
A SMOOTH FAMILY OF CANTOR SETS

IGNACIO GARCIA

Abstract. We show that the Cantor set Cp associated to the sequence {1/np}n, p > 1, is
a smooth attractor. Moreover, it is smoothly conjugate to the 2−p-middle Cantor set. We
also study the convolution of Hausdorff measures supported on these sets and the structure
and size of the sumset Cp + Cq.

1. Introduction and statement of main results

1.1. Introduction. A Cantor set is a compact, perfect and totally disconnected set in some
topological space. We deal with Cantor sets in the real line with the usual topology.

There is a way to construct zero Lebesgue measure Cantor sets that consists in successively
removing gaps, that is, bounded open intervals, from an initial closed interval; the construc-
tion is done by steps and the lengths of the removed gaps are prescribed by the values of a
positive and summable sequence. The precise definition, which appeared in [BT54], is given
in Section 2. For example the ‘classical’ middle-r Cantor set Ar, 0 < r < 1/2, that is defined
by

Ar =
n

(1− r)
X
j≥0

ajr
j : aj ∈ {0, 1}

o
,

is the one associated to the sequence
¦
ξ, rξ, rξ, r2ξ, r2ξ, r2ξ, r2ξ, . . .

©
, where ξ = 1− 2r.

Here, the ratio between the lengths of the gaps of consecutive steps is constant, which reflects
the ‘linearity’ of the set. Note that A1/3 is the classical ternary Cantor set.

We will mainly focus on the p-Cantor set Cp, that is defined through the above construc-
tion using the sequence {1/np}n, p > 1. At any fixed step the removed gaps have strictly
decreasing lengths, which reflects the nonlinear nature of this set. Despite its nonlinearity,
this is a family of well behaved Cantor sets, since in [CMPS05] and [GMS07] it is shown
that 0 < H1/p(Cp) < P

1/p
0 (Cp) < +∞, where Ht and P t0 denotes the t-dimensional Hausdorff

measure and packing premeasure respectively; in particular, dimCp = dimBCp = 1/p, where
dim and dimB denote the Hausdorff and upper Box dimensions. See the book of Mattila
[Mat95] for the definitions of these measures and dimensions. In this article we discover fur-
ther properties of this family of Cantor sets, showing that it is closely related to the family
of middle-r Cantor sets and so it can be viewed as a nonlinear version of the classical linear
case.

1.2. Statements of main results. Let us recall that an iterated function system (IFS) is
a finite set {f0, . . . , fn} of self maps defined on a nonempty closed subset X ⊂ R such that
each fi is strict contraction, that is, there is a constant 0 < c < 1 such that

|fi(x)− fi(y)| ≤ c|x− y|, ∀x, y ∈ X, i = 0, . . . , n.
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Hutchinson [Hut81] proved that to each IFS one can associate an unique nonempty compact
invariant set, that is, a set K that verifies

K =
n[
i=0

fi(K).

Moreover, given a probability vector (p0, . . . , pn) with
Pn
i=0 pi and pi ∈ (0, 1), there is a

unique probability measure µ supported on K, called invariant measure, such that

(1.1) µ(A) =
nX
i=0

piµ(f−1
i (A)) for every Borel set A.

It is well known, and easy to verify, that the before mentioned sets Ar are also the attractors
of the IFS of contracting similitudes {gr,0, gr,1} defined on [0, 1] , where gr,i = rx+ i(1− r).
These are the simplest examples of regular or dynamically defined Cantor set, where in
general, the derivatives of the functions of the IFS are assumed be at least ε-Hölder continuous
for some 0 < ε < 1 (see Section 2). We write C1+ε-regular to emphasize that the functions
of the system are of class C1+ε. An important feature of regular Cantor sets is that their
Hausdorff and Box dimensions coincide; in addition, their Hausdorff and packing measures
on this dimensional value are finite and positive. This motivates us to prove in Section 3 that
Cp is a C1+1/p-regular Cantor set, in other words, there exists an IFS {fp,0, fp,1} whose has
Cp as attractor; see Theorem 4.

In view of the above theorem, Cp has a C1+1/p-differentiable structure. By a result of
Sullivan [Sul88], this structure can be classified by its scaling function (defined in Section
4). More precisely, two regular IFS {f0, f1} and {f̃0, f̃1} are equivalent if they are smoothly
conjugate, that is, if there exists a smooth homeomorphism h, termed conjugacy, such that

h ◦ fi = f̃i ◦ h, i = 0, 1;

here by smooth we mean that h and its inverse are at least C1. Then, the result in [Sul88] says
that the scaling function is a complete invariant: two C1+ε-regular systems are equivalent if
and only if their scaling functions coincide. Moreover, there is a conjugacy which is C1+ε; for
a proof of this see [PT96] and [BF97]. It turns out that the scaling functions of the regular
Cantor sets Cp and A2−p coincide, as will be shown in Section 4. Therefore, these systems
are C1+1/p-conjugate; see Theorem 13. Moreover, since the attractors of conjugate systems
satisfy ÜC = h(C), then the sets Cp and A2−p are C1+1/p-diffeomorphic images of each other.

In order to introduce the last results of the paper, let

µr(A) =
1
2
µr
�
g−1
r,0 (A)

�
+

1
2
µr
�
g−1
r,1 (A)

�
for every Borel set A.

In this particular case, µr = Hdr |Ar ([Hut81]), where dr = dimAr andHdr |Ar is the restriction
of the Hausdorff measure to Ar. Now let us look at the convolution measure µr ∗ µr. Since
all the similitudes have the same ratio of contraction, it is easily verified that it satisfies an
identity as the one in (1.1), with IFS

¦
rx, rx+1−r, rx+2(1−r)

©
and weights (1/4, 1/2, 1/4).

Thus it is a measure of pure type, i.e., either absolutely continuous or purely singular with
respect to L, the Lebesgue measure on R (see [PSS00], Proposition 3.1). This motivated
us to ask whether the measure H1/p|Cp ∗ H1/p′ |Cp′ is of pure type. Henceforth, absolutely
continuous or singular will be meant with respect to L.

Let us denote by Hp the measure H1/p|Cp . The support of Hp ∗ Hp′ is contained in the
sumset Cp + Cp′ , thus in this setting it is also important to determine the size of this set.
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Due to a classical result of Newhouse, the thickness of a Cantor set is a useful tool to
determine whether the sum of two of these sets has nonempty interior. Through an estimate
of thickness, we provide sufficient conditions on the parameters p and p′ so that Cp +Cp′ has
nonempty interior. We show that in order to have analogous conditions to the classical case,
it is necessary to consider a local version of thickness.

Finally, we concentrate on the convolution of measures and the dimensional behaviour of
sumsets, but from a measure theoretical point of view. For any pair of sets E,F ⊂ R, with
dimF = dimBF , it is well known that dim(E + F ) ≤ dim(E × F ) ≤ dimE + dimF (see
Mattila [Mat95]). Hence it is always true that

dim(Cp + Cp′) ≤ min
�
dimCp + dimCp′ , 1

�
.

Therefore Hp ∗ Hp′ is trivially singular if dimCp + dimCp′ < 1 because L(Cp + Cp′) = 0.
We prove that the convolution is absolutely continuous when dimCp + dimCp′ > 1, with the
possible exception of a small set in the parameter. More precisely, let p′ be fixed and p̄ be
such that dimCp′ + dimCp̄ = 1. Also, let us denote with ν ∈ L2 (ν /∈ L2) the fact that the
measure ν has (does not have) a density in L2(R). Then, for any ε > 0 there is a δ = δ(ε) > 0
(which decreases to 0 with ε) such that

(1.2) dim
¦
p ∈ (1, p̄− ε) : Hp ∗ Hp′ /∈ L2

©
≤ 1− δ.

In particular, Hp ∗ Hp′ ∈ L2 for L-a.e. p such that dimCp + dimCp′ > 1.
Observe that (1.2) implies that

(1.3) dim
¦
p ∈ (1, p̄− ε) : L(Cp + Cp′) = 0

©
< 1− δ.

Moreover, we show that

(1.4) dim
¦
p ∈ (p̄+ ε,∞) : dim(Cp + Cp′) < dimCp + dimCp′

©
< 1− δ.

In particular, the formula

dim(Cp + Cp′) = min
�
dimCp + dimCp′ , 1

�
holds for almost every p.

We can replace Cp′ and Hp′ above by any compact K ⊂ R and a suitable measure; besides,
more general families of Cantor sets can be used instead of {Cp}p; see Theorems 17 and 19.

These last results are a consequence of the Peres-Schlag projection theorem; see [PS00].
In that paper, the dimensional bounds of exceptions (1.3) and (1.4) are obtained for families
of homogeneous Cantor sets, being each of these sets by definition an attractor of an IFS of
similitudes, all of them with the same ratio of contraction.

1.3. Background and related works. In connection with dynamically defined Cantor sets,
Bamón et al in [BMPV97] considered central Cantor sets, which by definition satisfies that
on each step the removed gaps have the same length. In that paper those central Cantor
sets that are Ck+ε or C∞-regular are characterized in terms of the decay of the sequence.
Moreover, it is provided a classification of these sets up to local and global diffeomorphisms.

The structure and dimension of sums of Cantor sets are relevant in different areas such as
diophantine approximations in number theory and homoclinic tangencies in smooth dynamics.
In this context, Palis (see [PT93]) asked whether the sum of two regular Cantor sets has zero
Lebesgue measure or contains an open interval. There are particular cases where this is
not true, as it was shown by Sannami [San92], but Moreira and Yoccoz [MY01] proved that
generically (in the C1+ε topology on regular Cantor sets) the conjecture is true. Nevertheless,
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the question for the self-similar case is still open, although for the special case of Ar +Ar it
is true, see Cabrelli et al [CHM97].

Related to the size of sumsets, if C1 and C2 are strictly nonlinear C2-regular Cantor sets,
the formula dim(C1 + C2) = min

�
dimC1 + dimC2, 1

�
is true under some explicit conditions

on the IFS; see Moreira [M98]. For the linear case, given a compact set K ⊂ R, the equality

(1.5) dim(K +Ar) = min
�
dimK + dimAr, 1

�
for L-a.e. r

was established by Peres and Solomyak [PS98]. It was improved in [PS00] as we mentioned
above. Moreover, recently Peres and Shmerkin [PS09] found exactly the exceptional set when
K = As: equality holds if and only if log r/ log s is irrational. This condition also appears in
the study of the topological structure of the sumset when dimAs + dimAr > 1; see Mendes
and Oliveira [MO94] and Cabrelli et al [CHM02].

By the Riemann-Lebesgue lemma, a necessary condition for absolute continuity of a mea-
sure is that its Fourier transform vanishes at infinity. Now, it is well known that the Fourier
transform of µr, denoted by µ̂r, does not tend to 0 at infinity if and only if 1/r is a Pisot
number different from 2 (Pisot numbers are a special class of algebraic integers); see [Sal63].
By a general property of convolutions, ×µr ∗ µr = µ̂r · µ̂r, whence µr ∗ µr is singular if r is the
reciprocal of a Pisot number; however it may happen that L(Ar +Ar) > 0. For example, this
is the case when r = 1/3. Lau et al ([FLN00], [HL01]) studied the multifractal structure of
the m-th convolution of the measure µ1/3, which is singular by the above argument. Nazarov
et al [NPS09] determined that the correlation dimension of µr ∗µs is min

�
dr+ds, 1

�
whenever

log r/ log s is irrational.
Pablo Shmerkin informed us that in a joint work with Michael Hochman [HS09] they gen-

eralize the work on sums of Cantor sets [PS09] and their methods implies that the dimension
of the convolution Hp ∗ Hp′ is min

�
1,dimCp + dimCp′

�
whenever p/p′ is irrational. This

in turns implies that for these parameters formula (1.2) holds. However, when the sum of
the dimensions is greater than 1 they do not obtain results on the absolute continuity of the
convolution.

Some open questions:
1) We do not know if the convolution of two invariant measures associated to regular Cantor

sets is of pure type. Even we do not know this for υp ∗ υp′ , although here we show that
this is almost every where true.

2) For which values p > 1 does the Fourier transform of υp vanish at infinity?. If hp is the
diffeomorphism between A2−p and Cp (which exists by Theorem 13) then the relation

υp = µ2−p ◦ h−1
p

holds by uniqueness of the invariant measure. Although we know this identity, the nonlin-
earity of the diffeomorphism hp does not allows us to transfer the information from µ2−p

to υp in order to estimate the decay of its Fourier transform (recall that µ̂r → 0 iff r is
not the reciprocal of a Pisot number).

2. Basic definitions and notation

In this section we provide the basic definitions and notation that we will use later.
The symbolic space . Given n ≥ 1, let Ωn be the set of binary strings of length n, that is

Ωn = {ω1 . . . ωn : ωi = 0, 1 with 1 ≤ i ≤ n}.
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Set Ω0 = {e} with e the empty string and let Ω∗ =
S
n≥0 Ωn. Define Ω = {ω1ω2 . . . : ωi =

0, 1 with i ∈ N}, the set of binary infinite strings. The length of ω ∈ Ω∗
S

Ω is denoted by
|ω|. Elements in Ω have infinite length. Given ω ∈ Ω∗

S
Ω with |ω| ≥ k, its k-truncation is

ω|k = ω1 . . . ωk. The infinite string with all entries 0 is denoted by 0̄; analogously, we define
1̄. Moreover, if ω ∈ Ω∗ and τ ∈ Ω∗

S
Ω then ωτ denotes the string obtained by juxtaposing

the elements of ω and τ . Furthermore, for ω ∈ Ωn denote with `(ω) the binary representation

`(ω) =
nX
j=1

ωj2n−j .

Given β > 1, we define a metric on Ω by

dβ(ω, τ) =
¨
β−|ω∧τ | if ω 6= τ

0 if ω = τ
,

where |ω ∧ τ | = min{k : ωk 6= τk}. The space (Ω, dβ) is a compact, perfect and totally
disconnected metric space.

Cantor set associated to a sequence. Let a = {aj} be a positive and summable
sequence and let Ia be the closed interval [0,

P
j aj ]. We define the zero Lebesgue measure

Cantor set Ca associated to the sequence a as follows. In the first step, we remove from Ia
an open interval L1 of length a1, termed gap, resulting in two closed intervals I1

0 and I1
1 .

Having constructed the k-th step, we obtain the 2k closed intervals Ikω, ω ∈ Ωk, contained in
Ia. The next step consists in removing from Ikω the gap L2k+`(ω) of length a2k+`(ω), obtaining
the closed intervals Ik+1

ω0 and Ik+1
ω1 . Then we define

Ca :=
∞\
k=1

[
ω∈Ωk

Ikω.

The intervals Ikω are the basic intervals of Ca. It is convenient to use also the decimal notation
for this intervals, so we define Ikl = Ikω, where l = `(ω).

Remark. In the above construction there is a unique way of removing the open intervals at
each step. Also notice that not necessarily the lengths of the closed intervals of the same step
coincide. In fact, for ω ∈ Ωk we have by construction that

(2.1) Ikω = Ik+1
ω0

[
L2k+`(ω)

[
Ik+1
ω1 ;

then, applying this identity recursively to each closed interval of the right hand side, the
length of the intervals is given by

(2.2) |Ikω| =
X
n≥k

X
λ∈Ωn−k

a2n+`(ωλ),

or

(2.3) |Ikl | =
X
h≥0

(l+1)2h−1X
j=l2h

a2k+h+j

using the other notation.

Recall that Cp is the Cantor set associated to {1/np}n. In Section 5 we will work with the
more general set Cp,q, that is the one associated to {(log n)q/np}n (the term corresponding
to n = 1 is defined as 1). Here p > 1 and q ∈ R. It is known that dimCp,q = 1/p, but
H1/p(Cp,q) = 0 if q < 0 and H1/p(Cp,q) = +∞ if q > 0; see [GMS07].
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The next lemma states the bounds for the basic intervals of Cp,q that will be used through-
out the paper.

Lemma 1. If Ikl is a k-step interval of Cp then

(2.4)
� 1

2k + l + 1

�p 2p

2p − 2
≤ |Ikl | ≤

2p

2p − 2

� 1
2k + l

�p
.

Moreover, if Ip,ql is a k-step interval of Cp,q then

(2.5)
kq

2kp
cp,q ≤ |Ip,ql | ≤ c

′
p,q

kq + 1
2kp

,

where cp,q and c′p,q depend continuously on p and q.

Proof. Estimate (2.4) is given in [CMPS05], Lemma 3.2. The lower bound in (2.5) holds since
Ip,ql ⊃ L2k+l and |L2k+l| > |L2k+1 |. The remaining bound is obtained using (2.3):

|Ikl | =
X
h≥0

(l+1)2h−1X
j=l2h

(log(2k+h + j))q

(2k+h + j)p

≤
X
h≥0

2h
(log(2h(2k + l + 1)))q

(2h(2k + l))p

≤ c′p,q
kq + 1

2kp
.

�

Given ω ∈ Ω∗
S

Ω, with |ω| ≥ k, we define

Ikω = Ikω|k .

Observe that for ω ∈ Ω, the family {Ikω}k is a nested sequence of closed intervals whose
intersection is a single point. Thus we define the projection map π : Ω→ C by

(2.6) π(ω) =
\
k≥1

Ikω.

Endowed with the lexicographical order on Ω, this map is an order preserving homeomorphism
and provides a natural way to code the Cantor set. For notational convenience we will identify
the point ω ∈ Ω with

T
k≥1 I

k
ω ∈ C.

By the endpoints of a Cantor set Ca we mean the set of endpoints of all the intervals Ikω
with ω ∈ Ωk, k ≥ 1. The next proposition says that endpoints correspond to points of the
form ωū, where ω ∈ Ω∗ and u = 0, 1.

Proposition 2. For ω ∈ Ωk we have that

Ikω =
�
π(ω0̄), π(ω1̄)

�
and L2k+`(ω) =

�
π(ω01̄), π(ω10̄)

�
.

Proof. The result follows from the definition of π and its order preserving property. We omit
the details. �

Regular Cantor sets. For simplicity let I = [0, 1]. Consider an IFS of diffeomorphisms
{f0, f1} defined on I such that

0 = f0(0) < f0(1) < f1(0) < f1(1) = 1
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and the derivatives are η-Hölder continuous, i.e.,

|f ′i(x)− f ′i(y)| ≤ c|x− y|η for all x, y ∈ I.

Such an IFS is called C1+η-regular.
The first condition implies that the attractor is already a Cantor set of zero Lebesgue

measure. If we would only require differentiability to the system, the Hausdorff and box
dimensions of the attractor coincide, but the addition of the Hölder condition assures that, in
the corresponding dimensional parameter, the Hausdorff and packing measures are positive
and finite.

Given ω ∈ Ωk we set fω = fω1 ◦ · · · ◦ fωk . It is easily seen that the attractor of a regular
system is given by

C =
\
k≥0

[
ω∈Ωk

fω(I).

Finally, we note that in view of the next proposition, the convolution measures υp ∗υq and
Hp ∗ Hp are equivalent, and thus in Section 5 we will work with the former.

Proposition 3. υp is equivalent to Hp.

Proof. Recall that hp(A2−p) = Cp. Given B ⊂ [0, 1] we have that

υp(B) = µ2−p(h
−1
p (B))

= H1/p(h−1
p (B) ∩A2−p) = H1/p(h−1

p (B ∩ Cp)).

Since hp is a bi-Lipschitz function, there is a constant c > 0 such that

c−1H1/p(B ∩ Cp) ≤ H1/p(h−1
p (B ∩ Cp)) ≤ cH1/p(B ∩ Cp),

whence the measures are equivalent. �

3. Cp is a regular Cantor set

In this section we show that Cp is a regular Cantor set. More precisely we prove the
following theorem.

Theorem 4. The set Cp is a C1+1/p-regular Cantor set. Moreover this is the highest degree
of smoothness that can be attained by any other regular system that has this set as attractor.

A sufficient condition for an IFS {f0, f1} to have Cp as its attractor is that

(3.1) fω(I) = Ik`(ω), for all ω ∈ Ωk and k ≥ 1.

Thus, in order to prove our theorem it is enough to find functions that satisfy the above
properties. The existence of such functions is not evident, moreover if we want them to be
smooth. The proof of our theorem is motivated by the following necessary condition for the
derivatives of the functions of an IFS at the points of its attractor.

Proposition 5. Assume that C is the attractor of an IFS {f0, f1} with continuous positive
derivatives. Given x ∈ C, let ω ∈ Ω be such that x = π(ω). Then the derivative at x is given
by the limit

(3.2) f ′i(x) = lim
n→∞

|fiω(I)|
|fω(I)|

, i = 0, 1.
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Proof. By the mean value theorem we have that

(3.3) |fiω|n(I)| = |fi(fω|n(I))| = f ′i(ξn)|fω|n(I)|,
where ξn ∈ fω|n(I). As n goes to infinite, ξn tends to the unique point x ∈ C which is in the
intersection

T
n≥1 fω|n(I). Thus (3.2) follows from the positiveness and continuity of f ′. �

Therefore this proposition provides us with the starting point. The proof of Theorem 4 has
essentially two parts. First we prove that for each endpoint ω ∈ Ω, the sequence of quotients

(3.4)
n
|In+1
`(iω|n)|/|I

n
`(ω|n)|

o
n

converges and we find an expression for the limit. Thus by (3.2) these limits should be
the values, at the endpoints of our Cantor set, of the derivatives of the functions of an IFS
that satisfies (3.1). Then, with these values, in the second part we are able to extend the
derivatives to the whole interval I so that (3.1) holds and thus the system has Cp as its
attractor.

Notice that if the derivatives are positive then fi is order preserving, so f0(0) = 0 and
f1(|I|) = |I|. From this, once we have constructed the derivatives F0 and F1 we define

(3.5) f0(x) =
Z x

0
F0 and f1(x) =

Z x

0
F1 + c,

with c = |I1
0 |+ 1, since 1 is the length of the first gap.

3.1. Definition of the derivatives on Cp and properties. Recall that endpoints of Cp
correspond to strings of the form ωū, with u = 0 or 1 and ω ∈ Ωk, k ≥ 1. We have the
following result.

Proposition 6. At each endpoint ωū of Cp the limit of
n
|In+1
`(i(ωū)|n)|/|I

n
`((ωū)|n)|

o
n

exists. It
is given by the formula

(3.6) Gi(ωū) =
�

2k + `(ω) + u

2k+1 + i2k + `(ω) + u

�p
, ω ∈ Ωk, u = 0, 1.

Proof. Let ω ∈ Ωk with k ≥ 1. It follows from (2.4) that

�
2n + `((ωū)|n)

2n+1 + `(i(ωū)|n) + 1

�p
≤

���In+1
`(i(ωū)|n)

������In`((ωū)|n)

��� ≤
�

2n + `((ωū)|n) + 1
2n+1 + `(i(ωū)|n)

�p
.

From equalities

`((ωū)|n) =
kX
j=1

ωj2n−j + u(2n−k − 1) = 2n−k(`(ω) + u(1− 1/2n−k))

and
`(i(ωū)|n) = i2n + `((ωū)|n),

we get ���In+1
`(i(ωū)|n)

������In`((ωū)|n)

��� ≤
�

2k + `(ω) + u(1− 1/2n−k) + 1/2n−k

2k+1 + i2k + `(ω) + u(1− 1/2n−k)

�p
,

with a similar lower bound. Since `(ω) is independent of n, the limit of the sequence (3.4)
exists and is given by (3.6). �
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Remark. In fact, the limit in the above proposition exists not only at the endpoints but in
all Cp. For our purposes however it is enough to know the values at the endpoints.

Let us denote with Ep the set of endpoints of Cp. The functions of the previous proposition
have the following properties.

Lemma 7. Let Gi, i = 0, 1 be defined on Ep by formula (3.6). Then

(a) Each function Gi takes the same value at the endpoints of a single gap; that is, at the
endpoints of L2k+`(ω) we have that Gi(ω01̄) = Gi(ω10̄), ω ∈ Ωk, k ≥ 0, i = 0, 1.

(b) Both functions G0 and G1 are increasing.
(c) For every ω ∈ Ωk, u = 0, 1�1

2

�p
≤ G0(ωū) ≤

�2
3

�p
and

�1
3

�p
≤ G1(ωū) ≤

�1
2

�p
.

Proof. (a) Since `(ω1) = `(ω0) + 1, the statement is a consequence of the definition of Gi.
(b) By the previous item and the continuity of Gi it is enough to show that this function

is increasing in the left endpoints. Let ω ∈ Ωk−1, υ ∈ Ωl−1 and suppose that ω10̄ ≺ υ10̄. By
(3.6) we must see that�

2k + `(ω1)
2k+1 + i2k + `(ω1)

�p
<

�
2l + `(υ1)

2l+1 + i2l + `(υ1)

�p
.

This is equivalent to
2l`(ω1) < 2k`(υ1).

Let h ≤ min(k − 1, l − 1) be the first integer such that ωh 6= υh, so that ωj = υj if j < h,
ωh = 0 and υh = 1. Define ωk = υl = 1. Then we have that

2l`(ω1) = 2l
h−1X
j=1

ωj2k−j + 2l
kX

j=h+1

ωj2k−j

≤
h−1X
j=1

ωj2k+l−j + 2l(2k−h − 1)

<
h−1X
j=1

υj2k+l−j + 2k+l−h

≤ 2k
l−1X
j=1

υj2l−j = 2k`(υ1).

(c) is consequence of (b) and the values of the functions at the endpoints of I. �

Note that item (c) emphasizes that the derivatives are strictly less than 1 in Cp.
Below we establish the Hölder regularity of Gi on Ep.

Proposition 8. Let Gi be as above. Then Gi ∈ C 1/p(Ep) but Gi /∈ C η(Ep) for any η > 1/p.

Proof. Firstly assume that x and y are endpoints of the same interval of the m-step. By
Proposition 2, there exists ω ∈ Ωm such that x = ω0̄ and y = ω1̄. Applying formula (3.6),
we have Gi(ω0̄) =

�
a
b

�p
and Gi(ω1̄) =

�
a+1
b+1

�p
, with a = 2k + `(ω) and b = 2k+1 + i2k + `(ω).
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By the mean value theorem (with a < ξ < b) we have

Gi(ω1̄)−Gi(ω0̄) =
p(ab+ ξ)p−1(b− a)

(b(b+ 1))p
=
p(a+ ξ/b)p−12k(1 + i)

b(b+ 1)p
,

since b− a = 2k(1 + i). Since

1/5 ≤ a+ ξ/b

b+ 1
,
2k(1 + i)

b
≤ 1,

by inequalities (2.4) there are positive and finite quantities c1 and c2 depending only on p
such that

(3.7) c1|Ik`(ω)|
1/p ≤ Gi(ω1̄)−Gi(ω0̄) ≤ c2|Ik`(ω)|

1/p.

The last inequality says that Gi is 1/p-Hölder continuous at the endpoints of each basic
interval with constant independent of the interval. On the other hand, the first inequality
shows that the exponent 1/p cannot be improved. In fact, if there is an ε > 0 such that
Gi(ω1̄) − Gi(ω0̄) ≤ c|Ik`(ω)|

1/p+ε then 0 < c1c
−1 ≤ |Ik`(ω)|

ε for all k, which is impossible
because |Ik`(ω)| → 0 as k increases. Therefore, the second claim is proved.

To complete the proof of the first claim we need the following result of [CMPS05] (Lemma
3.5):

Let J be an open interval and let k ∈ N . Then
X

l:Ik
l
⊂J

|Ikl |1/p ≤ 4|J |1/p.

Let x and y be arbitrary endpoints and ε > 0. We define Lε = (x − ε, y + ε). As a
consequence of the construction note that x and y are endpoints of the k-step for some k, so
let x = x0 < . . . < xN = y be all the endpoints of the k-step between x and y. By Lemma 7
(a) we have that Gi(xn+1) − Gi(xn) = 0 if (xn, xn+1) is a gap. Thus, using inequality (3.7)
and the above lemma we obtain

|Gi(x)−Gi(y)| = |
N−1X
k=0

Gi(xk)−Gi(xk+1)| ≤
X

ω:Ik
`(ω)
⊂Lε

|Gi(ω1̄)−Gi(ω0̄)|

≤ c2

X
l:Ik
l
⊂Lε

|Ikl |1/p ≤ 4c2|Lε|1/p.

and the result follows letting ε→ 0. �

Remark. Once we have constructed an IFS with continuous derivatives that satisfies (3.1),
it follows from the last proposition and denseness of Ep that the derivatives are 1/p-Hölder
continuous on all Cp.

The following lemma will be useful to prove the Hölder continuity of the extension.

Lemma 9. Let f : (a, b)→ R and let a < c < b be such that f restricted to the intervals (a, c]
and [c, b) is α-Hölder continuous with constants C1 and C2 respectively. Then f is α-Hölder
continuous in (a, b) with constant C = 2 max{C1, C2}.

Proof. Let x ∈ (a, c) and y ∈ (c, b). Then

|f(y)− f(x)| ≤ C2(y − c)α + C1(c− x)α

≤ 2 max{C2(y − c)α, C1(c− x)α}
≤ C max{(y − c+ c− x)α, (c− x+ y − c)α} = C(y − x)α,
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and the lemma is proved. �

3.2. Construction of the derivatives. Here we define the derivatives Fi extending the
functions Gi to the whole interval I in such a way that 1/p-Hölder continuity be preserved
and that equation (3.1) holds. Firstly we give an equivalent condition to this equation in
terms of the lengths of gaps.

Lemma 10. Condition (3.1) is equivalent to f0(0) = 0, f1(|I|) = |I| and

(3.8) |L2n+1+`(iω)| =
Z
L2n+`(ω)

Fi, ω ∈ Ωn, n ≥ 0.

Proof. Suppose that (3.8) holds. For ω ∈ Ωn let ω̃ = ω2 . . . ωn. Then by (2.2) we get

|In`(ω)| =
X
k≥n

X
λ∈Ωk−n

|L2k+`(ωλ)|

=
X
k≥n

X
λ∈Ωk−n

Z
L

2k−1+`(ω̃λ)

Fω1(3.9)

=
Z
In−1
`(ω̃)

Fω1 = |fω1(In−1
`(ω̃) )|.

For n = 1 this implies that |fi(I)| = |I1
i |, and since both intervals have a common endpoint

it follows that they are the same. Inductively, if for n ≥ 1 equality fω(I) = In`(ω) holds for all
ω ∈ Ωn, then

|fωi(I)| = |fω1(In`(ω̃i))| = |I
n+1
`(ωi)|,

where we used (3.9) in the last equality. Hence each interval in the dynamical n + 1-step
has the same length as its corresponding interval associated to the sequence. Moreover, from
n = 1

In`(ω) = fω(I) = fω0(I)
[
fω(L1)

[
fω1(I)

and recall by definition that

(3.10) In`(ω) = In+1
`(ω0)

[
L2n+`(ω)

[
In+1
`(ω1);

then fωi(I) has a common endpoint with In+1
`(ωi) since fω is increasing. Therefore fω(I) = In`(ω)

for all ω ∈ Ωn, n ≥ 1.
On the other hand, if (3.1) holds then f0(0) = 0 and f1(|I|) = |I|; also by hypothesis

In`(ω) = fω1(In−1
`(ω̃) (I)) = In+1

ω0

[
fω1(L2n−1+`(ω̃))

[
In+1
ω1 ,

hence fω1

�
L2n−1+`(ω̃)

�
= L2n+`(ω) by (3.10), and equality (3.8) follows. �

Obviously one can define on each gap a smooth function that satisfies the endpoint condi-
tion (3.6) and also (3.8), but we need to do this with a uniform bound of the Hölder constants
on all gaps. Below we show that this can be realized if, for any gap in a sufficiently large
step, the graph of Fi on this gap coincides with the equal sides of an isosceles triangle as it
is shown in Figure 3.1. This construction will be possible whenever the triangle is above the
x-axis, since we want the derivatives to be positive.

Remark. The values of Gi at the endpoints of each gap coincide (Lemma 7 (a)), but if we
define Fi on L2n+`(ω) as the constant value Gi(ω10̄), then (3.8) does not hold because this
function has too much area over this gap.
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Let us denote with hi2n+`(ω) the height of the triangle over the gap L2n+`(ω).

Lemma 11. There is an integer np such that on each gap L2n+`(ω), with ω ∈ Ωn and n ≥ np,
it is possible to define a positive function gω through the isosceles triangle as in Figure 3.1
so that it satisfies (3.8). Moreover, for these gaps we have that hi2n+`(ω) ≤

p
2n . Furthermore,

the 1/p-Hölder constants of these functions are uniformly bounded.

Proof. Let us define l = `(ω), so that `(ω1) = 2l + 1 and `(iω) = i2n + l. Let R be the
area of the rectangle with base L2n+`(ω) and height Gi(ω10̄) (the dotted rectangle in Figure
3.1). The area under the triangle decreases continuously as the vertex approaches the x-axis
being equal to 1/2R when they intersect. So, by condition (3.8), it is necessary to verify that
1/2R < |L2n+1+`(iω)| for all n big enough; that is

1
2

� 1
2n + l

�p� 2n+1 + 2l + 1
2n+2 + i2n+1 + 2l + 1

�p
<
� 1

2n+1 + i2n + l

�p
.

Writing a = 2n + l, the last inequality is equivalent to��2a+ 1
2a

��
a+ 2n(1 + i)

a+ 2n(1 + i) + 1/2

��p
< 2.

Each factor in the product tends to 1 as n increases, thus the inequality holds for every
n ≥ np, where np is an integer depending on p.

For n ≥ np we know the area of the triangle so we can estimate its height:

hi2n+l = 2
Ri2n+l − |Li2n+1+i2n+l|

|L2n+l|

= 2
��

2n+1 + 2l + 1
2n+2 + i2n+1 + 2l + 1

�p
−
�

2n + l

2n+1 + i2n + l

�p�
.

Applying the mean value theorem (0 < ξ < 1/2) we obtain

hi2n+l = 2
��

a+ 1/2
a+ 2n(1 + i) + 1/2

�p
−
�

a

a+ 2n(1 + i)

�p�

= 2p
�

a+ ξ

a+ ξ + 2n(1 + i)

�p−1 2n(1 + i)
(a+ 2n(1 + i) + ξ)2

1
2

<
p

2n
.

For the last statement, let ω ∈ Ωn and l = `(ω). Let s be the midpoint of L2k+l and
take x and y in this gap. The absolute value of the slope of the side of the triangle is
mi

2k+l
= 2hi

2k+l
/|L2k+l|. First assume that s ≤ x, y. Then

|gω(x)− gω(y)| = mi
2k+l|x− y|

≤ mi
2k+l|L2k+l|1−1/p|x− y|1/p

≤ 4p|x− y|1/p.
Hence the Hölder constant is independent of ω. The case x, y ≤ s is symmetric, and for
x < s < y the inequality follows using Lemma 9 given later. �

Now we proceed to define the derivatives Fi, that will be the limit of a sequence of functions
{Fni }. Each Fni interpolates suitably the values of Gi at the endpoints of the basic intervals
of the n-step.
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L2n+ℓ(ω)

Gi(ω01̄)
b b

Gi(ω10̄)

1

Figure 3.1

To begin with, on each gap Lk, with 1 ≤ k ≤ 2np − 1 and np as in Lemma 11, we define
F
np
i joining the values of Gi at the endpoints of the gap so that it be C1, positive and its area

under the gap be given by (3.8). On the remaining intervals, that is, on the closed intervals
of the np-step, we interpolate linearly so that Fnpi is a continuous function. For n > np
we define Fni inductively: on the gap Lk, 1 ≤ k < 2n−1, Fni coincides with Fn−1

i ; on the
remaining gaps of the n-step, that is, on Lk′ , with 2n−1 ≤ k′ < 2n, we define the graph of Fni
as the sides of the isosceles triangle mentioned above; finally we complete the definition with
linear interpolation.

The sequence {F ki }k has the following property.

Lemma 12. {F ki }k is a uniform Cauchy sequence.

Proof. It is enough to prove that ‖F k+1
i − F ki ‖∞ = O

�
1
2k

�
for every k ≥ np. For this, notice

that F ki and F k+1
i coincide on the complementary gaps of the k-step, so we need to estimate

their difference for points in the closed intervals of that step. Let x ∈ Ik`(ω) = [ω0̄, ω1̄], with
ω ∈ Ωk. The functions are increasing in Cp so (see Figure 3.2)

Gi(ω0̄) ≤ F ki (x) ≤ Gi(ω1̄)

and
Gi(ω0̄)− hi2k+`(ω) ≤ F

k+1
i (x) ≤ Gi(ω1̄).

Then

(3.11) |F k+1
i (x)− F ki (x)| ≤ Gi(ω1̄)−Gi(ω0̄) + hi2k+`(ω).

Therefore the result follows as a consequence of the estimate in Lemma 11, inequality (3.7)
in the proof of Proposition 8 and since |Ik`(ω)| ≤ C2−kp. �

The previous lemma allows us to define Fi as the (uniform) limit of {F ki }k, which results
a continuous function. Integrating we obtain the system {fp,0, fp,1} that has Cp as attractor.

Remark. Because of the freedom to extend the derivatives on each gap it is obvious that there
is no uniqueness in the construction of the system.
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hi
2k+�(ω)�

� �

�

Ik+1
�(ω0) Ik+1

�(ω1)

Gi(ω0̄)

Gi(ω1̄)

1

Figure 3.2. F k
i in grey and F k+1

i in black.

End of proof of Theorem 4: It remains to show that Fi is 1/p-Hölder continuous on I. Con-
tinuity and Proposition 8 implies this on Cp (see the remark after that proposition). Also, by
definition and Lemma 11, Fi is 1/p-Hölder continuous on each gap with constant independent
of the gap. Let C be the maximum between this constant and the one given by Proposition
8. Take x and y in I with x < y. If these points are in different gaps, let ex and ey denote
the right and left endpoints of the respective gaps. Then

|Fi(x)− Fi(y)| ≤ |Fi(x)− Fi(ex)|+ |Fi(ex)− Fi(ey)|+ |Fi(ey)− Fi(y)|

≤ C
�
|x− ex|1/p + |ex − ey|1/p + |ey − y|1/p

�
≤ 3C|x− y|1/p,

which is what we need. The other possibilities for x and y in I follows in the same way. �

4. Conjugations

In this section we show how the sets Cp and A2−p are related. Since the attractors of
conjugate (smooth) systems satisfy ÜC = h(C), then they are diffeomorphic. In particular they
have the same Hausdorff, packing and box dimensions, since these quantities are invariant
under bilipschitz maps. Moreover, at their critical dimension, Hausdorff and packing measures
are positive and finite. Nevertheless, these facts are not sufficient to ensure that the sets are
smoothly conjugated.

Next we define the scaling function of a regular Cantor set, that is a complete invariant
for this class of sets and is due to Sullivan ([Sul88]).

Let ∆ be the unit simplex in R3, i.e.,

∆ = {(a, b, c) : a+ b+ c = 1, a, b, c ≥ 0}.
Given ω ∈ Ωk denote with ω? the reverse string ωk . . . ω1. For a C1+ε-regular Cantor C and
for each ω ∈ Ω, we define a function Rn : Ω→4 by

Rn(ω) =
�
|I(ω|n)?0|, |L(ω|n)? |, |I(ω|n)?1|

�
/|I(ω|n)? |.

These functions converge uniformly on Ω with an order of convergence O(βnε), where on Ω
we consider the metric dβ given in Section 2.
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Definition. The scaling function R : Ω→ int(∆) is defined by

R(ω) := lim
n→∞

Rn(ω).

With the metric dβ, the scaling function is Hölder continuous with exponent ε.

Theorem (Sullivan). Two Ck+ε-regular Cantor sets are Ck+ε-conjugated if and only if they
have the same scaling function.

As an application, we obtain the following theorem.

Theorem 13. The system
�
Cp, {fp,0, fp,1}

�
and

�
A2−p , {2−px, 2−px+(1−2−p)}

�
are C1+1/p-

conjugate. In particular, Cp is C1+1/p-diffeomorphic to A2−p.

Proof. By Sullivan’s Theorem we must verify that both scaling functions coincide. Since A2−p

has contraction ratio 2−p, it follows that its scaling function is

R(α) =
� 1

2p
,
2p − 2

2p
,

1
2p

�
.

Let us see that this is also the scaling function of Cp. Recall that for ω ∈ Ω,�
1

2n + `((ω|n)?) + 1

�p 2p

2p − 2
≤ |In`((ω|n)?)| ≤

2p

2p − 2

�
1

2n + `((ω|n)?)

�p
.

Then, by the identity `((ω|n)?i) = 2`((ω|n)?) + i for i = 0, 1, we obtain

|I(ω|n)?i|
|I(ω|n)? |

≤
�

2n + `((ω|n)?) + 1
2n+1 + `((ω|n)?i)

�p
≤ 1

2p

�
1 +

1
2n + `((ω|n)?)

�p
−→ 1

2p
,

with a similar lower bound, thus |I(ω|n)?i|/|I(ω|n)? | → 1/2p. Since the sum of the coordinates
of the scaling function is 1, we obtain the coincidence of these functions. �

The scaling function also exists if weaker conditions on the derivatives of the functions are
required. For example, if they satisfy the Dini condition (see for example [FJ99]), or more
generally, a bounded distortion property. We finish this section illustrating that, despite the
fact that the functions of the IFS are only C1, the scaling function may exist, and moreover,
it can be a Hölder continuous function.

Example 14. The Cantor set Cp,1 associated to the sequence {(log n)/np} satisfies:
1) It is the attractor of an IFS {f0, f1} with fi ∈ C1.
2) The derivatives are not ε-Hölder continuous for any ε > 0 (actually, they do not satisfy

the bounded distortion property).
3) Its scaling function is constant, with value

�
1
2p ,

2p−2
2p , 1

2p

�
; in particular this function is

ε-Hölder continuous, for any ε > 0.

Proof. 1) First, for all 0 ≤ l < 2k, k ≥ 1 we have

(4.1)
1

(2k + l + 1)p
(c̃p + cp log(2k + l)) ≤ |Ikl | ≤ (c̃p + cp log(2k + l + 1))

1
(2k + l)p

,

where cp =
P
j≥0

1
2(p−1)j and c̃p =

P
j≥0

log 2j

2(p−1)j ; this is obtained in the same way as the bounds
of Lemma 1.
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Now we show that Cp,1 is the attractor of a system {f0, f1} with continuous derivatives
such that fω(I) = Ik`(ω) for all ω ∈ Ωk, k ≥ 1. Given ω ∈ Ωk, by estimate (4.1) we have that

lim
n→∞

���In+1
`(i(ωū)|n)

������In`((ωū)|n)

��� =
�

2k + `(ω) + u

2k+1 + i2k + `(ω) + u

�p
, for u = 0, 1.

By Proposition 5, this limit gives the values of the derivatives at the endpoints. Notice that
these are the same values than the one obtained in the Cp case; in particular, they coincide
at the endpoints of any gap (Lemma 7 (b)).

As before we must subtract some area over each gap, which can be done with triangles
because the same bounds as in Lemma 11 hold.

2) It was shown in [GMS07] that dimH Cp,1 = 1/p and moreover, that

H1/p(Cp,1) = +∞,

whence this set cannot be the attractor of a system whose functions have ε-Hölder continuous
derivatives, for any ε > 0 (neither can the derivatives satisfy the bounded distortion property).

3) Given ω ∈ Ω we have

|I(ω|n)?i|
|I(ω|n)? |

≤
�

2n + `((ω|n)?) + 1
2n+1 + `((ω|n)?i)

�p
· c̃p + cp log(2n+1 + `((ω|n)?i) + 1)

c̃p + cp log(2n + `((ω|n)?))
−→ 1

2p
,

since one can show that the second factor in the product goes to 1. The lower bound is
similar. Hence the scaling function is R(ω) =

�
1
2p ,

2p−2
2p , 1

2p

�
for all ω ∈ Ω. �

Remark. The scaling functions of (Cp, {fp,1, fp,0}) and (Cp,1, {f0, f1}) coincide by item 3)
above. Nevertheless these Cantor sets are not even Lipschitz conjugate in view of 1). This
shows that in Sullivan’s Theorem the regularity hypothesis cannot be weakened to C1.

5. Sums and convolutions

In this section we provide results on sums of two Cantor sets in the family {Cp} and on
the convolution of measures supported on these sets. We begin giving an estimate of the
thickness of Cp, which is used to obtain conditions so that the sumset has nonempty interior.
Subsequently, for a given compact K ⊂ R, we adapt a result of Peres and Schlag [PS00] to
study the size of the set of parameters where the convolution measure H1/p|Cp ∗ H1/p′ |Cp′
is not absolutely continuous (Corollary 18) and also where the formula dim(K + Cp) =
min{dimK + dimCp, 1} does not hold.

Let L be a bounded gap of a Cantor set C. A bridge B of L is a maximal interval that
has a common endpoint with L and does not intersect any gap whose length is at least that
of L. We say that (B,L) is a bridge/gap pair of C. The thickness of C is defined by

τ(C) = inf
� |B|
|L|

: (B,L) is a bridge/gap pair
�
.

An important consequence of Newhouse’s gap lemma is that the sum C1 +C2 of two Cantor
sets is a finite union of intervals if τ(C1) · τ(C2) ≥ 1 (see [PT93]). Moreover, if none of the
translates of either of the Cantor sets are contained in a (bounded) gap of the other, then
C1 + C2 is an interval.
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In the classical case we have τ(Ar) = 2r/(1 − 2r). If 2−p takes the place of r one would
expect that Cp + Cp′ be an interval when 1

2p−2
1

2p′−2
≥ 1. But the thickness of Cp is bigger

than expected because of the nonlinearity of the set. Nevertheless, a slightly weaker result
can be attained if we consider a local version of thickness instead.

Given x ∈ C let ω ∈ Ω be such that π(ω) = x. Then the Cantor sets Ckx := C ∩ Ik
`(ωk)

decrease to {x} as k →∞. The local thickness of C at x is

τloc(C, x) := lim
k→∞

τ(Ckx).

It can be shown, following the proof of Newhouse’s lemma, that if x1 ∈ C1 and x2 ∈ C2

are such that τloc(C1, x1) · τloc(C2, x2) > 1, then C1 + C2 contains a nonempty open interval.
Moreover, if

inf
x∈C1,y∈C2

¦
τloc(C1, x) · τloc(C2, y)

©
> 1

then C1 + C2 is a finite union of intervals.
In general, regular Cantor sets have constant local thickness (see [PT93]). In our case it

is easy to compute this value.

Proposition 15. We have

(5.1)
1
2p

1
2p − 2

≤ τ(Cp) ≤
�2

3

�p 1
2p − 2

.

Moreover

(5.2) τloc(Cp) =
1

2p − 2
.

Proof. Since lengths of bounded gaps of Cp are lexicographically decreasing, the bridge for
L2k+j is the closed interval of the k + 1-step which is at its right, that is Ik+1

2j+1. Therefore
inequalities (2.4) implies

(5.3)
1

2p − 2

�
2k + j

2k + j + 1

�p
≤
|Ik+1

2j+1|
|L2k+j |

≤ 1
2p − 2

�
2k + j

2k + j + 1/2

�p
.

Thus the bounds for the quotient bridge/gap increase to 1/(2p − 2) as k and j increase.
From this, for k = j = 0, the first inequality in (5.3) gives a lower bound for all quotients
bridge/gap and therefore the lower bound in (5.1). Moreover, k = j = 0 gives the smallest
of all upper bounds in (5.3), that is the second inequality in (5.1).

Note that for the local thickness every bridge/gap pair of Ckp,x is one of Cp; hence by (5.3)
we have

1
2p − 2

�
2k

2k + 1

�p
≤ τ(Ckp,x) ≤ 1

2p − 2

�
2k+1 − 1

2k+1 − 1/2

�p
,

and (5.2) follows letting k →∞. �

As a consequence of the above we have the following result.

Corollary 16. For 1
2p(2p−2)

1
2q(2q−2) ≥ 1 the set Cp + Cq is an interval. Moreover, if 1

2p−2 ·
1

2q−2 > 1 then Cp + Cq is a finite union of intervals.

Finally we concentrate on the measure theoretic results of the dimension of Cp + Cq and
the corresponding problem of convolution measures given in the introduction.
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Indeed we will work with a more general parametric family. Let {Cp,q}p>1,q∈R be the
family of Cantor sets associated to the sequence {logq n/np}n (the term n = 1 is defined as
1). Notice that dimCp,q = 1/p; see [GMS07]. We regard q as a C∞ function of p on (1,+∞),
so from now onwards {Cp,q}p is an uniparametric family with q depending on p.

Recall that a finite measure η with compact support is a Frostman measure with exponent
s > 0 if

η(Br(x)) ≤ Crs, for x ∈ R and r > 0.

By Frostman’s Lemma, given a compact set K and s < dimK there is a Frostman measure
supported on K with exponent s; see Mattila [Mat95].

Let µ0 denote the uniform product measure on Ω = {0, 1}N. A probability measure on
Cp,q is defined by υp,q = µ0 ◦ Γ−1

p,q , where Γp,q : Ω → Cp,q is the projection defined in (2.6).
Note that for q ≡ 0, we have υp = υp,0, where υp is the invariant measure of the regular i.f.s.
that generates Cp with weights (1/2, 1/2). Also this is a Frostman measure with exponent
1/p; see [Fal97], Theorem 5.3.

The main theorems of this part are stated below. Let us denote with ν ∈ L2 (ν /∈ L2) the
fact that the measure ν has (does not have) a density in L2(R).

Theorem 17. Let η be a Frostman measure with exponent s ∈ (0, 1) and let p̄ be such that
s+ 1/p̄ = 1. Given J ⊂ (1, p) a closed interval, J = [p0, p1] we have

(5.4) dim
�¦
p ∈ J : η ∗ υp,q /∈ L2

©�
≤ 2− (s+

1
p1

).

In particular, the measure η ∗ υp,q has a density in L2 for L-a.e. p ∈ (1, p̄).

Let us denote by µ� ν if µ is absolutely continuous with respect to ν.

Corollary 18. For a fixed p′ > 1 we have υp ∗ υp′ � L (H1/p |Cp ∗H1/p′ |Cp′� L) with
density in L2(R) for L-a.e. p such that dimCp + dimCp′ > 1.

Remark. The convolution υp′ ∗ υp is singular with respect to L if dimCp + dimCp′ < 1, since
supp (υp ∗ υp′) = Cp + Cp′ .

For sumsets we have the following result, that is analogous to Theorem 5.12 for homoge-
neous Cantor sets in [PS00].

Theorem 19. Let K ⊂ R be a compact set and J = [p0, p1] ⊂ (1,+∞). Then

(5.5) dim
¦
p ∈ J : dim(K + Cp,q) < dimK + dimCp,q

©
≤ dimK + dimCp0,q(p0)

and

(5.6) dim
¦
p ∈ J : H1(K + Cp,q) = 0

©
≤ 2− (dimK + dimCp1,q(p1)).

Note that (5.6) follows from (5.4) choosing s < dimK, taking a Frostman measure on K
with exponent s and then letting s↗ dimK.

5.1. Proof of Theorems 17 and 19. These theorems are a consequence of a projection
theorem of Peres and Schlag [PS00] (see also [PSS00]) and their proofs follow closely that of
Theorem 5.12 in that paper. We need to state a one dimensional version of the projection
theorem, and for this we may introduce some definitions and notation.
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Definition. The Sobolev dimension of a finite measure on Rn with compact support is
defined by

dims(ν) = sup
n
α :

Z
(1 + |x|)α−1|ν̂(x)|2 dx < +∞

o
.

The properties of Sobolev dimension that we will use are stated below; see Mattila [Mat04],
Proposition 5.1.

Proposition 20. Let ν be finite measure on Rn with compact support.
1. If 0 ≤ dims ν ≤ n, then dims ν ≤ dim(supp ν).
2. If dims ν > n, then ν ∈ L2(Rn).

The general setting of the projection theorem consists in a compact metric space (Θ, d)
together with a continuous map Π : L × Θ → R, where L ⊂ R is an open interval. For this
map it is assumed that for any compact J ⊂ L and m ∈ N there exists cm,J such that���� dmdpmΠ(p, ω)

���� ≤ cm,J
for every p ∈ J and ω ∈ Θ. The functions Πp(·) := Π(p, ·) can be seen as a family of
projections parameterized by p. Given a finite measure µ on Θ, consider the family of
projected measures νp = µ ◦ Π−1

p . Peres and Schlag [PS00] related the smoothness of the
projected measures νp to the α-energy of the measure µ, defined by Eα(µ) =

R
Θ

R
Θ
dµ(ω)dµ(τ)
d(ω,τ)α .

For this it is crucial that Π verifies the transversality condition, which is a kind of non
degeneracy condition.

Definition. For any distinct ω1, ω2 ∈ Θ and λ ∈ J let

Φω1,ω2(λ) =
Π(λ, ω1)−Π(λ, ω2)

d(ω1, ω2)
.

For any β ∈ [0, 1) we say that J is an interval of transversality of order β for Π if there is a
constant Cβ such that condition

|Φω1,ω2(λ)| ≤ Cβd(ω1, ω2)β ∀ λ ∈ J, ∀ω1, ω2 ∈ Θ

implies

(5.7)
���� ddλΦω1,ω2(λ)

���� ≥ Cβd(ω1, ω2)β.

In addition, we say that Π is regular on J if under the same condition and for all positive
integer m there is a constant Cβ,m such that

(5.8)
���� dmdλmΦλ(ω1, ω2)

���� ≤ Cβ,md(ω1, ω2)−βm.

Next we state (incompletely) the Peres-Schlag projection theorem.

Theorem 21 ([PS00], Theorem 2.8). Let Θ, J and Π be as above. Suppose that J is an
interval of transversality of order β for Π for some β ∈ (0, 1] and that Π is regular on J . Let
µ be a finite measure on Θ with finite α-energy for some α > 0. Then, for any σ ∈ (0, α] we
have

(5.9) dim
¦
p ∈ J : dims(νp) ≤ σ

©
≤ 1 + σ − α

1 + a0β
,



20 IGNACIO GARCIA

where a0 is some absolute constant. Moreover, for any σ ∈ (0, α− 3β] we have

(5.10) dim
¦
p ∈ J : dims(νp) < σ

©
≤ σ.

Now we apply the above to prove Theorems 17 and 19. For notational convenience we
state some preliminary lemmas in a very general setting.

Let {Λp}p∈L be a family of Cantor sets, where L is an open interval. It is assumed that
dim Λp is a decreasing function of p. The code map from Ω = {0, 1}N to Λp is denoted πp;
we may assume that πω ∈ C∞(J) for each ω ∈ Ω , where πω(p) := πp(ω). Now fix a compact
set K ⊂ R and define Θ = K × Ω. The projection map Π : L×Θ→ R is defined by

Π(p, x, ω) = x+ πp(ω).

Let η be a Frostman measure on K with exponent s (sufficiently close to dimK) and consider
on the space Θ the measure µ = µ0 × η, with µ0 the uniform product measure on Ω.

Given J = [p0, p1] ⊂ L we define a metric on Ω by

d̃(ω, τ) =
�
dk, if |ω ∧ τ | = k
0, if ω = τ

,

where dk = max|γ|=k |Ip0γ |, with Ipγ the corresponding interval of the k-step of Λp. Thus, the
metric on Θ is

d((x, ω), (y, τ)) = |x− y|+ d̃(ω, τ).

Remark 22. It can be verified directly from the definition that the projected measure νp =
µ ◦Π−1

p coincides with the convolution η ∗ υp.

Let us begin with the energy estimate for µ.

Lemma 23. Let J = [p0, p1] ⊂ (1,∞). Then the α-energy of µ is finite provided α <
s+ dim Λp0.

Proof. Note that

Eα(µ) =
Z

Ω

Z
Ω

Z
K

Z
K

dη(x) dη(y) dµ0(ω) dµ0(τ)
(|x− y|+ d̃(ω, τ))α

=
Z
K

Z
K

X
k≥0

1
2k

dη(x) dη(y)
(|x− y|+ dk)α

=
Z
K

Z
K

X
k:|x−y|≤dk

+
Z
K

Z
K

X
k:|x−y|>dk

= I + II.

We are going to estimate I and II separately. We have

I ≤
X
k≥0

1
2k

1
dαk

(η × η)
¦
|x− y| ≤ dk

©
≤ c

X
k≥0

1
2k

1
dα−sk

,

where the last inequality holds since η is a Frostman measure with exponent s. Then I < +∞
because the last sum is bounded by a convergent geometrical series. This obtained in the
following way. Choose ε > 0 such that t := α−s+ε < dim Λp0 . Note that 2kdtk ↗ +∞; this is
because this quantity is an upper bound for the t-dimensional cover of Λp0 with the intervals
of the k-step. Then 2kdtk > 1 for all big enough k, or equivalently, (2kdα−sk )−1 < 2k

−ε
α−s+ε .
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For the second term, with t as above, we have |x − y| > dk > 2−k/t. If κ(x, y) is the
minimum k which verifies this inequality, that is, κ(x, y) = b− log |x− y|/ log 21/tc, then

II ≤ c′
Z
K

Z
K

1
2κ(x,y)

dη(x) dη(y)
|x− y|α

≤ c′′
Z
K

Z
K

dη(x) dη(y)
|x− y|α−t

< +∞,

the last inequality is because α − t = s − ε is smaller than the exponent of η (see [Mat95],
chapter 8). �

A sufficient condition for transversality is given below.

Lemma 24. The closed interval J ⊂ (1,+∞) is of transversality of order β for Π provided
there is a constant cβ such that

(5.11) |π′ω(p)− π′τ (p)| ≥ cβdβ+1
k , if |ω ∧ τ | = k,

for all ω, τ ∈ Ω, p ∈ J . Moreover, Π is regular on J if

(5.12)
��� dm
dpm

πω(p)− dm

dpm
πτ (p)

��� ≤ cβ,md1−βm
k

for some constant cβ,m.

Proof. Suppose

(5.13) |Φω1,ω2(p)| ≤ Cβd(ω1, ω2)β, for all ω1, ω2 ∈ Θ,

for some small enough constant Cβ. Now fix ω1 = (x, ω), ω2 = (y, τ) ∈ Θ. We may assume
k = |ω∧ τ | 6= 0, since otherwise what follows is trivial. Let r = d((x, ω), (y, τ)) = |x−y|+dk.
Observe that transversality and regularity follow easily from (5.11) and (5.12) if we can show
that r ≈ dk. This is a consequence of (5.13). In fact, if |x− y| ≥ 2dk then u = |x− y|/dk > 2,
which implies

|Φω1,ω2(p)| ≥ |x− y| − dk
|x− y|+ dk

=
u− 1
u+ 1

≥ C > 0.

This contradicts (5.13) if Cβ < C. �

Proof of Theorem 17. Recall that apn = (log n)q/np, where q = q(p) ∈ C∞(J). Firstly note
that Γω ∈ C∞((1,+∞)) for each ω. In fact, since any point in a Cantor set is (can be described
as) the sum of the length of all gaps which lie to its left, we obtain Γp(ω) =

P
n≥1 an(ω),

where an(ω) = apn if the gap Ln is to the left of Γp(ω) and an(ω) = 0 otherwise. Also, for
each p and m we have that

bp,mn =
dman
dpm

≈ (log n)q+m

np
,

and therefore one can associate to {bp,mn }n a Cantor set whose intervals have lengths equivalent
to those of Cp,q+m. In particular, Lemma 1 (or its proof) implies

(5.14)
kq+m

2kp
cp ≤

���� dmdpmΓω(p)− dm

dpm
Γτ (p)

���� ≤ c′pkq+m + 1
2kp

,

where k = |ω ∧ τ | and cp and c′p are uniformly bounded on compact subsets of (1,+∞).
Transversality holds in smaller subintervals of J. That is, given β ∈ (0, 1) decompose

J =
SN
i=1 Ji, with Ji = [pi, pi+1], so that

β >
pi+1

pi
− 1.
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Choose ε > 0 such that β − ε satisfies the above inequality. Then, letting |ω ∧ τ | = k and
q̃ = minp∈I{q(p)}, we have from (5.14)

|Γ′ω(p)− Γ′τ (p)| ≥ cI
kq̃+1

2kpi+1
> cI

kq̃+12kpiε

2kpi(β+1)
≥ cI,β

kq(pi) + 1
2kpi(β+1)

≥ c′I,βd
β+1
k ,

the last inequality follows from Lemma 1. Hence each Ji is an interval of β transversality by
Lemma 24. Regularity can be verified from (5.14) as well.

Since on Ji the α-energy of µ is finite provided α < s+ 1/pi, from Remark 22 and (5.9) in
Theorem 21 we obtain

dim
�¦
p ∈ Ji : η ∗ υp,q /∈ L2

©�
≤ dim

�¦
p ∈ Ji : dims(η ∗ υp) ≤ 1

©�
≤ 2− s+ 1/pi

1 + a0β
≤ 2− s+ 1/p1

1 + a0β
,

and (5.4) follows letting β → 0. �

To prove (5.5) in Theorem 19 we proceed as in the above proof but we use (5.10) in
Theorem 21 instead. Details are omitted.
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