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Abstract. We consider the Schrödinger equation for the harmonic oscillator

i∂tu = Hu, where H = −∆ + |x|2, with initial data in the Hermite–Sobolev

space H−s/2L2(Rn). We obtain smoothing and maximal estimates and apply
these to perturbations of the equation and almost everywhere convergence

problems.

1. Introduction

We consider the regularity of the Schrödinger equation

(1) i∂tu = Hu

with initial data u( · , 0) = f , where H is the Hermite operator defined by

(2) H = −∆ + |x|2, x ∈ Rn.
This is an important model in quantum mechanics (see for example [7]).

The trigonometric polynomials are the eigenfunctions of ∆, and this is what
makes the Fourier transform such an effective tool to attack the free equation,
i∂tu = −∆u. Similarly, this enables us to measure the smoothness of the initial
data with the fractional Sobolev spaces W s,2(Rn) = (I−∆)−s/2L2(Rn) defined via
the Fourier transform.

The Schrödinger equation (1) has been considered with respect to these spaces
(see for example [29]), however, the eigenfunctions of H are the Hermite functions
which are also dense in L2(Rn), and so it is often more efficient to decompose
the initial data with these. Similarly, it seems in some sense more natural to
measure the ‘smoothness’ of the initial data in the Hermite–Sobolev spaceHs(Rn) =
H−s/2L2(Rn).

Although the spectrum of H is discrete, recalling the free equation with periodic
data (see for example [13]), our results will generally bear more resemblance to
those for the nonperiodic free equation. In particular, by applying the projection
estimates of Karadzov [8] and Koch–Tataru [12], in Section 3 we obtain ‘smoothing’
estimates which are unavailable in the periodic case.

In Section 4, we combine these estimates with the Strichartz estimates [10] and
Wainger’s Sobolev embedding theorem [27] to obtain the following result.

Theorem 1. Let p ∈ [ 2(n+2)
n ,∞], q ∈ [2,∞), n

p + 2
q 6

n
2 and

s(p, q) = n
(1

2
− 1
p

)
− 2
q
.
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Then

(3) ‖e−itHf‖Lpx(Rn, Lqt [0,2π]) 6 Cs‖f‖Hs(Rn), s > s(p, q),

and this is false when s < s(p, q).

In Section 4 we also deduce the following almost everywhere convergence prop-
erties. In one spatial dimension, this is a consequence of Theorem 1, and in higher
dimensions it follows from a second smoothing estimate that is proved in Section 3.

Corollary 1. Let f ∈ Hs(Rn) with s > 1/3 if n = 1, or s > 1/2 if n > 2. Then

lim
t→0

e−itHf(x) = f(x) a.e. x ∈ Rn.

Cowling [6] proved this convergence for data in Hs(Rn) with s > 1. In one
spatial dimension, this was improved by Torrea and the first author [2] (see [3] for
a Laguerre version) to include data in Hs(R) with s > 1/2.

By a theorem of Thangavelu [21], f ∈ W s,2(Rn) with compact support also
belongs to Hs(Rn), thus we recover a weaker version of the almost everywhere
convergence result of Yajima [29] for data in W s,2(Rn) ∩ L1(Rn) with s > 1/2.

Corollary 1 has subsequently been improved by Sjögren and Torrea [17] in one
spatial dimension. They have proven that the convergence holds for data in either
W

1
4 ,2(R) or H 1

4 (R), and this is sharp in the sense that for lower regularities the
convergence is not guaranteed in either space.

Finally, in Section 5, we consider a perturbation of the equation (1) of the form{
idudt =

(
−∆ + |x|2 + V (x)

)
u

u( · , 0) = u0 ∈ L2(Rn).

We prove that global existence of a solution is guaranteed when n > 2 and ‖V ‖Ln/2
is sufficiently small. For n > 3 this can also be obtained via Theorem 1 combined
with the arguments of Yajima [28].

Throughout, c and C will denote positive constants that may depend on the
dimension n. Their values may change from line to line.

2. Preliminaries

In one dimension, the Hermite polynomials Hk are defined by

Hk(x) = (−1)k ex
2 dk

dxk
(e−x

2
), x ∈ R,

and by normalization we obtain the Hermite functions,

hk(x) =
e−x

2/2Hk(x)
(π1/22kk!)1/2

, x ∈ R.

In higher dimensions, for each multi-index k = (kj)nj=1 ∈ Nn0 , the Hermite func-
tions hk are defined by

hk(x) =
n∏
j=1

hkj (xj), x = (x1, . . . , xn) ∈ Rn.

These are the eigenvectors of the Hermite operator defined in (2). In fact

Hhk = (2|k|+ n)hk,

where |k| =
∑n
j=1 kj .
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We consider the space of finite linear combinations of Hermite functions F(Rn),

f =
∑

k∈Nn0 : |k|6N

akhk,

where ak are the Fourier–Hermite coefficients

ak =
∫

Rn
f(x)hk(x)dx.

These are dense in L2(Rn), and so, by the orthonormality of the Hermite functions,

(4) ‖f‖L2(Rn) =

∑
k∈Nn0

|ak|2
1/2

,

and the Hermite–Sobolev norm is defined accordingly,

‖f‖Hs(Rn) =

∑
k∈Nn0

(2|k|+ n)s|ak|2
1/2

.

For initial data f ∈ F(Rn), the solution to the Schrödinger equation (1) can be
written

(5) e−itHf =
∑
k∈Nn0

e−it(2|k|+n)akhk.

Note that the solution is periodic in time. Comparing (4) with (5) we see that

(6) ‖e−itHf‖L2(Rn) = ‖f‖L2(Rn), t ∈ R.

Finally, by the Mehler formula we also have the integral representation

e−itHf(x) =
∫

Rn
Kt(x, y) f(y) dy, t 6= jπ

2
, j ∈ Z,(7)

where

Kt(x, y) =
1

[2πi sin(2t)]n/2
exp

(
i

2
|x− y|2 cot(2t)− ix · y tan(t)

)
.

3. Smoothing estimates

For the free equation, Kenig, Ponce and Vega [11] proved the sharp estimate

sup
x∈R
‖eit∆f(x)‖L2

t (R) 6 C‖f‖Ẇ− 1
2 ,2(R)

,

where Ẇ s,2(Rn) denotes the homogeneous Sobolev space (−∆)−s/2L2(Rn). The
estimate is false when the homogeneous space is replaced by the inhomogeneous
one. For the harmonic oscillator, we prove something similar. Note that the spec-
trum of H is bounded away from the origin, so there is no distinction between the
homogeneous and inhomogeneous Hermite–Sobolev spaces.

In order to get a global bound in space with no decay, we lose some regularity
with respect to the free equation. The relationship between the decay and the
regularity is sharp however. To see this, consider f = hk, so that the inequality in
the following proof can be reversed.
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Theorem 2. Let 1/6 6 s 6 1/2. Then

sup
x∈R

(1 + |x|)1/6−s‖e−itHf(x)‖L2
t [0,2π] 6 Cs‖f‖H−s(R).

Proof. As F(R) = Hs/2F(R) is dense in H−s(R), it will suffice to consider f ∈
F(Rn) and we write f =

∑
k∈N0

akhk. Observe that by the orthogonality of the
trigonometric polynomials,

‖e−itHf(x)‖2L2
t [0,2π] =

∫ 2π

0

∑
j∈N0

e−it(2j+1)ajhj(x)

(∑
k∈N0

eit(2k+1)akhk(x)

)
dt

= 2π
∑
k∈N0

|ak|2h2
k(x).

We use the following property of the Hermite functions which can be found in
[20, pp. 26 , Lemma 1.5.1]: There exists a constant c such that

(8) hk(x) 6 ck−1/4, x ∈ [−R,R], k > R2.

Combining this with a second property which can be found in [19, pp. 242,
Theorem 8.91.3] we obtain: Let 0 6 α 6 1/3. Then there exist constants c0 and k0

such that

(9) c−1
0 k−α/2−1/12 6 sup

x∈R
(1 + |x|)−αhk(x) 6 c0k−α/2−1/12, k > k0.

Thus, interchanging the sum and the supremum,

sup
x∈R

(1 + |x|)−2α‖e−itHf(x)‖2L2
t [0,2π] 6 2πc20

∑
k∈N0

(2k0 + 1)α+1/6

(2k + 1)α+1/6
|ak|2.

Finally, by writing s = α+ 1/6, and taking the square root,

sup
x∈R

(1 + |x|)1/6−s‖e−itHf(x)‖L2
t [0,2π] 6 Cs

(∑
k∈N0

(2k + 1)−s|ak|2
)1/2

,

as desired. �

For the free equation, Vega [16,24] (see also [9], [14], [30]) proved that for n > 2
and p > 2(n+1)

n−1 ,

‖eit∆f‖Lpx(Rn, L2
t (R)) 6 Cs‖f‖Ẇ s,2(Rn), s = n

(1
2
− 1
p

)
− 1.

Note that s is negative in the range p ∈ [ 2(n+1)
n−1 , 2n

n−2 ).
In the following theorem we again lose some regularity with respect to the free

equation, however we will see that it is sharp.

Theorem 3. Let n > 2, p > 2 and

s(p) =


1
p −

1
2 , 2 6 p 6 2(n+3)

n+1

n
3

(
1
2 −

1
p

)
− 1

3 ,
2(n+3)
n+1 6 p 6 2n

n−2

n
(

1
2 −

1
p

)
− 1, 2n

n−2 6 p 6∞.

Then
‖e−itHf‖Lpx(Rn, L2

t [0,2π]) 6 Cs‖f‖Hs(Rn), s > s(p),
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and this is false when s < s(p).

Proof. By density, it will suffice to consider f ∈ F(Rn) and we write f =
∑

k∈Nn0
akhk.

As before,

‖e−itHf‖2L2
t [0,2π] =

∫ 2π

0

∑
j∈Nn0

e−it(2|j|+n)ajhj

∑
k∈Nn0

eit(2|k|+n)akhk

 dt

= 2π

 ∑
j,k : 2|k|+n=2|j|+n

aj akhj hk


= 2π

∑
λ∈N

∑
j : 2|j|+n=λ

∑
k : 2|k|+n=λ

aj akhj hk

 .

We recall the spectral projection operators Pλ defined by

Pλf(x) =
∑

2|k|+n=λ

akhk(x).

We see that

‖e−itHf‖L2
t [0,2π] = (2π)1/2

(∑
λ∈N

PλfPλf

)1/2

= (2π)1/2

(∑
λ∈N
|Pλf |2

)1/2

,

and by Minkowski’s inequality in L
p/2
x ,

(10) ‖e−itHf‖Lpx(Rn, L2
t [0,2π]) 6 (2π)1/2

(∑
λ∈N
‖Pλf‖2Lp(Rn)

)1/2

.

Now by combining the results of Karadzhov [8, pp. 108, Theorem 3] and Koch–
Tataru [12, pp. 376, Corollary 3.2], we have the sharp projection estimates

(11) ‖Pλf‖2Lp(Rn) 6 Cλ
s(p)‖Pλf‖2L2(Rn),

where s(p) is as in the statement of the theorem. By orthogonality,

‖Pλf‖2L2(Rn) =
∑

k : 2|k|+n=λ

|ak|2,

so that using (11) we see that

(12)
∑
λ∈N
‖Pλf‖2Lp(Rn) 6

∑
λ∈N

λs‖Pλf‖2L2(Rn) = ‖f‖2Hs(Rn).

The argument is completed by substituting (12) into (10).
To see that these estimates are sharp we observe that |e−itHPλf | = |Pλf | so that

‖e−itHPλf‖L2
t [0,2π] = (2π)1/2|Pλf |. Thus, an improvement of the previous estimate

would yield improved estimates for the spectral projection operator, which is not
possible (see [12]). �

For the free equation, Vega [24,25] (see also [11]) proved that for all α > 1,(∫ ∞
−∞

∫
Rn
|eit∆f(x)|2 dxdt

(1 + |x|)α

)1/2

6 Cα‖f‖
Ẇ−

1
2 ,2(Rn)

.
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On the other hand, Sjölin [18] and Constantin–Saut [5] independently proved a sim-
ilar estimate for data in the inhomogeneous Sobolev space. This was subsequently
refined by Ben-Artzi–Klainerman [1] and Kato–Yajima [9] for n > 2, so that for all
α > 2,

(13)
(∫ ∞
−∞

∫
Rn
|eit∆f(x)|2 dxdt

(1 + |x|)α

)1/2

6 Cα‖f‖
W−

1
2 ,2(Rn)

,

and this is false when α < 2 (see [27]). In an involved argument, Yajima [29] proved
that if one integrates over a compact integral of time, then (13) holds for α > 1
with ∆ replaced by a class of operators that includes both ∆ and H. Considering
H− 1

2 (Rn) instead of W−
1
2 ,2(Rn) enables the following simple proof more in the

spirit of [11].

Theorem 4. For all α > 1,(∫ 2π

0

∫
Rn
|e−itHf(x)|2 dxdt

(1 + |x|)α

)1/2

6 Cα‖f‖H−s(Rn), s > 1/2,

and this is false if s < 1/2.

Proof. By density, it will suffice to consider f ∈ F(Rn) and we write f =
∑

k∈Nn0
akhk.

Observe that by the orthogonality of the trigonometric polynomials,

‖e−itHf‖2L2
t [0,2π] =

∫ 2π

0

∑
j∈Nn0

e−it(2|j|+n)ajhj

∑
k∈Nn0

eit(2|k|+n)akhk

 dt

= 2π

 ∑
j,k : j1=k1+|k|−|j|

aj akhj1hk1hj hk

 ,

where j = (j2, . . . , jn) and k = (k2, . . . , kn). By Fubini’s theorem,∫ 2π

0

∫
[−R,R]×Rn−1

|e−itHf(x)|2dxdt

=2π

 ∑
j,k : j1=k1+|k|−|j|

aj ak

∫ R

−R
hj1(x1)hk1(x1)dx1

∫
Rn−1

hj(x)hk(x)dx

 ,

so that, by the orthonormality of the Hermite functions in n− 1 variables,∫ 2π

0

∫
[−R,R]×Rn−1

|e−itHf(x)|2dxdt = 2π
∑
k

|ak|2
∫ R

−R
h2
k1(x1)dx1.

Of course, we can repeat the argument for each variable, and so for i = 1, . . . , n,∫ 2π

0

∫
[−R,R]n

|e−itHf(x)|2dxdt 6 2π
∑
k

|ak|2
∫ R

−R
h2
ki(xi)dxi.(14)

Now by property (8), ∫ R

−R
h2
ki(xi) dxi 6 C

R

k
1/2
i

.



THE SCHRÖDINGER EQUATION FOR THE HARMONIC OSCILLATOR 7

Note that the inequality follows from the orthonormality of the Hermite functions
when k

1/2
i 6 R. Substituting into (14), we see that∫ 2π

0

∫
[−R,R]n

|e−itHf(x)|2dxdt 6 CR
∑
k

(2ki + 1)−1/2|ak|2.(15)

Now we can decompose our function f =
∑n
i=1 fi, where fi =

∑
k a

i
khk and

aik =

{
ak, ki > kj for all j 6= i, and ki 6= kj for all j < i

0, otherwise.

By (15), we see that for i = 1, . . . , n,∫ 2π

0

∫
[−R,R]n

|e−itHfi(x)|2dxdt 6 CR
∑
k

(2ki + 1)−1/2|aik|2

6 Cn1/2R
∑
k

(2|k|+ n)−1/2|aik|2,

where we have used the fact that nki > |k| when aik 6= 0. By Minkowski’s inequality
followed by Cauchy–Schwarz,(∫ 2π

0

∫
[−R,R]n

|e−itHf(x)|2dxdt

)1/2

6 Cn3/4R1/2

(∑
k

(2|k|+ n)−1/2|ak|2
)1/2

,

and the result follows by summing dyadic pieces.
To see that the estimate is sharp with respect to the regularity, we consider gN

defined by
gN (x) = h4N (x1)h0(x2) . . . h0(xn).

Note that

‖e−itHgN‖2L2([0,2π]×[0,1]n) = 2π
(∫ 1

0

h2
4N (x1)dx1

∫ 1

0

e−x
2
2dx2 . . .

∫ 1

0

e−x
2
ndxn

)
= C

∫ 1

0

h2
4N (x1)dx1.

Now by the following Lemma 1, h4k take values ≈ k−1/4 when x belongs to one
of ≈ k1/2 subintervals of [0, 1] of length k−1/2. Thus∫ 1

0

h2
4k(x)dx > ck−1/2,

so that
‖e−itHgN‖L2([0,1]n×[0,2π]) > CN

−1/4.

Now as ‖gN‖Hs(Rn) = (8N +n)s/2, letting N tend to infinity, we see that s > −1/2
is a necessary condition. �

It would be interesting to know if the previous theorem is sharp with respect to α,
however we do not know. To see that it was sharp with respect to the regularity,
we used the following lemma which we now prove.
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Lemma 1. Let Im ⊂ [0, 1] denote intervals of length 1√
k

, centered at xm =
√

2πm√
k

.
Then there exist positive constants c0, k0 and µ such that

c−1
0 k−1/4 6 h4k(x) 6 c0k−1/4

for all k > k0 when x ∈ Im and m = b
√
k/µc, . . . , b

√
2k/µc.

Proof. For k an even integer, there is an explicit formula for the Hermite functions
given by

(16) hk(x) =
2

π3/4
(−1)k/2

2k/2√
k!
e
x2
2

∫ ∞
0

e−s
2
sk cos(2xs)ds

(see [19, pp. 107]). Note that by the formula for the Gamma function and a change
of variables, ∫ ∞

0

e−s
2
sk cos(2xs)ds 6

∫ ∞
0

e−s
2
skds =

1
2

Γ
(
k + 1

2

)
.

We will see later that this bound will suffice to provide the upper bound, so we
concentrate on the lower bound.

Consider an interval Im of length 1√
k

with center xm =
√

2πm√
k

, where

m = b
√
k/µc, . . . , b

√
2k/µc,

with µ to be chosen later. We split the integral∫ ∞
0

e−s
2
sk cos(2xs)ds =

∫ √ k
2 (1− 1

8m )

0

+
∫ √ k

2

√
k
2 (1− 1

8m )

+
∫ √ k

2 (1+ 1
8m )

√
k
2

+
∫ ∞
√

k
2 (1+ 1

8m )

=: I1 + I2 + I3 + I4.

The function e−s
2
sk attains its unique local maximum when s =

√
k/2, and so is

positive and increasing in (0,
√
k/2(1 − 1

8m )). By the second mean value theorem
for integrals, there exists a point c such that

|I1| 6 e−s
2
sk
∣∣∣
s=
√

k
2 (1− 1

8m )

∫ √ k
2 (1− 1

8m )

c

cos(2xs)ds

6 e−
k
2 (1− 1

8m )2
(
k

2

) k
2
(

1− 1
8m

)k 1
x
.

Squaring out and using the fact that m 6 b
√

2k/µc and 1/x < µ, for sufficiently
large k,

|I1| 6 µe−
µ2

256 e
k

8m

(
1− 1

8m

)k
e−

k
2

(
k

2

) k
2

.

On the other hand, cos(2xs) is positive on the interval (
√
k/2(1 − 1

8m ),
√
k/2)

for x ∈ Im, and strictly greater than cos(3/2) on (
√
k/2(1− 1

16m ),
√
k/2), so that

I2 > c
∫ √ k

2

√
k
2 (1− 1

16m )

e−s
2
skds.
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Now, we are integrating over an interval of length > cµ, so considering the smallest
value of the integrand,

I2 > cµe
− k2 (1− 1

16m )2
(
k

2

) k
2
(

1− 1
16m

)k
.

Squaring out as before and using the fact that m > b
√
k/µc, we have

I2 > cµe
− µ2

512 e
k

16m

(
1− 1

16m

)k
e−

k
2

(
k

2

) k
2

.

Now, ekx(1− x)k is a decreasing function on [0, 1], so we can also write

I2 > cµe
− µ2

512 e
k

8m

(
1− 1

8m

)k
e−

k
2

(
k

2

) k
2

.

Comparing with the upper bound for |I1|, and choosing µ sufficiently large, this
yields

I1 + I2 > ce
k

8m

(
1− 1

8m

)k
e−

k
2

(
k

2

) k
2

,

and by a completely analogous argument we also have

I3 + I4 > ce
− k

8m

(
1 +

1
8m

)k
e−

k
2

(
k

2

) k
2

.

Now as

e
k

8m > (1 +
1

8m
)k and e−

k
8m > (1− 1

8m
)k,

we see that

c
(

1− 1
64m2

)k
e−

k
2

(
k

2

) k
2

6
∫ ∞

0

e−s
2
sk cos(2xs)ds 6

1
2

Γ
(
k + 1

2

)
.

Finally, as m2 ≈ k and

(17) Γ
(
k + 1

2

)
= 2
√
π

k!
2k
(
k
2

)
!
,

(see [19, pp. 14]), by (16) we have

c0
2k/2√
k!
e−

k
2

(
k

2

) k
2

6 hk(x) 6 c1
2k/2√
k!

k!
2k
(
k
2

)
!

for k/2 even, and the proof is completed by Stirling’s formula. �

4. Pointwise convergence

We are able to obtain the convergence result of Corollary 1, for the case n > 2,
as a consequence of Theorem 4.

Proof of Corollary 1, case n > 2. By the Cauchy–Schwarz inequality, functions F :
[0, 2π]→ C that satisfy∥∥∥∑

λ∈Z
λ6=0

|λ|αF̂ (λ) e−itλ
∥∥∥
L2[0,2π]

<∞, α > 1/2,
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are in fact continuous, where F̂ denotes the Fourier transform of F . Writing

e−itHf(x) =
∑
λ∈N

 ∑
k : 2|k|+n=λ

akhk(x)

 e−itλ =
∑
λ∈N

Pλf(x) e−itλ,(18)

by Theorem 4, we have∥∥∥∥∥∑
λ∈N
|λ|αPλf e−itλ

∥∥
L2
t [0,2π]

∥∥∥
L2
x(BR)

=
∥∥e−itHHαf

∥∥
L2([0,2π]×BR)

6 CR‖f‖H2α−1/2(Rn).

Thus, when f ∈ Hs(Rn) with s > 1/2, we see that e−itHf(x) is a continuous
function of t for almost every x ∈ BR. Writing

Rn =
⋃
j∈Z

B2j\B2j−1 ,

we see that the set of divergence is null, which proves Corollary 1 for n > 2. �

For the one dimensional improvement, we appeal to the Strichartz estimates that
will also enable us to complete the proof of Theorem 1. The integral representation
(7) can be combined with the machinery of Keel and Tao [10] so that

(19) ‖e−itHf‖Lqt ([0,2π],Lpx(Rn)) 6 Cp ‖f‖L2(Rn)

when q > 2 and n
p + 2

q = n
2 , excluding the case (p, q, n) 6= (∞, 2, 2). Koch and

Tataru [12] proved (19) for a more general class of operators that includes H, and
also noted that there can be no such estimates for p outside of [2, 2n

n−2 ]. Applying
Hölder in the temporal integral yields (19) in the range p ∈ [2, 2n

n−2 ] when n
p + 2

q >
n
2 , excluding the case (p, q, n) 6= (∞, 2, 2). We will see later that, modulo the
exceptional case, the estimate is completely sharp in the sense that (19) cannot
hold when n

p + 2
q <

n
2 .

Theorem 3 and (19) are the key ingredients in the proof of Theorem 1. For the
best known results in this direction for the free equation see [9, 11,14–16].

Proof of Theorem 1. For 1 < r < q <∞, we recall the following fractional Sobolev
inequality due to Wainger [26]:∥∥∥∑

λ∈Z
λ6=0

|λ|−αF̂ (λ) e−itλ
∥∥∥
Lq [0,2π]

6 C ‖F‖Lr[0,2π], α =
1
r
− 1
q
.

In particular, by (18) we see that

‖e−itHf(x)‖Lqt [0,2π] 6 C

∥∥∥∥∥∑
λ∈N
|λ|αPλf(x) e−itλ

∥∥∥∥∥
Lrt [0,2π]

= C

∥∥∥∥∥∥
∑
k∈Nn0

(2|k|+ n)αakhk(x) e−it(2|k|+n)

∥∥∥∥∥∥
Lrt [0,2π]

,

(20)

where f =
∑

k∈Nn0
akhk is initially a member of F(Rn).
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In the range p ∈ [ 2n
n−2 ,∞], with n > 3, by taking r = 2 in (20) and applying

Theorem 3, we see that

‖e−itHf‖Lpx(Rn, Lqt [0,2π]) 6 C

∑
k∈Nn0

(2|k|+ n)s(2|k|+ n)1− 2
q |ak|2

1/2

6 C ‖f‖
Hs+1− 2

q (Rn)
,

where s = n( 1
2 −

1
p )− 1. This yields the desired inequality.

For the range p ∈ [ 2(n+2)
n , 2n

n−2 ) (p ∈ [6,∞] when n = 1), we apply Minkowski’s
integral inequality to (19), so that

(21) ‖e−itHf‖Lpx(Rn,Lq0t [0,2π]) 6 Cp‖f‖L2(Rn),

where n
p + 2

q0
= n

2 . Now combining (21) with (20), with r = q0, we see that

‖e−itHf‖Lpx(Rn, Lqt [0,2π]) 6 C

∑
k∈Nn0

(2|k|+ n)
2
q0
− 2
q |ak|2

1/2

6 C ‖f‖
H

2
q0
− 2
q (Rn)

,

and as 2
q0
− 2

q = n( 1
2 −

1
p )− 2

q , we are done.
To see that this is sharp with respect to the regularity we consider gN defined

by
gN =

∑
k :N6kj<2N

h4k.

When |t| 6 1
100nN and |k| 6 2nN , we have∣∣∣<(e−it(8|k|+n) − 1)

∣∣∣ = |cos t(8|k|+ n)− 1| < 1/2,

so that

|e−itHgN | >

∣∣∣∣∣∣
∑

k :N6kj<2N

h4k

∣∣∣∣∣∣−
∣∣∣∣∣∣

∑
k :N6kj<2N

[cos(t(8|k|+ n))− 1]h4k

∣∣∣∣∣∣
>

∣∣∣∣∣∣
∑

k :N6kj<2N

h4k

∣∣∣∣∣∣− 1
2

∑
k :N6kj<2N

|h4k|.

Thus, by the following Lemma 2, if |xj | < c1
2N1/2 for all j = 1, . . . , n, then

|e−itHgN (x)| > 1
2

∑
k :N6kj<2N

h4k(x) > cNn−n4 .

Calculating, we see that

‖e−itHgN‖Lpx(Rn, Lqt [0,2π]) > cN
3n
4 −

n
2p−

1
q .

On the other hand, ‖gN‖Hs(Rn) 6 CN
s
2 +n

2 , so that letting N tend to infinity,
for (3) to hold, it is necessary that

s > n
(1

2
− 1
p

)
− 2
q
.

�
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We note that by the same calculation,

‖e−itHgN‖Lqt ([0,2π], Lpx(Rn)) > cN
3n
4 −

n
2p−

1
q ,

so that, taking s = 0, we see that the Strichartz estimates (19) are also sharp.
Now we complete the proof of Corollary 1.

Proof of Corollary 1, case n = 1. We again appeal to [26]. There it was proven
that functions

F (t) =
∑
λ∈N

F̂ (λ) e−itλ

which satisfy ∥∥∥∑
λ∈N
|λ|αF̂ (λ) e−itλ

∥∥∥
Lq [0,2π]

<∞, α > 1/q,

are also continuous. By Theorem 1 we see that for certain q <∞,∥∥∥∑
λ∈N
|λ|αPλf(x) e−itλ

∥∥∥
Lpx(R, Lqt [0,2π])

6 C‖f‖Hs(R), α =
1
2

(
s−

(1
2
− 1
p

)
+

2
q

)
.

In particular, taking p = 6 and s > 1
3 , we see that α > 1/q so that t → e−itHf(x)

is continuous for almost every x ∈ R. �

Almost everywhere convergence results can also be obtained from maximal in-
equalities. By an appropriate dyadic decomposition, Theorem 1 implies that∥∥ sup

t∈R
|e−itHf |

∥∥
Lpx(Rn)

6 Cs ‖f‖Hs(Rn), s > n
(1

2
− 1
p

)
, p >

2(n+ 2)
n

.

Curiously, and unlike the free case, this is not trivial even when p = ∞. Indeed,
for a dyadic piece fN =

∑
N6|k|62N akhk, we can write

sup
x∈Rn, t∈[0,2π]

|e−itHfN (x)| 6 sup
x∈Rn

 ∑
N6|k|62N

|hk(x)|2
1/2 ∑

N6|k|62N

|ak|2
1/2

,

however, the property (9) only provides the estimate

sup
x∈Rn

 ∑
N6|k|62N

|hk(x)|2
1/2

6 CN
1
2

5n
6 .

On the other hand, using the local property (8),

sup
x∈BR

 ∑
N6|k|62N

|hk(x)|2
1/2

6 CN
1
2
n
2 ,

and so we recover a local version of our estimate. Theorem 1 tells us that global esti-
mates are indeed possible even though this is not immediately apparent. Thangavelu [22]
noted a similar phenomenon for the Bochner–Reisz problem for Hermite expansions.

As we saw in the previous section, necessary conditions for the harmonic oscilla-
tor are harder to see than for the free equation. To see that Theorem 1 was sharp
with respect to the regularity, we used the following lemma, which we now prove.
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Lemma 2. There exist positive constants c0 and c1 such that

h4k(x) > c0k−1/4

for all k ∈ N when |x| < c1k
−1/2.

Proof. For k an even integer, |x| < 1
4
√
k

and 0 < s <
√
k, we have cos(2xs) > 1/2,

so that

∣∣∣∣∫ ∞
0

e−s
2
sk cos(2xs)ds

∣∣∣∣ > ∫
√
k

0

e−s
2
sk cos(2xs)ds−

∣∣∣∣∫ ∞√
k

e−s
2
sk cos(2xs)ds

∣∣∣∣
>

1
2

∫ √k
0

e−s
2
skds−

∫ ∞
√
k

e−s
2
skds

=
1
2

∫ ∞
0

e−s
2
skds− 3

2

∫ ∞
√
k

e−s
2
skds.

(22)

Now, by the formula for the Gamma function and a change of variables,

(23)
1
2

∫ ∞
0

e−s
2
skds =

1
4

Γ
(
k + 1

2

)
.

On the other hand, making the change of variables r = s√
2
,∫ ∞

√
k

e−s
2
skds 6 e−

k
2

∫ ∞
√
k

e−
s2
2 skds 6 e−

k
2

∫ ∞
0

e−
s2
2 skds

6
√

2
(

2
e

) k
2
∫ ∞

0

e−r
2
rkdr =

√
2

2

(
2
e

) k
2

Γ
(
k + 1

2

)
6

1
16

Γ
(
k + 1

2

)(24)

for all k > k0 = 2 log(16)
log e

2
(since hk(0) > 0 when k/2 is even, it is sufficient to prove

the assertion for k > k0).
Substituting (23) and (24) into (22), we obtain∣∣∣∣∫ ∞

0

e−s
2
sk cos(2xs)ds

∣∣∣∣ > 1
8

Γ
(
k + 1

2

)
,

so that from (16), we see that

hk(x) >
1

8π3/4

2k/2√
k!

Γ
(
k + 1

2

)
for all k > k0 when |x| < 1

4
√
k

and k/2 is even.
Now, from (17), we have

hk(x) >
1

4π1/4

√
k!

2k/2
(
k
2

)
!
,

and the result follows by Stirling’s formula as before. �
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5. The forced harmonic oscillator

We consider the Cauchy problem for the Schrödinger equation of the form

(FHO)

{
idudt + ∆u = |x|2u+ V (x, t)u
u( · , 0) = u0 ∈ L2(Rn).

We note in passing that the cubic equation, idudt + ∆u = |x|2u + |u|2 u, has been
extensively considered in connection with Bose–Einstein condensation (see for ex-
ample [4] or [23].)

In the following theorem, when n > 3 the hypothesis ‖V ‖Lqx(Rn, L∞t [0,∞)) suf-
ficiently small can be changed to ‖V ‖L∞t ([0,∞),Lqx(Rn)) sufficiently small, by using
estimate (19) instead of Theorem 3.

Theorem 5. Let n > 2 and 2
p + 1

q = 1, and suppose that ‖V ‖Lqx(Rn, L∞t [0,∞)) is
sufficiently small, where q ∈ [n2 ,∞]. Then there exists a unique global solution of
(FHO) belonging to C([0,∞), L2

x(Rn)) ∩ Lpx(Rn, L2
loc[0,∞)).

Proof. We use the standard contraction mapping argument. By Duhamel’s formula

u(x, t) = e−itHu0 − i
∫ t

0

e−i(t−τ)HV (·, τ)u(·, τ)(x) dτ.

For 2 6 p 6 2n
n−2 , by Theorem 3, there exists a constant C0 > 1 such that

(25) ‖e−itHf‖Lpx(Rn, L2
t [0,2π]) 6 C0‖f‖L2(Rn),

and, by duality, this yields

(26)
∥∥∥ ∫ t

0

eiτHG( · , τ) dτ
∥∥∥
L2
x(Rn)

6 C0 ‖G‖Lp′x (Rn,L2
t [0,2π])

, t ∈ [0, 2π].

Now, by various applications of Fubini’s theorem,∫
Rn

∫ 2π

0

∫ t

0

e−i(t−τ)HV F (·, τ)(x) dτ G(x, t) dxdt

=
∫ 2π

0

∫ t

0

∫
Rn
e−i(t−τ)HV F (·, τ)(x)G(x, t) dx dτ dt

=
∫ 2π

0

∫ t

0

∫
Rn
eiτHV F (·, τ)(x) e−itHG(x, t) dx dτ dt

=
∫

Rn

∫ t

0

eiτHV F (·, τ)(x) dτ
∫ 2π

0

e−itHG(x, t) dt dx,

where the second equality follows using the orthogonality of the Hermite functions.
Thus, by the Cauchy–Schwarz inequality followed by two applications of (26) and
duality,∥∥∥∫ t

0

e−i(t−τ)HV (·, τ)F (·, τ)(x) dτ
∥∥∥
Lpx(Rn,L2

t [0,2π])
6 C2

0‖V F‖Lp′x (Rn,L2
t [0,2π])

.(27)

We define the Banach space X = C([0, 2π], L2
x(Rn)) ∩ Lpx(Rn, L2

t [0, 2π]) via the
norm

‖u‖X = sup
t∈[0,2π]

‖u( · , t)‖L2
x(Rn) + ‖u‖Lpx(Rn, L2

t [0,2π]),
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and the nonlinear map L : X → X by

LF = e−itHu0 − i
∫ t

0

e−i(t−τ)HV (·, τ)F (·, τ)(x) dτ.

By (5) and the conservation of the L2 norm (6) we see that

‖e−itHu0‖X 6 (C0 + 1)‖u0‖L2(Rn),

and combining (26) and (27), we also have∥∥∥i ∫ t

0

e−i(t−τ)HV (·, τ)F (·, τ)(x) dτ
∥∥∥
X
6 (C0 + C2

0 )‖V ‖Lqx(Rn,L∞t [0,∞))‖F‖X ;

here we have used the fact that

‖V F‖
Lp
′
x L

2
t
6 ‖V ‖LqxL∞t ‖F‖LpxL2

t
,

2
p

+
1
q

= 1.

Thus we see that L maps {F : ‖F‖X 6 2(C0 + 1)‖u0‖L2(Rn)} into itself provided
(C0 + C2

0 )‖V ‖Lqx(Rn,L∞t [0,∞)) 6
1
2 . This also guarantees that

(28) ‖L(F −G)‖X 6
1
2
‖F −G‖X ,

so that by the contraction mapping principle, there exists a solution. Now although
the L2–norm may have increased in size, we know that it is at least finite, so by
iterating the process, replacing u0 with u(·, 2kπ), k ∈ N, we obtain a global solution.

To see that the solution is unique in Lpx(Rn, L2
loc[0,∞)), suppose that u1 and u2

are solutions. Then by (27) as before, we see that

‖u1 − u2‖Lpx(Rn, L2
t [2kπ,2(k+1)π]) 6

1
2
‖u1 − u2‖Lpx(Rn, L2

t [2kπ,2(k+1)π])

for all k > 0, so they are in fact the same. �

We remark that the iteration in the previous argument could be avoided by
considering the estimate

‖e−itHf‖Lpx(Rn, L2
t [0,T ]) 6 C0

√
T ‖f‖L2(Rn),

however, in doing so, our hypothesis would worsten. We would then require that
T‖V ‖Lqx(Rn, L∞t [0,T )) be sufficiently small.

6. Final remarks

We combine the Strichartz estimates with the orthogonality of the trigonomet-
ric polynomials to obtain some mysterious inequalities for the Hermite functions.
Observe that for f =

∑
k∈E akhk, where E ⊂ Nn0 ,

‖e−itHf‖4L4
t [0,2π] =

∫ 2π

0

∣∣∣∣∣∣
∑

j∈E

e−it(2|j|+2)ajhj

(∑
k∈E

eit(2|k|+2)akhk

)∣∣∣∣∣∣
2

dt

= 2π

 ∑
i,j,k,l∈E

|i|+|k|=|j|+|l|

aiajakalhihjhkhl

 .
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In two spatial dimensions, by (19),∥∥∥‖e−itHf‖L4
t [0,2π]

∥∥∥
L4
x(R2)

6 C‖f‖2,

so that setting ak = 1, we have∑
i,j,k,l∈E

|i|+|k|=|j|+|l|

∫
R2
hihjhkhl 6 CN

2, #E = N.

In one spatial dimension, by the same procedure we obtain∑
i,j,k,l,m∈E

∫
R
hihjhkhlhmhi+k+m−j−l 6 CN

3, #E = N.

We see that there is cancelation. A better understanding of this cancelation
would presumably yield improved results.

The second author is grateful for the warm hospitality of the Instituto de Ma-
temática Aplicada del Litoral where this work was initiated. The authors also
thank José Luis Torrea and Laurent Thomann for helpful conversations, and the
anonymous referee for many helpful suggestions which improved the article.
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