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L. Dalćın,R. Paz,A. Yommi,V. Sonzogni and N. Nigro

Centro Internacional de Métodos Computacionales en Ingenieŕıa (CIMEC),
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Abstract

A preconditioner for iterative solution of the interface problem in Schur Comple-
ment Domain Decomposition Methods is presented. This preconditioner is based
on solving a problem in a narrow strip around the interface. It requires much less
memory and computing time than classical Neumann-Neumann preconditioner and
its variants, and handles correctly the flux splitting among subdomains that share
the interface. The performance of this preconditioner is assessed with an analytical
study of Schur complement matrix eigenvalues and several numerical experiments
conducted in a sequential computational environment. Results in a production par-
allel finite element code are given in a companion paper [1].
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1 INTRODUCTION

Linear systems obtained from discretization of PDE’s by means of Finite Dif-
ference or Finite Element Methods are normally solved in parallel by iterative
methods [2] because they are much less coupled than direct solvers.

The Schur complement domain decomposition method leads to a reduced sys-
tem better suited for iterative solution than the global system, since its con-
dition number is lower (∝ 1/h vs. ∝ 1/h2 for the global system, h being the
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mesh size) and the computational cost per iteration is not so high once the
subdomain matrices have been factorized. In addition, it has other advantages
over global iteration. It solves bad “inter-equation” conditioning, it can handle
Lagrange multipliers and in a sense it can be thought as a mixture between a
global direct solver and a global iterative one.

The efficiency of iterative methods can be further improved by using pre-
conditioners [3]. For mechanical problems, Neumann-Neumann is the most
classical one. From a mathematical point of view, the preconditioner is de-
fined by approximating the inverse of the global Schur complement matrix
by the weighted sum of local Schur complement matrices. From a physical
point of view, Neumann-Neumann preconditioner is based on splitting the
flux applied to the interface in the preconditioning step and solving local Neu-
mann problems in each subdomain. This strategy is good only for symmetric
operators.

We propose a preconditioner based on solving a problem in a “strip” of nodes
around the interface. When the width of the strip is narrow, the computational
cost and memory requirements are low and the iteration count is relatively
high, when the strip is wide, the converse is verified. This preconditioner per-
forms better for non-symmetric operators and does not suffer from the rigid
body modes for internal floating subdomains as is the case for the Neumann-
Neumann preconditioner. A detailed computation of the eigenvalue spectra
for a simple case is shown, and several numerical examples are presented.

2 SCHUR COMPLEMENT DOMAIN DECOMPOSITION METHOD

It is clear that knowing the eigenvalue spectrum of the Schur complement
matrix is one of the most important issues in order to develop suitable pre-
conditioners. To obtain analytical expressions for Schur complement matrix
eigenvalues and also the influence of several preconditioners, we consider a sim-
plified problem, namely the solution to the Poisson problem in a unit square:

∆φ = g, in Ω = {0 < x, y < 1}; (1)

with boundary conditions

φ = φ̄, at Γ = {x, y = 0, 1}. (2)

where φ is the unknown, g(x, y) is a given source term and Γ is the boundary.
Consider now the partition of Ω in Ns non-overlapping subdomains Ω1, Ω2,
. . . ,ΩNs , such that Ω = Ω1

⋃
Ω2

⋃
. . .
⋃

ΩNs . For the sake of simplicity, we
assume that the subdomains are rectangles of unit height and width Lj. In
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practice this is not the best partition, but it will allow us to compute the eigen-
values of the interface problem in closed form. Let Γint = Γ1

⋃
Γ2
⋃
. . .
⋃

ΓNs−1

be the interior interfaces among adjacent subdomains. Given a guess ψj for the
trace of φ in the interior subdomains φ|Γj

, we can solve each interior problem
independently as

∆φ = g, in Ωj,

φ =


ψj−1, at Γj−1,

ψj, at Γj,

φ̄, at Γup,j + Γdown,j,

(3)

where ψ0 = φ̄
∣∣∣
x=0

and ψNs = φ̄
∣∣∣
x=1

are given.

2.1 The Steklov operator

Not all combinations of trace values {ψj} give the solution of the original
problem (1). Indeed, the solution to (1) is obtained when the trace values are
chosen in such a way that the flux balance condition at the internal interfaces
is satisfied,

fj =
∂φ

∂x

∣∣∣∣∣
−

Γj

− ∂φ

∂x

∣∣∣∣∣
+

Γj

= 0, (4)

where the ± superscripts stand for the derivative taken from the left and
right sides of the interface. We can think of the correspondence between the
ensemble of interface values ψ = {ψ1, . . . , ψNs−1} and the ensemble of flux
imbalances f = {f1, . . . , fNs−1} as an interface operator S such that

Sψ = f − f0, (5)

where all inhomogeneities coming from the source term and Dirichlet boundary
conditions are concentrated in the constant term f0, and the homogeneous
operator S is equivalent to solving the equation set (3) with source term
g = 0 and homogeneous Dirichlet boundary conditions φ̄ = 0 at the external
boundary Γ.

Here, S is the Steklov operator. In a more general setting, it relates the un-
known values and fluxes at boundaries when the internal domain is in equi-
librium. In the case of internal boundaries, it can be generalized by replacing
the fluxes by the flux imbalances. The Schur complement matrix is a discrete
version of the Steklov operator, and we will show that in this simplified case
we can compute the Steklov operator eigenvalues in closed form, and then a
good estimate for the corresponding Schur complement matrix ones.
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2.2 Eigenvalues of Steklov operator

We will further assume that only two subdomains are present, one of them
at the left of width L1 and the other at the right of width L2, so that L =
L1 + L2 = 1 is the side length.

We solve first the Laplace problem in each subdomain with homogeneous
Dirichlet boundary condition at the external boundary and ψ at the interface,

∆φ = 0, in Ω1,2,

φ =

0, at Γ,

ψ, at Γ1.

(6)

The solution of (6) can be expressed as a linear combination of functions of
the form

φn(x, y) =

[sinh(knx)/ sinh(knL1)] sin(kny), 0 ≤ x ≤ L1,

[sinh(kn(L− x))/ sinh(knL2)] sin(kny), L1 ≤ x ≤ L,
(7)

where the wave number kn and the wavelength λn are defined as

kn = 2π/λn, λn = 2L/n, n = 1, . . . ,∞. (8)

The flux imbalance for each function in (7) can be computed as

fn =
∂φn

∂x

∣∣∣∣∣
x=L−1

− ∂φn

∂x

∣∣∣∣∣
x=L+

1

=

= kn

(
cosh(knL1)

sinh(knL1)
+

cosh(knL2)

sinh(knL2)

)
sin(kny) =

= kn [coth(knL1) + coth(knL2)] sin(kny).

(9)

A given interface value function ψ is an eigenfunction of the Steklov operator if
the corresponding flux imbalance f = Sψ is proportional to ψ, i.e. Sψ = ωψ,
ω being the corresponding eigenvalue. We can see from (6) to (9) that the
eigenfunctions of the Steklov operator are

ψn(y) = sin(kny) (10)

with eigenvalues

ωn = eig(S)n = eig(S−)n + eig(S+)n =

= kn [coth(knL1) + coth(knL2)] ,
(11)
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where S∓ are the Steklov operators of the left and right subdomains,

S∓ψ = ± ∂φ

∂x

∣∣∣∣∣
L∓1

, (12)

and their eigenvalues are

eig(S∓)n = kn coth(knL1,2). (13)

For large n, the hyperbolic cotangents in (13) both tend to unity. This shows
that the eigenvalues of the Steklov operator grow proportionally to n for large
n, and then its condition number is infinity. However, when considering the
discrete case the wave number kn is limited by the largest frequency that can
be represented by the mesh, which is kmax = π/h where h is the mesh spacing.
The maximum eigenvalue is

ωmax = 2kmax =
2π

h
, (14)

which grows proportionally to 1/h. As the lowest eigenvalue is independent
of h, this means that the condition number of the Schur complement ma-
trix grows as 1/h. Note that the condition number of the discrete Laplace
operator typically grows as 1/h2. Of course, this reduction in the condition
number is not directly translated to total computation time, since we have
to take account of the factorization of the subdomain matrices and forward
and backward substitutions involved in each iteration to solve internal prob-
lems. However, the overall balance is positive and reduction in the condition
number, besides being inherently parallel, turns out to be one of the main
strengths of domain decomposition methods.

In figure 1 we can see the first and tenth eigenfunctions computed directly
from the Schur complement matrix for a 2 subdomain partition, whereas in
figure 2 we see the first and twenty-fourth eigenfunction for a 9 subdomain par-
tition. The eigenvalue magnitude is related to eigenfunction frequency along
the inter-subdomain interface, and the penetration of the eigenfunctions to-
wards subdomains interiors decays strongly for higher modes.

3 PRECONDITIONERS FOR THE SCHUR COMPLEMENT MA-
TRIX

In order to further improve the efficiency of iterative methods, a precondi-
tioner has to be added so that the condition number of the Schur complement
matrix is lowered. The most known preconditioners for mechanical problems
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(a) 1-st eigenfunction

(b) 10-th eigenfunction

Fig. 1. Eigenfunctions of Schur complement matrix with 2 subdomains.

are Neumann-Neumann and its variants [4,5] for Schur complements methods,
and Dirichlet for FETI methods and its variants [6–9]. It can be proved that
they reduce the condition number of the preconditioned operator to O(1) (i.e.
independent of h) in some special cases.
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(a) 1-st eigenfunction

(b) 10-th eigenfunction

Fig. 2. Eigenfunctions of Schur complement matrix with 9 subdomains.

3.1 The Neumann-Neumann preconditioner

Consider the Neumann-Neumann preconditioner

PNNv = f, (15)

where

v(y) = 1/2[v1(L1, y) + v2(L1, y)], (16)
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and vi, i = 1, 2, are defined through the following problems

∆vi = 0 in Ωi,

vi = 0 at Γ0 + Γup,i + Γdown,i,

(−1)i−1∂vi

∂x
= 1/2f at Γ1.

(17)

The preconditioner consists in assuming that the flux imbalance f is applied on
the interface. Since the operator is symmetric and the domain properties are
homogeneous, this “load” is equally split among the two subdomains. Then, we
have a problem in each subdomain with the same boundary conditions in the
exterior boundaries, and a non-homogeneous Neumann boundary condition at
the inter-subdomain interface.

Again, we will show that the eigenfunctions of the Neumann-Neumann pre-
conditioner are (10). Effectively, we can propose for v1 the form

v1 = C sinh(knx) sin(kny), (18)

where C is determined from the boundary condition at the interface in (17)
and results in

C =
1

2kn cosh(knL1)
, (19)

and similarly for v2, so that

v1(x, y) =
1

2kn

sinh(knx)

cosh(knL1)
sin(kny),

v2(x, y) =
1

2kn

sinh(kn(L− x))

cosh(knL2)
sin(kny).

(20)

Then, the value of v = P−1
NNf can be obtained from (16)

v(y) = P−1
NNf =

1

4kn

[tanh(knL1) + tanh(knL2)] sin(kny), (21)

so that the eigenvalues of PNN are

eig(PNN)n = 4kn [tanh(knL1) + tanh(knL2)]
−1 . (22)

As its definition suggests, it can be verified that

eig(PNN)n = 4 [eig(S−)−1
n + eig(S+)−1

n ]−1. (23)

As the Neumann-Neumann preconditioner (15) and the Steklov operator (5)
diagonalize in the same basis (10) (i.e., they “commute”), the eigenvalues of
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the preconditioned operator are simply the quotients of the respective eigen-
values, i.e.

eig(P−1
NNS)n = 1/4[tanh(knL1) + tanh(knL2)] [coth(knL1) + coth(knL2)]. (24)

We see that all tanh(knLj) and coth(knLj) factors tend to unity for n → ∞,
then we have

eig(P−1
NNS)n → 1 for n→∞, (25)

so that this means that the preconditioned operator P−1
NNS has a condition

number O(1), i.e. it doesn’t degrade with mesh refinement. This is optimal,
and is a well known feature of the Neumann-Neumann preconditioner. In fact,
for a symmetric decomposition of the domain (i.e. L1 = L2 = 1/2), we have

eig(P−1
NNS)n =

1

4
2 tanh(kn/2) 2 coth(kn/2) = 1, (26)

so that the preconditioner is equal to the operator and convergence is achieved
in one iteration.

Note that comparing (11) and (23) we can see that the preconditioning is good
as long as

eig(S−)n ≈ eig(S+)n. (27)

This is true for symmetric operators and symmetric domain partitions (i.e.
L1 ≈ L2). Even for L1 6= L2, if the operator is symmetric, then (27) is valid
for large eigenvalues. However, this fails for non-symmetric operators as in the
advection-diffusion case, and also for irregular interfaces.

Another aspect of the Neumann-Neumann preconditioner is the occurrence
of indefinite internal Neumann problems, which leads to the need of solving
a coarse problem [4,5] in order to solve the “rigid body modes” for internal
floating subdomains. The coarse problem couples the subdomains and hence
ensures scalability when the number of subdomains increases. However, this
adds to the computational cost of the preconditioner.

3.2 The Interface Strip (IS) preconditioner

A key point about the Steklov operator is that its high frequency eigenfunc-
tions decay very strongly far from the interface, so that a preconditioning that
represents correctly the high frequency modes can be constructed if we solve a
problem on a narrow strip around the interface. In fact, the n-th eigenfunction
with wave number kn given by (7) decays far from the interface as exp(−kn|s|)
where s is the distance to the interface. Then, this high frequency modes will
be correctly represented if we solve a problem on a strip of width b around the
interface, provided that the interface width is large with respect to the mode
wave length λn.
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The “Interface Strip Preconditioner” (ISP) is defined as

PISv = f, (28)

where

f =
∂w

∂x

∣∣∣∣∣
x=L−1

− ∂w

∂x

∣∣∣∣∣
x=L+

1

(29)

and
∆w = 0 in 0 < |x− L1| < b and 0 ≤ x ≤ 1,

w = 0 at |x− L1| = b or y = 0, 1,

w = v at x = L1.

(30)

Please note that for high frequencies (i.e. knb large) the eigenfunctions of the
Steklov operator are negligible at the border of the strip, so that the boundary
condition at |x−L1| = b is justified. The eigenfunctions for this preconditioner
are again given by (10) and the eigenvalues can be taken from (11), replacing
L1,2 by b, i.e.

eig(PIS)n = 2 eig(Sb)n = 2kn coth(knb), (31)

where Sb is the Steklov operator corresponding to a strip of width b.

For the preconditioned Steklov operator, we have

eig(P−1
IS S)n = 1/2 tanh(knb) [coth(knL1) + coth(knL2)] . (32)

We note that eig(P−1
IS S)n → 1 for n → ∞, so that the preconditioner is

optimal, independently of b. Also, for b large enough we recover the original
problem so that the preconditioner is exact (convergence is achieved in one
iteration). However, in this case the use of this preconditioner is impractical,
since it implies solving the whole problem. Note that in order to solve the
problem for v, we need information from both sides of the interface, while
the Neumann-Neumann preconditioner can be solved independently in each
subdomain. This is a disadvantage in terms of efficiency, since we have to waste
communication time in sending the matrix coefficients in the strip from one
side to the other or otherwise compute them in both processors. However, we
will see that efficient preconditioning can be achieved with few node layers and
negligible communication. Moreover, we can solve the preconditioner problem
by iteration, so that no migration of coefficients is needed.

4 THE ADVECTIVE-DIFFUSIVE CASE

Consider now the advective diffusive case,

κ∆φ− uφ,x = g in Ω, (33)
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where κ is the thermal conductivity of the medium and u the advection veloc-
ity. The problem can be treated in a similar way, and the Steklov operators
are defined as

S∓ψ = ± φ,x|L∓1 , (34)

where
κ∆φ− uφ,x = 0 in Ω1,2,

φ =

0 at Γ,

ψ at Γ1.

(35)

The eigenfunctions are still given by (10). Looking for solutions of the form
v ∝ exp(µx) sin(kny) we obtain a constant coefficient second order differential
equation with characteristic polynomial

κµ2 − uµ− κk2
n = 0 (36)

whose roots are

µ± =
u±

√
u2 + 4κ2k2

n

2κ
=

u

2κ
± δn (37)

After some algebra, the solution of (35) is

φn =

eu(x−L1)/2κ sinh(δnx)
sinh(δL1)

sin(kny) for 0 ≤ x ≤ L1, 0 ≤ y ≤ L,

eu(x−L1)/2κ sinh(δn(L−x))
sinh(δL2)

sin(kny) for L1 ≤ x ≤ L, 0 ≤ y ≤ L,
(38)

and the eigenvalues are then

eig(S−)n =
u

2κ
+ δn coth(δnL1)

eig(S+)n = − u

2κ
+ δn coth(δnL2).

(39)

In figure 3 we see the first and tenth eigenfunctions for a problem with an
advection term at a global Pèclet number of Pe = uL/2κ = 2.5. For low fre-
quency modes, advective effects are more pronounced and the first eigenfunc-
tion (on the left) is notably biased to the right. In contrast, for high frequency
modes (like the tenth mode shown at the right) the diffusive term prevails and
the eigenfunction is more symmetric about the interface, and (as in the pure
diffusive case) concentrated around it. Note that now the eigenvalues for the
right and left part of the Steklov operator may be very different due to the
asymmetry introduced by the advective term. This difference in splitting is
more important for the lowest mode.

In figures 4 to 7 we see the eigenvalues as a function of the wave number kn.
Note that for a given side length L only a certain sequence of wave numbers,
given by (8) should be considered. However, it is perhaps easier to consider
the continuous dependence of the different eigenvalues upon the wave number
k.
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(a) 1-st eigenfunction

(b) 10-th eigenfunction

Fig. 3. Eigenfunctions of Schur complement matrix with 2 subdomains and advection
(global Pèclet 5).

For a symmetric operator and a symmetric partition (see figure 4), the sym-
metric flux splitting is exact and the Neumann-Neumann preconditioner is op-
timal. The largest discrepancies between the IS preconditioner and the Steklov
operator occur at low frequencies and yield a condition number less than two.

If the partition is non-symmetric (see figure 5) then the Neumann-Neumann
preconditioner is no longer exact, because S+ 6= S−. However, its condition
number is very low whereas the IS preconditioner condition number is still
under two.
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For a relatively important advection term, given by a global Pèclet number
of 5 (see figure 6), the asymmetry in the flux splitting is much more evident,
mainly for small wave numbers, and this results in a large discrepancy between
the Neumann-Neumann preconditioner and the Steklov operator. On the other
hand, the IS preconditioner is still very close to the Steklov operator.

The difference between the Neumann-Neumann preconditioner and the Steklov
operator increases for larger Pe (see figure 7).

This behavior can be directly verified by computing the condition number of
Schur complement matrix and preconditioned Schur complement matrix for
the different preconditioners (see tables 1 and 2). We can see that, for low Pe,
both the Neumann-Neumann and IS preconditioners give a similar precon-
ditioned condition number regardless of mesh refinement (it almost doesn’t
change from a mesh of 50 × 50 to a mesh of 100 × 100), whereas the Schur
complement matrix exhibits a condition number roughly proportional to 1/h.
However, the Neumann-Neumann preconditioner exhibits a large condition
number for high Pèclet numbers whereas the IS preconditioner seems to per-
form better for advection dominated problems.

Pe cond(S) cond(P−1
NNS) cond(P−1

IS S)

0 41.00 1.00 4.92

0.5 40.86 1.02 4.88

5 23.81 3.44 2.92

25 5.62 64.20 1.08
Table 1
Condition number for the Steklov operator and several preconditioners (mesh: 50×
50 elements, strip: 5 layers of nodes.

u cond(S) cond(P−1
NNS) cond(P−1

IS S)

0 88.50 1.00 4.92

0.5 81.80 1.02 4.88

5 47.63 3.44 2.92

25 11.23 64.20 1.08
Table 2
Condition number for the Steklov operator and several preconditioners (mesh: 100×
100 elements, strip: 10 layers of nodes).
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5 SOLUTION OF THE STRIP PROBLEM

Efficient implementation of the IS preconditioner in a parallel environment
will be the subject of future research. However, we will give some hints here.

A first possibility is a fully coupled, direct solution of the interface problem.
This approach involves transferring all the interface matrix to a single proces-
sor and solving the problem there. This is not a significant amount of work,
but doing it in only one processor would largely unbalance the distribution of
load among processors.

A second possibility is partitioning the strip problem among processors, much
in the same way as the global problem is. Then, the preconditioning prob-
lem can be solved by an iterative method. Care must be taken to avoid
nesting a non-stationary method like CG or GMRES inside another outer
non-stationary method. The problem here is that a non stationary method
executed a finite number of times is not a linear operator, unless the inner
iterative method is iterated enough and then approaches the inverse of the
preconditioner. In this respect, relaxed Richardson iteration is suitable. The
idea of an iterative method is also suggested by the fact that the precondi-
tioning matrix (i.e. the matrix obtained by assembling on the strip domain
with Dirichlet boundary conditions at the strip boundary) is highly diagonal
dominant for narrow strips. A subsequent possibility is preconditioning the
Interface Strip preconditioner problem itself with block Jacobi.

6 NUMERICAL EXAMPLES

The performance of the proposed preconditioner is compared in a sequential
environment. For this purpose, we consider two different problems. The do-
main Ω in both cases is the unit square discretized on an unstructured mesh of
120× 120 nodes, and decomposed in 6 rectangular subdomains. We compare
the residual norm versus iteration count by using no preconditioner, Neumann-
Neumann preconditioner, and the IS preconditioner (with several node layers
at each interface side).

The first example is the Poisson’s problem ∆φ = g, where g = 1 and φ = 0 on
all the boundary Γ. The iteration counts and the problem solution (obtained
in a coarse mesh for visualization purposes) are plotted in figure 8. As it can be
seen, the Neumann-Neumann preconditioner has a very low iteration count,
as it is expected for a symmetric operator. The IS preconditioner has a larger
iteration count for thin strip widths, but it decreases as the strip is thickened.
For a strip of five-layers width, we reach an iteration count comparable to
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the Neumann-Neumann preconditioner with significantly less computational
effort. Regarding memory use, the required core memory for thin strip is much
less than for the Neumann-Neumann preconditioner. The strip width acts in
fact as a parameter that balances the required amount of memory and the
preconditioner efficiency.

The second example is an advective-diffusive problem at a global Péclet num-
ber of Pe = 25, g = δ(1/4, 7/8)+δ(3/4, 1/8), and φ(0, y) = 0. Therefore, the problem
is strongly advective. The iteration count and the problem solution (interpo-
lated in a coarse mesh for visualization purposes) are plotted in figure 9. In this
example, the advective term introduces a strong asymmetry. The Neumann-
Neumann preconditioner is far from being optimal. It is outperformed by IS
preconditioner in iteration count (and consequently in computing time) and
memory demands, even for thin strips.

7 CONCLUSIONS

We have presented a new preconditioner for Schur complement domain decom-
position methods. This preconditioner is based on solving a problem posed in
a narrow strip around the inter-subdomain interfaces. Some analytical results
have been derived to present its mathematical basis. Numerical experiments
have been carried out to show its convergence properties.

The IS preconditioner is easy to construct as it does not require any spe-
cial calculation (it can be assembled with a subset of subdomain matrices
coefficients). It is much less memory-consuming than classical optimal pre-
conditioners such as Neumann-Neumann in primal methods (or Dirichlet in
FETI methods). Moreover, it permits to decide how much memory to assign
for preconditioning purposes.

In advective-diffusive real-life problems, where the Pèclet number can vary on
the domain between low and high values, the proposed preconditioner out-
performs classical ones in advection-dominated regions while it is capable to
handle reasonably well diffusion-dominated regions.
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Fig. 4. Eigenvalues of Steklov operators and preconditioners for the Laplace operator
(Pe = 0) and symmetric partitions (L1 = L2 = L/2, b = 0.1L).
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Fig. 5. Eigenvalues of Steklov operators and preconditioners for the Laplace operator
(Pe = 0) and non-symmetric partitions (L1 = 0.75L, L2 = 0.25L, b = 0.1L).
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Fig. 6. Eigenvalues of Steklov operators and preconditioners for
the advection-diffusion operator (Pe = 5) and symmetric partitions
(L1 = L2 = L/2, b = 0.1L).
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Fig. 7. Eigenvalues of Steklov operators and preconditioners for the
advection-diffusion operator (Pe = 50) and symmetric partitions
(L1 = L2 = L/2, b = 0.1L).
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Fig. 8. Solution of Poisson’s problem.
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Fig. 9. Solution of advective-diffusive problem.
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