V(G);
• the bilinear form is continuous with respect to the pair | · |G , |||·|||G in

a local sense: there is a constant CB ≥ 0 such that, if ω is a union of
elements of G, then we have for any v ∈ V and any w ∈ Ṽ(G)

w = 0 in Ω \ ω =⇒ B(v, w) ≤ CB|v|G;ω |||w|||G . (5g)

The role of these mesh-dependent seminorms will become clear from the
example in §3.1.

SOLVE. We suppose that the output uG := SOLVE
(
V(G)

)
is the Galerkin

approximation of u in V(G):

uG ∈ V(G) : B(uG , w) = 〈f, w〉 ∀w ∈ V(G). (6)

Thanks to (5a) and (5c), the solution of (6) exists and is unique.

ESTIMATE. We suppose that {EG(E)}E∈G := ESTIMATE(uG ,G) has the
following two properties for any grid G ∈ G: First, there holds the following
global upper bound for the error in | · | of the Galerkin approximation uG :

|uG − u| 4 EG , (7a)

where, given a subset Ĝ ⊂ G, we define EG(Ĝ) :=
(∑

E∈Ĝ E
p
G(E)

)1/p and set
EG := EG(G) and EG(∅) := 0.

Secondly, a fixed finite subdivision depth implies a local lower bound with
respect to a mesh-dependent dual seminorm of the residual. More precisely,
there is a fixed n ∈ N such that, for any element E ∈ G and any finer grid
G′ ∈ G with F(G′) ⊃ Fn

(
G, NG(E)

)
, there holds

EG(E) 4 sup
{
〈RG , w〉 | w ∈ Ṽ

(
G′;ωG(E)

)
, |||w|||G′ ≤ 1

}
+ oscG(E), (7b)

where the oscillation indicator satisfies

oscG(E) 4 m(|E|)
(
|uG |G;ωG(E) + ‖D‖D(ωG(E))

)
. (7c)

Hereafter

• RG ∈ V∗ is the residual defined by

〈RG , w〉 := B(uG , w)− 〈f, w〉, ∀w ∈ V; (8)

• ωG(E) ⊂ Ω is the patch (union) of elements in NG(E);
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• Ṽ
(
G′;ωG(E)

)
is the space of ‘local test functions’ given by

Ṽ
(
G′;ωG(E)

)
:=
{
w ∈ Ṽ(G′) | w = 0 in Ω \ ωG(E)

}
;

• m : [0,∞) → [0,∞) is a fixed, continuous, and nondecreasing function
with m(0) = 0;

• D is another space with a norm that is p-subadditive and absolutely
continuous with respect to the Lebesgue measure in the sense of (5e),
(5f), and D ∈ D is given by the data of (1).

The global upper bound (7a) ensures that the error indicators do not
overview any source of error. Inequality (7b) is the main step in proving a
local lower error bound by Verfürth’s constructive argument:15 indeed, if
one inserts (1) into (8) and recalls (5g), then (7b) readily yields the local
lower error bound

EG(E) 4 |uG − u|G;ωG(E) + oscG(E). (9)

Thus, (7b) ensures, up to (7c) and the difference between | · | and | · |G ,
the sharpness of the upper bound (7a) in a local sense. The presence of the
oscillation indicator (7c) is discussed in Remark 4.7 of Ref. 11.

MARK. We suppose that the output M := MARK
(
{EG(E)}E∈G ,G

)
of

marked elements has the property

∀E ∈ G \M EG(E) ≤ EG(M). (10)

We suppose (10) only for convenience; in §5 of Ref. 11 we consider a weaker
condition that is sufficient and essentially necessary for convergence.

REFINE. We suppose that the output grid G′ := REFINE(G,M) satisfies
the minimal requirement

F(G′) ⊃ F1(G,M), (11)

that is, each marked element of the input grid is subdivided at least once
in the output grid. Additional elements in G \M may be refined in order
to fulfill (4c) or to ensure that the output grid is in the class G.

2.3. Convergence

We now state the main result of this paper. The difference to Theorem 2.1
in Ref. 11 is that here the grids are adapted to the error in the seminorm
| · |, which is weaker than the one of the trial space.
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Theorem 2.1 (Abstract Convergence for Weak Norms). Let u be the
exact solution of (1), suppose that there holds (2), and that {uk}k is the
sequence of approximate solutions generated by iteration (3).

If the refinement framework, the finite element spaces, the modules
SOLVE, ESTIMATE, MARK, and REFINE satisfy, respectively, (4), (5), (6),
(7), (10), and (11), then both error and estimator decrease to 0, that is

|uk − u| → 0 and Ek → 0 as k →∞.

Proof. In view of Lemma 4.2 of Ref. 11, {uk}k converges to some u∞ ∈ V
and it remains to show that u∞ = u. To this end, proceed as in §4.2
of Ref. 11 with the following modifications: use (5g) instead of a ‘local’
continuity of B in terms of ‖ · ‖, sum p-powers of local (semi)norms instead
of squares, and then exploit (5d) or (5f).

3. Two applications

The following two applications focus on the error notion, which is really
weaker that the norm of the trial space; further examples are in §3 of
Ref. 11. In what follows, hG stands for the meshsize function associated
with G ∈ G.

3.1. Mean Square Error in Poisson’s Problem

We apply iteration (3) to generate finite element solutions to the Poisson
problem that adaptively approach the exact solution in the L2-error.

Problem. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded, polyhedral, and convex
domain, set

V = H1
0 (Ω), ‖ · ‖ = ‖∇ · ‖L2(Ω), | · | = ‖ · ‖L2(Ω),

B(v, w) =
∫

Ω

∇v · ∇w, v, w ∈ V,

and suppose f ∈ L2(Ω). It is well known that there hold f ∈ V∗ and (2).

Refinement framework. Let G0 be a suitable conforming triangulation of
Ω into d-simplices and let G be the class of all triangulations that can be
generated from G0 by iterative or recursive bisection; e.g. see Ref. 12. Then
(4) is fulfilled with n(E) = 2, and q1 = q2 = 1

2 ; the hidden constants in (4c)
depend on G0. Moreover, G is a shape-regular family of triangulations.

Finite element spaces and mesh-dependent norms. For any G ∈ G, we choose
Lagrange elements of any fixed order `,

V(G) := LE`(G) ∩H1
0 (Ω) := {v ∈ H1

0 (Ω) | ∀E ∈ G v|E ∈ P`(E)},
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which is contained in V. Since coercivity and continuity are handed down to
a restriction of B and spaces of piecewise polynomials are nested on nested
grids, (5a)-(5c) are valid with β = 1.

Moreover, we define the mesh-dependent norms as follows: given any
v ∈ V and any union ω of elements of G, we set

|v|G;ω =

(∑
E⊂ω

‖v‖2L2(E) + ‖h1/2
G v‖2L2(∂E)

)1/2

(12a)

and, for any w ∈ Ṽ(G) = V(G),

|||w|||G =

(∑
E∈G

‖D2w‖2L2(E) + ‖h−1/2
G ∂nw‖2L2(∂E)

)1/2

. (12b)

Then | · |G;Ω is a norm on V and, in view of the scaled trace theorem
‖ · ‖L2(∂E) 4 ‖h−1/2

G · ‖L2(E) + ‖h1/2
G ∇ · ‖L2(E) and the Poincaré inequality,

(5d), (5e), and (5f) are valid. Moreover, |||·|||G is a norm on V(G) and (5g) is
readily verified after an element-wise integration by parts.

Approximate solution and estimator. We suppose that SOLVE outputs the
Galerkin approximation given by (6). Given such Galerkin solution uG
on a grid G, the output of ESTIMATE is the standard residual estimator
{EG(E)}E∈G for the L2(Ω)-error given by

E2
G(E) := ‖h3/2

G [[∂nuG ]] ‖2L2(∂E\∂Ω) + ‖h2
G(f + ∆uG)‖2L2(E), E ∈ G,

where [[∂nuG ]] stands for the jump of the normal derivative of uG across
interelement sides. This estimator fulfills (7) with

n =

{
3 if d = 2,

6 if d = 3,
oscG(E) = ‖hG(f − f̄G)‖L2(ωG(E)),

m(s) = s1/d, s ∈ [0,∞), D = L2(Ω), D = f,

where f̄G is the L2-projection of f on the space of possibly discontinuous
piecewise polynomials of degree ≤ ` − 1; indeed, for (7a) see Prop. 3.8 in
Ref. 15 and for (7b) see §6 of Ref. 10 but use (5g) with (12).

Marking strategy and refinement rule. Take any marking strategy ensuring
that the biggest indicator is marked and require only that each marked
simplex is bisected at least once. Then (10) and (11) are valid.

Under the above assumptions, Theorem 2.1 ensures that

‖uk − u‖L2(Ω) → 0 and Ek → 0 as k →∞.
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To our best knowledge, this is the first convergence result for the Poisson
problem where the adaptation is not directed by an energy norm estimator.

3.2. Mean Square Error of the Flux in Mixed

Discretizations

For mixed discretizations of the Poisson problem, we consider iteration (3)
with an estimator for the approximation error in the flux.

Problem. Let Ω be a bounded, connected, polyhedral Lipschitz domain in
R2. The mixed formulation of Poisson’s problem and the error notion are
given by

V = V ×Q with V = H(div; Ω), Q = L2(Ω)

‖v‖2V = ‖v‖2L2(Ω;R2) + ‖div v‖2L2(Ω) + ‖q‖2L2(Ω), |v| = ‖v‖L2(Ω;R2)

B(v, w) =
∫

Ω

v ·w −
∫

Ω

q div w +
∫

Ω

div v r,

for v = [v, q], w = [w, r] ∈ V. Suppose f ∈ L2(Ω), which is identified with
(0, f) ∈ V∗. Then (2) is valid; see Example 1.2 in §II.1.2 of Ref. 3.

Refinement framework, finite element spaces, and seminorms. We use the
same refinement framework as in §3.1 for d = 2 and choose Raviart-Thomas
or Brezzi-Douglas-Marini elements of order ` or ` + 1 for the flux variable
and piecewise polynomials of degree ≤ ` for the scalar variable: given a
triangulation G ∈ G, we set

V(G) = V(G)×Q(G) with V(G) = RT`(G) or BDM`(G),

where

Q(G) :=
{
q ∈ L2(Ω) | ∀E ∈ G q|E ∈ P`(E)

}
,

RT`(G) :=
{
w ∈ H(div; Ω) | ∀E ∈ G w|E ∈

(
P`(E; R2) + x P`(E)

)}
,

BDM`(G) :=
{
w ∈ H(div; Ω) | ∀E ∈ G w|E ∈ P`+1(E; R2)

}
.

In both cases, the inclusion div V(G) ⊂ Q(G) and (5a)-(5c) hold; see Prop.
1.1 in §IV.1.2 of Ref. 3.

Moreover, we let | · |G = | · |, which does not depend on G. Then (5d)-(5f)
are valid; the seminorm |||·|||G will be chosen below.

Approximate solution and estimator. Let SOLVE output the Galerkin solu-
tion of (6) and, writing uG = [uG , pG ], we suppose that ESTIMATE outputs
{EG(E)}E∈G given by

E2
G(E) = ‖hG rotuG‖2L2(E) + ‖h1/2

G [[uG · t]] ‖2L2(∂E∩Ω) + ‖hG(f̄G − f)‖2L2(E),
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where rotv = ∂x2v1−∂x1v2, f̄G stands for the L2(Ω)-orthogonal projection
of f onto Q(G), and on any inter-element side, t stands for a fixed unit
tangent vector. We shall prove that this estimator satisfies (7) with

n = 4, m(s) = s1/d, s ∈ [0,∞), oscG(E) = ‖hG(f̄G − f)‖L2(ωG(E)),

D = L2(Ω), and D = f.

Before embarking on the proper proof of the a posteriori bounds, we
recall the orthogonal Helmholtz-decomposition (Theorem III.3.2 in Ref. 7):

L2(Ω; R2) = ∇H1(Ω)/R⊕ curlH1
∂Ω(Ω), (13)

where H1
∂Ω(Ω) denotes the space of all H1(Ω)-functions that are constant

on each connected component of ∂Ω and curlφ =
[
−∂x2φ, ∂x1φ

]
T , which

has rot as adjoint operator. Note that φ ∈ H1
∂Ω(Ω) implies curlφ · n = 0

on ∂Ω. The decomposition (13) appears in the relationship of error uG −u

and residual R: If w = [0,−ψ] ∈ V with ψ ∈ ∇H1(Ω)/R normalized such
that

∫
∂Ω

(uG − u) · nψ = 0, then∫
Ω

(uG − u) · ∇ψ = B(uG − u,w) = 〈RG , w〉 =
∫

Ω

(f̄G − f)ψ (14)

thanks to integration by parts, (1), and (6). Moreover, if w = [curlφ, 0] ∈ V
with φ ∈ H1

∂Ω(Ω), then∫
Ω

(uG − u) · (curlφ) = B(uG − u,w) = 〈RG , w〉 =
∫

Ω

uG · curlφ (15)

because curlφ is divergence-free and again thanks to (1).

The proof of the upper bound (7a) can be established by exploiting both
the relationship (14) for the gradient part and (15) for the curl-part of the
error; proceed similarly to the proof of Thm. 3.1 in Ref. 1 and notice that,
for φ ∈ H1

∂Ω(Ω), the interpolation operator in Ref. 13 allows to choose an
approximation φG that equals φ on ∂Ω and, thus, the estimator does not
contain contributions on ∂Ω.

We now derive the discrete local lower bound (7b), which appears to
be new. Since ‖hG(f̄G − f)‖L2(E) appears in the oscillation indicator, we
only have to deal with terms that are related to (15). This suggests to
construct discrete functions curlφ ∈ V(G′) for a suitable refinement G′ of
G. To this end, we employ the Lagrange elements LE`+1(G′) of §3.1. Given a
subdomain ω ⊂ Ω, set LE`+1(G′;ω) := LE`+1(G′)∩H1

0 (ω). Since continuity
of φ ∈ LE`+1(G′) across interelement edges entails continuity of curlφ · n
across those edges and curlφ is element-wise a polynomial of degree ≤ `, we
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have curlLE`+1(G′;ω) ⊂ V(G′;ω) for any union ω of elements in G. This
motivates to use Ṽ(G′) = [curlLE`+1(G′), 0] and we choose |||·|||G = | · |,
which does not depend on G. Thanks to (15) we obtain (5g).

To bound ‖hG rotuG‖L2(E) for a given element E ∈ G, we now use a vari-
ant of Verfürth’s constructive argument. We subdivide E by 3 bisections,
thus creating a node inside E. Let λE be the continuous piecewise affine hat
function associated with that node. Testing (15) with v = [curlφ, 0] where
φ = λE rotuG ∈ LE`+1(G′;E) and standard scaling arguments then yield
the desired bound. To proceed similarly for the remaining jump indicators,
we need the following technical lemma.

Lemma 3.1. Let S be an interval, decomposed into four subintervals GS =
{S1, . . . , S4} of same size, and let PS be the L2(S)-orthogonal projection
onto LE`+1(GS) ∩H1

0 (S). Then ‖J‖2L2(S) 4
∫

S
JPSJ for all J ∈ P`+1(S).

Proof. Thanks to a standard scaling argument, we only have to prove the
claim for the interval S = (0, 1), decomposed by the points 1

4 , 1
2 , and 3

4 .
1 We first show that, for any J ∈ P`+1(S) \ {0}, there exists a φ ∈ B :=

LE`+1(GS)∩H1
0 (S) with

∫
S
Jφ 6= 0. Suppose this is not the case, i.e. there

is a J ∈ P`+1(S) \ {0} such that
∫

S
Jφ = 0 for all φ ∈ B.

Let φ1 be the continuous piecewise affine hat function at 1
4 . In view of

our assumption, we have

∀q ∈ P`(S)
∫ 1

2

0

Jqφ1 =
∫

S

Jqφ1 = 0.

Since φ1 > 0 on (0, 1
2 ), the left hand side defines weighted scalar product on

L2(0, 1
2 ). Hence J has `+ 1 roots in (0, 1

2 ). The same argument shows that
J has also ` + 1 roots in ( 1

2 , 1). Since J ∈ P`+1(S) and has 2` + 2 > ` + 1
roots in (0, 1), it has to vanish, which is a contradiction.
2 Thanks to step 1, the L2(S)-orthogonal projection PS verifies PSJ 6= 0

for all J ∈ P`+1 \ {0}. Consequently, the continuity of PS gives

min
‖J‖L2(S)=1

∫
S

JPSJ = min
‖J‖L2(S)=1

‖PSJ‖2L2(S) = α > 0,

which directly implies ‖J‖2L2(S) ≤ α−1
∫

S
JPSJ for all J ∈ P`+1(S).

To bound ‖h1/2
G [[uG · t]] ‖S for a given interelement side S = E ∩E′, we

bisect E and E′ four times, entailing a subdivision of S into four subintervals
of same size. Testing (15) with v = [curlφ, 0] where φ is an extension of
PS([[uG · t]]S) to LE`+1(G′;E ∪ E′), Lemma 3.1, and standard arguments
then conclude the proof of (7b).
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Marking strategy and refinement rule. We make the same assumptions on
marking strategy and refinement rule in §3.1.

Under the above assumptions, Theorem 2.1 ensures that

‖uk − u‖L2(Ω) → 0 and Ek → 0 as k →∞.

This generalizes the convergence result of Ref. 4 to Raviart-Thomas and
Brezzi-Douglas-Marini elements of any fixed order.
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2. I. Babuška, M. Vogelius, Feedback and adaptive finite element solution of
one-dimensional boundary value problems, Numer. Math. 44 (1984), 75-102.

3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,
Springer Series in Computational Mathematics 15, Springer (1991).

4. C. Carstensen, R.H.W. Hoppe, Error Reduction and Convergence For An
Adaptive Mixed Finite Element Method, Math. Comp. 75 (2006), 1033–1042.

5. Z. Chen, J. Feng, An adaptive finite element algorithm with reliable and
efficient error control for linear parabolic problems, Math. Comp. 73 (2004),
1167–1193.

6. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM
J. Numer. Anal. 33 (1996), 1106–1124.

7. V. Girault, P. A. Raviart. Finite Element Approximation of the Navier-
Stokes Equations, Springer-Verlag, New York (1986).

8. K. Mekchay, R.H. Nochetto, Convergence of adaptive finite element
methods for general second order linear elliptic PDE, SIAM J. Numer. Anal.
43 (2005), 1803–1827.

9. P. Morin, R.H. Nochetto, K.G. Siebert, Data oscillation and conver-
gence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), 466–488.

10. P. Morin, R.H. Nochetto, K.G. Siebert, Convergence of adaptive finite
element methods, SIAM Review 44 (2003), 631–658.

11. P. Morin, K.G. Siebert, A. Veeser, A basic convergence result for
conforming adaptive finite elements, preprint no. 1/2007, Dipartimento di
Matematica “F. Enriques”, Via C. Saldini 50, 20133 Milano, Italy.

12. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software.
The Finite Element Toolbox ALBERTA, Springer, 2005.

13. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth func-
tions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493.

14. R. Stevenson, Optimality of a standard adaptive finite element method,
Found. Comput. Math. Published online: 5 July 2006. DOI 10.1007/s10208-
005-0183-0.

15. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-
refinement techniques, Adv. Numer. Math., John Wiley, Chichester, UK,
1996.


