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1 Introduction

Let us fix κ > 1. We say that I = (a, b) is a κ−local interval whenever
0 < a < b < κa and we will call critical intervals to those of the form
(a, κa) for a > 0. Also we shall denote with Iκ the family of all local intervals
with respect to κ. With this notation we introduce the definition of the κ-
local Maximal Operator on R+ = (0,∞) as follows: Given any measurable
function f : R+ → R, we set

Mκ
locf(x) = sup

x∈I∈Iκ

1

|I|

∫
I

|f(y)|dy,

for any x ∈ R+. This operator, being smaller than the regular Hardy-
Littlewood maximal function, is bounded on Lebesgue spaces Lp(R+) for
1 < p <∞ and of weak type for p = 1. However, as it was shown in [4], Lp-
weighted inequalities hold for a wider class than Muckenhoupt’s Ap weigths,
the Aploc,κ classes, which require control of averages only for local intervals.
Nowak and Stempak studied this problem in connection with transplantation
theorems associated to Hankel Transforms. Such classes of weights were also
used in [2] to prove weighted inequalities for the maximal operator of the
diffusion semigroup associated to Laguerre functions systems.

To be precise, we call a weight on R+ to any nonnegative and R+-locally
integrable function. We shall denote by Aploc,κ the class of all weights ω on
R+ such that there exists Cκ > 0 satisfying, for all I ∈ Iκ,(∫

I

ω(x)dx

)1/p (∫
I

ω(x)−p
′/pdx

)1/p′

≤ Cκ|I|, (1.1)

when p > 1, and
ω(I) ≤ Cκ|I| inf

x∈I
ω(x), (1.2)
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when p = 1.
The semi-norm [ω]p,κ is the least constant C for which (1.1) or (1.2) holds.

In [4], the authors prove that, for a fixed p, the classes are independent
of κ, namely, that Aploc,κ = Aploc,2, for any κ > 1. Therefore we will denote
that class just with Aploc. Nevertheless let us observe that the semi-norms
[ω]p,κ actually depend on κ and could happen, for some weight ω ∈ Aploc, that
[ω]p,κ →∞ as κ→∞. Such is the case of ω(x) = 1/x.

In the same article, the authors also show that Mκ
loc is bounded on Lp(ω)

if and only if ω ∈ Aploc, for 1 < p < ∞, and that Mκ
loc is of weak type (1, 1)

with respect to ω(x)dx if and only if ω ∈ A1
loc, with boundedness constants

depending on κ only by [ω]p,κ.

On the other hand, it is well known that M , the usual Hardy-Littlewood
maximal operator, is not bounded on BMO, the space of John and Niren-
berg. In fact, it was shown in [1] that for a BMO(Rn) function, M(f) is
either identically ∞ or it does belong to BMO. They also show that if the
underlying space is a cube then M is actually bounded on BMO.

The purpose of this work is to investigate the behavior of the Local Max-
imal Operator on appropriate weighted BMO spaces. We believe that our
result (see theorem below) is new even in the unweighted case.

2 Some preliminary results

From their definition it is clear that Aploc classes satisfy

1. Aploc ⊂ Aqloc, 1 ≤ p ≤ q;

2. ω ∈ Aploc if and only if ω1−p′ ∈ Ap
′

loc.

As usual, we denote A∞loc =
⋃
p≥1A

p
loc. The following property, that we

borrow from [4], will be useful in the sequel.

Lemma 2.1. Let ω ∈ Aploc, 1 ≤ p < ∞. Then, for every κ > 1, there exists
a constant Cκ depending on κ, p and the Aploc-norm of ω, such that

ω(I)

ω(S)
≤ Cκ

(
|I|
|S|

)p
,

for any I ∈ Iκ and any measurable set S ⊂ I.
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Remark 2.2. The case p = 1 of this Lemma arises directly from A1
loc class

definition, since for all S ⊂ I we have infx∈I ω(x) ≤ infx∈S ω(x) ≤ |S|ω(S).
Thus, (1.2) give us

ω(I) ≤ Cκ
|I|
|S|

ω(S) (2.1)

for any I ∈ Iκ and any set S ⊂ I.

Next we introduce the precise definitions of the Hardy-Littlewood maxi-
mal operator supported on a given cube and the corresponding BMO space.

Let Q a fixed cube in Rn. The Hardy-Littlewood maximal function MQ

supported on Q is given, for any Q-locally integrable function f and any
x ∈ Q, by

MQf(x) = sup
1

|Q′|

∫
Q′
|f(y)|dy,

where the supremum is taken over all cubes Q′ contained in Q and containing
x.

Given a weight ω defined on Q, the weighted Bounded Mean Oscillation
Space on Q, BMOQ(ω), is defined as the set of Q-locally integrable functions
f that satisfies

1

ω(I)

∫
I

|f(x)− fI |dx ≤ C, (2.2)

for all cubes I ⊂ Q, where fI = 1
|I|

∫
I
f(x)dx. The semi-norm ‖f‖BMOQ(ω) is

the least constant C that satisfies this condition.
With BMOn(ω) we denote the space when Q = Rn andd in that case we

required f to be locally integrable and satisfying (2.2) for any cube I ⊂ Rn.
In [1], the unweighted version of the following result is established (see

theorem 4.2 there). We claim that the same proof, with some obvious mod-
ifications, can be adapted to this setting.

Theorem 2.3. 1. Let Q a fixed cube in Rn and ω a weight of A1(Q) class.
If f belongs to BMOQ(ω) then MQf belongs to BMOQ(ω) and

‖MQf‖BMOQ(ω) ≤ C‖f‖BMOQ(ω),

where C depends only on the dimension n and the A1(Q) constant of
ω.

2. Let ω ∈ A1(Rn). If f belongs to BMOn(ω) and if Mf is not identically
infinity, then Mf belongs to BMOn(ω) and

‖Mf‖BMOn(ω) ≤ C‖f‖BMOn(ω),

where C depends only on the dimension n and the A1 constant of ω.
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3 Local BMO space

For κ > 1 and a R+ weight ω, we denote with BMOκ
loc(ω) the family of all

functions f ∈ L1
loc(R+) that satisfy the bounded oscillation condition

1

ω(I)

∫
I

|f(x)− fI |dx ≤ Cκ, for all I ∈ Iκ, (3.1)

and the bounded mean condition

1

ω(I)

∫
I

|f(x)|dx ≤ Cκ, for all I ∈ Icκ, (3.2)

where we consider Icκ = {(a, b) : a > 0, b ≥ κa}.
The BMOκ

loc(ω) norm of f is the least constant that satisfies both con-
ditions and will be denoted with ‖f‖BMOκloc(ω).

Observe that, since 1
ω(I)

∫
I
|f(x) − fI |dx ≤ 2 1

ω(I)

∫
I
|f(x)|dx for any mea-

surable set I, we have that the bounded oscillation condition (3.1) actually
holds for any interval I ⊂⊂ R+. Also, if 1 < κ < κ′ then BMOk

loc(ω) ↪→
BMOk′

loc(ω). Moreover, we have:

Lemma 3.1. If ω ∈ A∞loc then BMOk
loc(ω) = BMOk′

loc(ω) for any κ, κ′ > 1,
with norms and equivalence constants depending on ω, κ and κ′.

Proof. Consider 1 < κ < κ′. By the observation made before, it will be
enough to prove, for f ∈ BMOκ′

loc(ω) and I ∈ Icκ, that 1
ω(I)

∫
I
|f(x)|dx ≤

C‖f‖BMOκ
′
loc

, with C = C(κ, κ′, ω).

If I ∈ Ick′ , then there is nothing to prove. If I = (a, b) ∈ Ik′ ∩ Icκ we have
κa ≤ b < κ′a. Then, using Lemma 2.1, we obtain∫

I

|f(x)|dx ≤
∫ κ′a

a

|f(x)|dx

≤ ‖f‖BMOκ
′
loc
ω((a, κ′a))

≤ C‖f‖BMOκ
′
loc
ω((a, κa))

≤ C‖f‖BMOκ
′
loc
ω(I),

and this complete the proof.

The following Lemma says that is enough to prove the bounded mean
condition (3.2) only for critical intervals to conclude that a function is in
BMOκ

loc(ω).
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Lemma 3.2. Let ω ∈ A∞loc. If a function f satisfies (3.2) for any I = (a, κa)
with a > 0, then f satisfies (3.2) for any I ∈ Icκ.

Proof. Let I = (a, b) with b > κa and let j0 ≥ 1 an integer such that
κj0a < b ≤ κj0+1a. Then∫

I

|f(x)|dx ≤
j0∑
j=0

∫ κj+1a

κja

|f(x)|dx.

Since each (κja, κj+1a) are critical intervals, by hypothesis we have∫
I

|f(x)|dx ≤ Cκ

j0∑
j=0

ω
(
(κja, κj+1a)

)
≤ Cκ

[
ω(I) + ω

(
(κj0a, κj0+1a)

)]
.

Since the interval (κj0−1a, κj0+1a) belongs to Iκ3 , Lemma 2.1 implies

ω
(
(κj0a, κj0+1a)

)
≤ ω

(
(κj0−1a, κj0+1a)

)
≤ Cκ ω((κj0−1a, κj0a))

≤ Cκω(I).

Thus, we have obtained
∫
I
|f(x)|dx ≤ Cκ ω(I) for any I ∈ Icκ.

Another useful property is the following one. Note that, in the classic
BMO context, this is a consequence of John-Nirenberg inequality.

Lemma 3.3. Equivalence of norm’s property. Let ω ∈ Aploc and κ > 1.
For 1 ≤ r ≤ p′, there exists a constant Cκ = C(r, κ, [ω]p,κ) such that if
f ∈ BMOκ

loc(ω) then(
1

ω(I)

∫
I

|f(x)− fI |rω1−r(x)dx

)1/r

≤ Cκ ‖f‖BMOκloc(ω) (3.3)

for all I ∈ Iκ, and(
1

ω(I)

∫
I

|f(x)|rω1−r(x)dx

)1/r

≤ Cκ, ‖f‖BMOκloc(ω) (3.4)

for all I ∈ Icκ.
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Proof. Let ω ∈ Aploc and f ∈ BMOκ
loc(ω). First, we will prove that (3.3)

holds. For any i ∈ Z, let Ji = (κi, κi+3). Then, ω ∈ Aploc and Ji ∈ Iκ4 implies
ω ∈ Ap(Ji), with [ω]Ap(Ji) ≤ [ω]p,κ, for any i ∈ Z.

Since BMOκ
loc(ω) ⊂ BMO(ω), the BMO space supported on R+, f |Ji ∈

BMOJi(ω) and from the known equivalence of norm’s inequality forBMOJi(ω)
we have (

1

ω(I)

∫
I

|f(x)− fI |rω1−r(x)dx

)1/r

≤ Ci‖f‖BMOκloc(ω),

for any I ⊂ Ji. Since the constant Ci depend of i only by [ω]Ap(Ji), we can
replace it by a constant Cκ independent of Ji. Thus, since every I ∈ Iκ is
contained in some Ji, i ∈ Z, we obtain the desired result (3.3).

To prove that (3.4) holds for I = (a, κa), observe that

(
1

ω(I)

∫
I

|f(x)|rω1−r(x)dx

)1/r

≤
(

1

ω(I)

∫
I

|f(x)− fI |rω1−r(x)dx

)1/r

+

(
ω1−r(I)

ω(I)

)1/r

|fI |.

The first term of the right side is bounded by ‖f‖BMOκloc(ω), we can prove
this following the same argument as is the proof of (3.3). For the second
term, observe that I belonging to Iκ2 and ω1−r belonging to Arloc imply that
ω1−r(I)1/rω(I)1/r′ ≤ Cκ |I|. Then(

ω1−r(I)

ω(I)

)1/r

|fI | ≤ Cκ
1

ω(I)

∫
I

|f(x)|dx

≤ Cκ ‖f‖BMOκloc(ω).

To extend this result to intervals I = (a, b) with b > κa, we proceed as
we did in the proof of Lemma 3.2.

We now state our main result.

Theorem 3.4. If κ > 1 and ω ∈ A1
loc then there exist a constant C =

C(κ, [ω]1,κ) such that

‖Mκ
locf‖BMOκloc(ω) ≤ C‖f‖BMOκloc(ω)

for all f ∈ BMOκ
loc(ω).
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Proof. Let f ∈ BMOκ
loc(ω).

We will prove first that the bounded oscillation condition (3.1) holds for
Mκ
locf . Consider I = (a, b) ∈ Iκ, i.e., 0 < a < b < κa. We want to prove

1

ω(I)

∫
I

|Mκ
locf(x)− c|dx ≤ C‖f‖BMOκloc(ω), (3.5)

for some constant c depending on f and I and C = C(κ, [ω]1,κ).
Let j0 ∈ Z such that κj0 < a ≤ κj0+1 and call I0 = (κj0−1, κj0+3). Then,

for any x ∈ I and any J = (a′, b′) ∈ Iκ with x ∈ J , we have J ⊂ I0. That is
true since I ∩ J 6= ∅ implies a′ < b and b′ > a and therefore b′ < κa′ < κb <
κ2a ≤ κj0+3 and a′ > b′/κ > a/κ > κj0−1. Then, for any x ∈ I,

Mκ
locf(x) ≤MI0f(x),

where MI0 is the Hardy Littlewood maximal operator supported in I0. That
is, for x ∈ I we take averages only over intervals contained in I0.

We bound the left side of (3.5) by the sum of A and B, where

A =
1

ω(I)

∫
I

|Mκ
locf(x)−MI0f(x)|dx

and

B =
1

ω(I)

∫
I

|MI0f(x)− c|dx.

We first consider A. Since for all x ∈ I we have Mκ
locf(x) ≤ MI0f(x) ≤

Mκ
locf(x) + M̃κ

locf(x),
where

M̃κ
locf(x) = sup

x∈J⊂I0,J∈Icκ

1

|J |

∫
J

|f(y)|dy,

we have

A ≤ 1

ω(I)

∫
I

M̃κ
locf(x)dx.

If J ∈ Icκ = {(α, β) : α > 0, β ≥ κα} and J ⊂ I0 = (κj0−1, κj0+3), then
|J | > (κ− 1)κj0−1 = κ−1

κ4−1
|I0|. This implies that

M̃κ
locf(x) ≤ Cκ

1

|I0|

∫
I0

|f(y)|dy

≤ Cκ ‖f‖BMOκloc(ω)
ω(I0)

|I0|
,

for any x ∈ I, where the last inequality arises from (3.2) since f ∈ BMOκ
loc(ω)

and I0 ∈ Icκ.
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Then

A ≤ Cκ ‖f‖BMOκloc(ω)
|I|
ω(I)

ω(I0)

|I0|
. (3.6)

Since ω ∈ A1
loc, I0 ∈ Iκ5 and I ⊂ I0, (2.1) implies

ω(I0) ≤ Cκ
|I0|
|I|

ω(I)

and then A is bounded by ‖f‖BMOκloc(ω) times a constant C = C(κ, [ω]1,κ).

In order to obtain the same for

B =
1

ω(I)

∫
I

|MI0f(x)− c|dx,

consider c = (MI0f)I . Observe that MI0f < ∞ a.e., since f ∈ BMO(ω).
Also, ω ∈ A1

loc and I0 ∈ Iκ5 implies ω ∈ A1(I0), with the A1(I0) constant
depending only of [ω]1,κ5 , that is, independent of I0 and hence of I. Then,
we use Theorem 2.3 with Q = I0 to obtain B ≤ C‖f0‖BMOI0 (ω), with C =
C(κ, ω). Since ‖f0‖BMOI0 (ω) ≤ ‖f‖BMO(ω) ≤ ‖f‖BMOκloc(ω), we obtain the
desired inequality.

Now we will prove that the bounded mean condition (3.2) for Mκ
locf . By

Lemma 3.2, it will be enough to prove

1

ω(I)

∫
I

|Mκ
locf(x)|dx ≤ Cκ‖f‖BMOκloc(ω) (3.7)

for I = (a, κa), where a > 0.

Let I∗ = (a/κ, (κ + 1)a) and write f = f1 + f2, where f1 = fχI∗ and
f2 = fχI∗c , where the complement is taken on R+. We will prove (3.7) for
Mκ
locf1 and Mκ

locf2 separately.
Consider first Mκ

locf1. From Hölder inequality we have

1

ω(I)

∫
I

|Mκ
locf1(x)|dx ≤

(
1

ω(I)

∫
I

|Mκ
locf1(x)|2ω−1(x)dx

)1/2

. (3.8)

Since ω ∈ A1
loc ⊂ A2

loc and hence ω−1 ∈ A2
loc, we have, by Proposition 6.3

of [4], that Mκ
loc is of strong type (2, 2) with weight ω−1. Then, the right side

of (3.8) is bounded by a constant times(
1

ω(I)

∫
I

|f1(x)|2ω−1(x)dx

)1/2

. (3.9)
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Since I∗ ∈ I2κ2 and I ⊂ I∗, (2.1) implies ω(I∗) ≤ Cκ ω(I), and then (3.9) is
bounded by

Cκ

(
1

ω(I∗)

∫
I∗
|f(x)|2ω−1(x)dx

)1/2

.

Finally, since I∗ ∈ Icκ, we use the equivalence of norm’s inequality (3.4) with
r = 2 and we obtain that the left side of (3.8) is bounded by a constant
C = C([ω]1,κ, κ) times ‖f‖BMOκloc(ω).

Consider now Mκ
locf2(x), with x ∈ I = (a, κa). Let us observe that here

is enought to take the supremum of the averages over those J ∈ Iκ such that
x ∈ J and J ∩ I∗c 6= ∅. Remember that I∗ = ( a

κ
, (κ + 1)a). If an interval

J = (a′, b′) satisfies J ∩ I 6= ∅ , then a′ < κa and a < b′. If it also J ∈ Iκ,
then a′ > a/κ and b′ < κ2a. Then we have J ⊂ I∗∗, where I∗∗

.
= (a/κ, κ2a).

Also, if J∩I∗c 6= ∅ then b′ ≥ (κ+1)a and this, together with a′ < κa, implies
|J | > Cκ|I∗∗|. Thus, for every x ∈ I we have

and

Mκ
locf2(x) ≤ Cκ

1

|I∗∗|

∫
I∗∗
|f(y)|dy

≤ Cκ ‖f‖BMOκloc(ω)
ω(I∗∗)

|I∗∗|
, (3.10)

where the last inequality arises since f ∈ BMOκ
loc(ω) and I∗∗ ∈ Icκ.

Finally, since ω ∈ A1
loc, I

∗∗ ∈ Iκ4 and I ⊂ I∗∗, (2.1) implies

1

ω(I)

∫
I

|Mκ
locf2(x)|dx ≤ Cκ ‖f‖BMOκloc(ω).

Therefore, the proof of Theorem 3.4 is complete.

4 A necessary condition.

In [3], Muckenhoupt and Wheeden introduced another version of weighted
BMO. More precisely, for a given interval I, ω(I) is replaced by infx∈I ω(x)|I|.
Similarly, we consider now the corresponding local version BMOκ,∗

loc (ω), the
space of all R+-locally integrable function f that satisfy

1

infx∈I ω(x)|I|

∫
I

|f(x)− fI |dx ≤ Cκ, for all I ∈ Iκ, (4.1)
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and
1

infx∈I ω(x)|I|

∫
I

|f(x)|dx ≤ Cκ, for I = (a, κa), a > 0, (4.2)

and the norm ‖f‖BMOκ,∗loc (ω) will be the least constant satisfying both condi-
tions.

It is clear that BMOκ,∗
loc (ω) ⊂ BMOκ

loc(ω), since for any weight ω and any
ball I we have ω(B) ≥ infx∈I ω(x)|I|, and, by Lemma 3.2, a function need to
satisfy the bounded mean condition only for critical balls in order to be in
BMOκ

loc(ω). Also, if we suppose ω ∈ A1
loc, then BMOκ,∗

loc (ω) = BMOκ
loc(ω),

with equivalence of norms. Thus, from Theorem 3.4, we have that Mκ
loc is

bounded from BMOκ
loc(ω) to BMOκ,∗

loc (ω), if ω ∈ A1
loc. We will see now that

the converse statement also holds.

Theorem 4.1. If κ > 1, then Mκ
loc : BMOκ

loc(ω) −→ BMOκ,∗
loc (ω) if and only

if ω ∈ A1
loc.

Proof. From the above remark we only need to prove the necessity of ω ∈
A1
loc. Suppose then that Mκ

loc is bounded from BMOκ
loc(ω) into BMOκ,∗

loc (ω)
and consider an interval I ∈ Iκ. Since L∞(ω−1) = {f : fω−1 ∈ L∞(R+)} is
continuously contained in BMOκ

loc(ω), we have

1

infx∈I ω(x)|I|2

∫
I

∫
I

|Mκ
locf(x)−Mκ

locf(y)|dxdy ≤ C‖fω−1‖∞, (4.3)

for every f ∈ L∞(ω−1).
We divide the interval I into six disjoint subintervals of equal measure,

that is,
I = I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6

where all the Ii are disjoint and |Ii| = |I|
6

. More precisely, if I = (a, b) then
Ii = (a+ b−a

6
(i− 1), a+ b−a

6
i), i = 1, ..., 6.

If we take f = ωχI1 , then from (4.3) we get∫
I4

∫
I1

|Mκ
locf(x)−Mκ

locf(y)|dxdy ≤ C|I|2 inf
x∈I

ω(x), (4.4)

If x ∈ I1 then clearly Mκ
locf(x) ≥ 1

|I1|

∫
I1
|f | = ω(I1)

I1
. If y ∈ I4 then for any

interval J such that y ∈ J and J ∩ I1 6= ∅ we have |J | > |I2∪ I3| = 2|I1|, thus

Mκ
locf(y) ≤ 1

2
ω(I1)
I1

. Then we have |Mκ
locf(x)−Mκ

locf(y)| ≥ Cω(I1)/|I| for any
x ∈ I1 and y ∈ I4. So, if we integrate over I1 and I4, (4.4) give us

ω(I1) ≤ C|I| inf
x∈I

ω(x).
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Analogously, we can obtain the same inequality for the other intervals Ii,
i = 2, ..., 6, considering f = ωχIi and integrating x over Ii and y over Ij,
where Ij is at least at a distance |I|/3 away from Ii. For example, we may
compare I2 with I5 and I3 with I1 or I6 and so on.

In this way we will arrive to

ω(Ii) ≤ C|I| inf
x∈I

ω(x), for i = 1, ..., 6.

Finally, adding on i we obtain the A1 condition for the interval I ∈ Iκ.
Therefore, ω ∈ A1

loc.
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