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Abstract. For a Young function Θ and 0 ≤ α < 1, let Mα,Θ be the fractional Orlicz
maximal operator defined in the context of the spaces of homogeneous type (X, d, µ)
by Mα,Θf(x) = supx∈B µ(B)α||f ||Θ,B , where ||f ||Θ,B is the mean Luxemburg norm
of f on a ball B. When α = 0 we simply denote it by MΘ. In this paper we prove
that if Φ and Ψ are two Young functions, there exists a third Young function Θ such
that the composition Mα,Ψ ◦MΦ is pointwise equivalent to Mα,Θ. As a consequence
we prove that for some Young functions Θ, if Mα,Θf < ∞ a.e. and δ ∈ (0, 1) then
(Mα,Θf)δ is an A1-weight.

1. Introduction

Let us consider a space of homogeneous type (X, d, µ), that is, X is a set endowed
with a quasi-distance d such that the balls B(x, r) = {y ∈ X : d(x, y) < r} are open
sets, and with a positive measure µ satisfying a doubling condition (we refer Section 2
for a more complete definition). Given a locally integrable function f on X, let Mαf ,
0 ≤ α < 1, be the fractional maximal operator defined by

Mαf(x) = sup
x∈B

1

µ(B)1−α

∫
B

|f(y)| dµ(y),

where the supremum is taken over all balls B containing x. If α = 0 we get the
Hardy-Littlewood maximal operator; in this case, we drop the subscript α.

It is known that the following result holds for M = Mα:

If Mf < ∞ a.e. and if δ ∈ (0, 1), then (Mf)δ ∈ A1, (1.1)

where A1 is the Muckenhoupt class of nonnegative locally integrable functions w such
that

A1 :
1

µ(B)

∫
B

w dµ ≤ Cw(x), a.e. x ∈ B, (1.2)

for all balls B. The proof of this result follows by standard arguments (see [11] for
the euclidean case and [5] for the case α = 0), that is, if B̃ is a suitable dilation of
B, writing f = f1 + f2 with f1 = fχB̃, it is enough to prove that (1.2) holds with w
replaced by each (Mαfi)

δ, i = 1, 2. To establish (1.2) for (Mαf1)
δ the weak (1, 1

1−α
)
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type inequality of Mα is applied and, for the other case, the fact that for any two
points x, y belonging B we have

Mα(f2)(y) ≤ C Mα(f2)(x). (1.3)

For 0 ≤ α < 1, a generalization of the operator Mα is the fractional Orlicz maximal
operator associated to a Young function Φ defined, for each function f on X, by

Mα,Φf(x) = sup
x∈B

µ(B)α‖f‖Φ,B,

where the supremum is taken over all balls B containing x and

||f ||Φ,B = inf

{
λ > 0 :

1

µ(B)

∫
B

Φ

(
|f(y)|

λ

)
dµ(y) ≤ 1

}
(1.4)

is the Φ-mean Luxemburg norm of a function f on a ball B. When α = 0 we also
drop the subscript α. When Φ(t) = t, Mα,Φ is the fractional maximal operator Mα.

In the last years, weighted inequalities with non-a-priori assumption on the weights
have been proved for linear operators like singular integrals, fractional integrals and
their commutators by using duality arguments (for the euclidean setting and α = 0 see
for example [12] and [13], for spaces of homogeneous type see [15] for the case α = 0
and [3] for 0 ≤ α < 1). One of the main tools in the proofs of these inequalities is to
establish (1.1) for M = Mα,Φ with suitable Young functions Φ. If α = 0 then (1.1)
can be proved for M = MΦ and any Young function by using the same arguments
described above. However, it is not clear how to prove (1.1) for M = Mα,Φ and α 6= 0
by applying the standard arguments, although it is possible to obtain a result like
(1.3) for Mα,Φ (see Lemma 4.2 in [3]) and there is an end-point estimate for this oper-
ator for some Young functions (see [7] and [8]). We point out that in [3] the authors
proved that (1.1) holds forM = Mα,Φk

in the special case Φk(t) = t[log(e+t)]k, k ∈ N.
The proof of this result is based on the fact that Mα,Φk

is equivalent to the compo-
sition Mα(Mk) where Mk is the Hardy-Littlewood maximal operator iterated k times.

One of the purposes of this paper is to prove that (1.1) holds for the maximal op-
erators Mα,Φ for more general Young functions Φ. This result will be a consequence
of the following type of result: given two Young functions Ψ and Φ, we shall de-
fine a third Young function Θ, such that the composition Mα,Ψ ◦MΦ is equivalent to
the operator Mα,Θ. The proof of this last result will be the main purpose of this article.

Before stating the theorem we shall observe some properties of the maximal func-
tions Mα,Φ. Let Φ1 and Φ2 be Young functions. We say that Φ2 dominates Φ1 at ∞,
and denote it by Φ1 ≺∞ Φ2, if there exist a, b, t0 > 0 such that

Φ1(t) ≤ bΦ2(at) for all t ≥ t0.

If Φ1 ≺∞ Φ2 then there exists a constant C, depending on Φ1 and Φ2, such that
||f ||Φ1,B ≤ C||f ||Φ2,B for all balls B and functions f . Since the constant C is inde-
pendent of B, we get that Mα,Φ1f(x) ≤ CMα,Φ2f(x). We say that Φ1 is equivalent
to Φ2 at ∞, and denote it by Φ1 ≈∞ Φ2, if Φ1 ≺∞ Φ2 and Φ2 ≺∞ Φ1. Therefore, if
Φ1 ≈∞ Φ2 then Mα,Φ1 ≈ Mα,Φ2 , that is, there exist two positive constants C1 and C2
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such that C1Mα,Φ1f(x) ≤ Mα,Φ2f(x) ≤ C2Mα,Φ1f(x).

Let Φ be a Young function and define

Φ0(t) =

{
0 if 0 ≤ t < 1

Φ(t)− Φ(1) if t ≥ 1.
(1.5)

Since Φ0 is a Young function and Φ0 ≈∞ Φ, it is clear that Mα,Φ0 ≈ Mα,Φ.

Now we are ready to state our main result.

Theorem 1.1. Let (X, d, µ) be a space of homogeneous type such that the continuous
functions are dense in L1(X). Let Ψ and Φ be two Young functions and 0 ≤ α < 1.
We define the function

Θ(t) =

∫ t

0

Ψ′
0(u)Φ(t/u) du, (1.6)

where Ψ0 is defined as in (1.5) and Ψ′
0 is the derivative of Ψ0. Then, Θ is a Young

function and for all Young functions Θ̄ ≈∞ Θ we get that

Mα,Θ̄ ≈ Mα,Ψ(MΦ). (1.7)

When X = Rn, d is the euclidean distance, µ is the Lebesgue measure and α = 0
the equivalence (1.7) was proved in [4]. As far as we know, the result for the case
α 6= 0 is new even in the euclidean case.

Now, we shall show some examples. We introduce the following notation: if
Φ(t) = tr or Φ(t) = tr(1 + log+ t)β, the fractional Orlicz maximal operators Mα,Φ

are respectively written as Mα,Lr and Mα,Lr (log L)β ; if α = 0 we simply write MLr and
MLr (log L)β .

Example 1: Let p ≥ 1. Applying Theorem 1.1 with Ψ(t) = tp and Φ(t) = tp(1 +
log+ t)β, β ≥ 0, we get

Mα,Lp(MLp(log L)β) ≈ Mα,Lp(log L)β+1 .

Notice that if p = 1 we get

Mα(ML(log L)β) ≈ Mα,L(log L)β+1 . (1.8)

In particular, when p = 1 and β = 0 we get that Mα(M) ≈ Mα,L(log L). By induction,
using (1.8) and the induction hypothesis with α = 0, we easily obtain the known
result

Mα(Mk) ≈ Mα,L(log L)k , k ∈ N,

where Mk is the iteration of the Hardy-Littlewood maximal operator k times (see
Lemma 4.1 in [3]).

Example 2: If Ψ(t) = tp and Φ(t) = tq, p, q ≥ 1 and p 6= q, then

Mα,Lp(MLq) ≈ Mα,Lr ,

where r = max{p, q}. In particular, for p > 1, Mα(MLp) ≈ Mα,Lp .
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Example 3: If Ψ(t) = t and Φ(t) = tp(1 + log+ t)k, with k ∈ N and p > 1, applying
Theorem 1.1 we obtain

Mα(MLp(log L)k) ≈ Mα,Lp(log L)k .

Example 4: From Example 3 and Example 1 (with α = 0) we get

Mα((MLp)k+1) ≈ Mα,Lp(log L)k , k ∈ N and p > 1.

Notice that if we take Ψ(t) = t in (1.6) we get that for t > 1

Θ(t) =

∫ t

1

Φ(t/u) du = t

∫ t

1

Φ(u)u−2 du,

or equivalently Φ(t) = tΘ′(t)−Θ(t) for all t > 1. Then, it is easy to prove the following
corollary of Theorem 1.1.

Corollary 1.2. Let (X, d, µ) be a space of homogeneous type such that the continuous
functions are dense in L1(X) and let 0 ≤ α < 1. Let Θ be a Young function which is
not equivalent at ∞ to η(t) = t and such that there exists a Young function Φ with
Φ(t) = tΘ′(t)−Θ(t), for t > 1. Then, if Mα,Θf < ∞ a.e. and δ ∈ (0, 1), we get that
(Mα,Θf)δ ∈ A1.

In fact, by Theorem 1.1 we get that (Mα,Θf)δ ≈ [(Mα(MΦf)]δ and Corollary follows
by (1.1) with M = Mα.

Remark 1.3. Observe that if Θ ≈∞ η with η(t) = t, then Mα,Θ ≈ Mα and the
corollary follows by standard arguments.

Remark 1.4. From the above examples we have that (1.1) holds for M = Mα,Θ,
where Θ(t) = tp(1 + log+ t)β for any p ≥ 1 and β ≥ 1.

The article is organized in the following way: in Section 2 we give some preliminaries
results and we prove a reverse inequality of the weak type inequality for the operator
MΦ, while Section 3 is devoted to prove Theorem 1.1.

2. Preliminaries and previous results

Given a set X, a function d : X ×X → R+
0 is called a quasi-distance on X if the

following conditions are satisfied:
(i) for every x and y in X, d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
(ii) for every x and y in X, d(x, y) = d(y, x),
(iii) there exists a constant K ≥ 1 such that

d(x, y) ≤ K(d(x, z) + d(z, y)) (2.1)

for every x, y and z in X. We shall say that two quasi-distances d and d′ on X
are equivalent if there exist two positive constants c1 and c2 such that c1d

′(x, y) ≤
d(x, y) ≤ c2d

′(x, y) for all x, y ∈ X. In particular equivalent quasi-distances induce
the same topology on X.
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Let µ be a positive measure on the σ-algebra of subsets of X which contains the
d-balls B(x, r) = {y : d(x, y) < r}. We assume that µ satisfies a doubling condition,
that is, there exists a constant A such that

0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) < ∞ (2.2)

holds for all x ∈ X and r > 0.
A structure (X, d, µ), with d and µ as above, is called a space of homogeneous type.

The constants K and A in (2.1) and (2.2) will be called the constants of the space.
The balls in a general space of homogeneous type are not necessarily open. Maćıas

and Segovia in [9] proved that there exists a continuous quasi-distance d′ equivalent to
d, for which every ball is open. In this article we always assume that the quasi-distance
d is continuous and the balls are open sets. For a given quasi-distance d, sometimes
we write Bd(x, R) to describe the ball centred at x with radious R associated to d.

We shall say that a function Φ : [0,∞) → [0,∞) is a Young function if there is a

nontrivial, non-negative and increasing function φ such that Φ(t) =
∫ t

0
φ(u) du. Then,

Φ is continuous, convex, increasing and satisfies Φ(0) = 0 and Φ(t) → ∞ as t → ∞.
For a Young function Φ, the maximal operator MΦ satisfies the following weak type
inequality

µ({x ∈ X : MΦf(x) > λ}) ≤ C

∫
X

Φ

(
|f(x)|

λ

)
dµ(x). (2.3)

The proof of the above inequality is similar to that of the (1, 1)-weak type inequality
for the Hardy Littlewood maximal operator (see [6]). By standard arguments, it
follows from (2.3) that

µ({x ∈ X : MΦf(x) > λ}) ≤ C

∫
{x∈X:|f(x)|>λ/2}

Φ

(
2|f(x)|

λ

)
dµ(x), (2.4)

for some constant C, all λ > 0 and all measurable function f .

In order to prove a suitable reverse inequality of (2.4) we shall need two results.
The first one is a Calderón-Zygmung decomposition with Orlicz norms on a bounded
space of homogeneous type. The proof follows the same steps as the one in [1] for the
case Φ(t) = t, so we omit it.

Lemma 2.1. Let (X, d, µ) be a bounded space of homogeneous type, Φ a Young func-
tion and f a nonnegative function defined on X. Then, for every λ > ||f ||Φ,X , there

exists a sequence of disjoint balls, {Bi} = {B(xi, ri)} such that, if B̃i = B(xi, Cri),
where C is a constant depending only on the constant K in (2.1), then

(i) ||f ||Φ,B̃i
≤ λ < ||f ||Φ,Bi

and

(ii) ||f ||Φ,B ≤ λ for every ball B centered at x ∈ X \ ∪iB̃i.

Remark 2.2. If (X, d, µ) is a space of homogeneous type such that the continuous
functions are dense in L1(X) we can apply the Lebesgue Differentiation Theorem in
(ii) of Lemma 2.1 to obtain that Φ (f(x)/λ) ≤ 1 for almost every x ∈ X \ ∪iB̃i.

The second result that we shall be dealing with is the following theorem due to
Maćıas and Segovia ([10]).
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Theorem 2.3. [10] Let (X, d, µ) be a space of homogeneous type. There exists a quasi-
distance δ on X which is equivalent to d such that, for some constant C > 0 depending
only on the constants of the space, if x ∈ X, 0 < r ≤ 6K3R and y ∈ Bδ(x, R) then

µ(Bδ(y, r) ∩Bδ(x, R)) ≥ Cµ(Bδ(y, r)). (2.5)

Moreover,

δ(x, y) ≤ d(x, y) ≤ 3K2δ(x, y), (2.6)

for every x and y in X.
The balls Bδ(x, R) endowed with the restrictions of the quasi-distance δ and the mea-
sure µ become bounded spaces of homogeneous type with constants K ′ and A′, satisfying
(2.1) and (2.2) respectively, independent of R > 0 and x ∈ X.

The above result provides us a quasi-distance δ equivalent to the quasi-distance d
of the space with the property that the balls Bδ are spaces of homogeneous type. This
property is not necesarily true for the balls Bd.

In the following lemma we state and prove a version of the reverse inequality for
MΦ.

Lemma 2.4. Let (X, d, µ) be a space of homogeneous type such that the continuous
functions are dense in L1(X) and let δ be the quasi-distance defined in Theorem 2.3.
Let Bδ = Bδ(x, R) a fixed ball on X. Then, there exist positive constants C and D,
depending only on the constants of the space, such that∫

{y∈Bδ :Φ( f(y)
λ )>1}

Φ

(
f(y)

λ

)
dµ(y) ≤ Cµ({y ∈ Bδ : MΦf(y) > Dλ}),

for any λ > ||f ||Φ,Bδ
and all non-negative functions f .

Proof. Given a non-negative function f on Bδ and λ > ||f ||Φ,Bδ
, we apply Lemma 2.1

(and the corresponding Remark 2.2) to f at the level λ on the space of homogeneous
type (Bδ, δ, µ). That is, there exists a sequence {xi} ⊂ Bδ and disjoint δ-balls Si =

Bδ(xi, ri)∩Bδ in this space such that if S̃i = Bδ(xi, Cri)∩Bδ with C depending only
on K, then

(a) ||f ||Φ,S̃i
≤ λ < ||f ||Φ,Si

and

(b) Φ
(

f(x)
λ

)
≤ 1 for almost every x ∈ Bδ \ ∪iS̃i.

We start proving that there exists D > 0 such that for all i,

Si ⊂ {y ∈ Bδ : MΦf(y) > Dλ}. (2.7)

Notice that, by (2.5) and (2.6) in Theorem 2.3 we get that µ(Si) ≥ C1µ(Bδ(xi, ri)),
with C1 < 1 and Bδ(xi, ri) ⊂ Bd(xi, 3K

2ri) ⊂ Bδ(xi, 3K
2ri) respectively. Then

µ(Bd(xi, 3K
2ri) ≤ C2µ(Bδ(xi, ri)), with C2 > 1. Now, since Φ is a convex function

1

µ(Si)

∫
Si

Φ

(
f

λ

)
dµ ≤ 1

C1µ(Bδ(xi, ri))

∫
Bδ(xi,ri)

Φ

(
f

λ

)
dµ

≤ C2

C1µ(Bd(xi, 3K2ri))

∫
Bd(xi,3K2ri)

Φ

(
f

λ

)
dµ
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≤ 1

µ(Bd(xi, 3K2ri))

∫
Bd(xi,3K2ri)

Φ

(
C2f

C1λ

)
dµ.

Then, taking D = C1

C2
and using item (a) we get

λ < ||f ||Φ,Si
≤ D−1||f ||Φ,Bd(xi,3K2ri) ≤ D−1MΦf(y),

for each y ∈ Si, and we get (2.7). On the other hand, by item (b) we get

µ

({
y ∈ Bδ : Φ

(
f(y)

λ

)
> 1

})
≤ µ

(⋃
i

S̃i

)
. (2.8)

Finally, by (2.7), (2.8), (a) and (b) we get

µ({y ∈ Bδ : MΦf(y) > Dλ}) ≥
∑

i

µ(Si) ≥ C
∑

i

µ(S̃i)

≥
∑

i

∫
S̃i

Φ

(
f

λ

)
dµ ≥

∫
∪iS̃i

Φ

(
f

λ

)
dµ

≥ C

∫
{y∈Bδ :Φ( f(y)

λ )>1}
Φ

(
f

λ

)
dµ(y),

as we wished to prove. �

We also shall need the following lemma proved in [3], which is the corresponding
result of the inequality (1.3) for Mα,Φ.

Lemma 2.5. [3] Let (X, d, µ) be a space of homogeneous type, 0 ≤ α < 1, Φ a Young
function, B = B(x, R) a fixed ball and B̃ = B(x, 2KR). Then, there exists a constant
C > 0, depending only on the constants of the space, such that

max
{

Mα,Φ(fχX\B̃)(y), µ(B)αMΦ(fχX\B̃)(y)
}
≤ C inf

z∈B
Mα,Φ(fχX\B̃)(z),

for all y ∈ B.

3. Proof of Theorem 1.1

Without loss of generality we may assume that Φ(1) = 1 and Ψ(1) = 1. To
prove that Θ is a Young function we proceed as in [2]. In fact, let us assume that

Φ(t) =
∫ t

0
φ(u) du. Since Φ(1) = 1 we get

Φ(t/u) = 1 +
1

u

∫ t

u

φ(v/u) dv, for t ≥ u.

Replacing this formula in (1.6) and changing the order of integration we get

Θ(t) =

∫ t

0

Ψ′
0(u)

[
1 +

1

u

∫ t

u

φ(v/u) dv

]
du

=

∫ t

0

Ψ′
0(u) du +

∫ t

0

[∫ v

0

Ψ′
0(u)φ(v/u)u−1 du

]
dv =

∫ t

0

θ(u) du,
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with

θ(t) = Ψ′
0(t) +

∫ t

0

Ψ′
0(u)φ(t/u)u−1 du.

It follows that Θ is a Young function, since Ψ′
0 and φ are non-negative and Ψ′

0 is
increasing.

To prove (1.7), we begin proving that there exists C > 0 such that Mα,Θf(x) ≤
CMα,Ψ(MΦf)(x) for all x ∈ X. Let us assume that f ≥ 0 and let us fix an x ∈ X
such that Mα,Ψ(MΦf)(x) < ∞. Let B = B(z, R) any ball on X such that x ∈ B and

B̃ = B(z, 3K2R). Notice that it is enough to show that there exists a constant C
such that

||f ||Θ,B ≤ C||MΦf ||Ψ0,B̃. (3.1)

Let δ be the quasi-distance equivalent to d defined in Theorem 2.3. If Bδ = Bδ(z, R),
let λ0 = ||MΦf ||Ψ0,Bδ

. To prove (3.1) it is enough to show that there exists a constant
C0 > 1 such that

1

µ(Bδ)

∫
Bδ

Θ

(
f(x)

C0λ0

)
dµ(x) ≤ 1. (3.2)

In fact, from (2.6) we get that B ⊂ Bδ ⊂ B̃. On the other hand, µ(B̃) ≤ C̃µ(B) for
some universal constant C̃ ≥ 1. Since Θ is a convex function, if (3.2) holds then

1

µ(B)

∫
B

Θ

(
f(x)

C̃C0λ0

)
dµ(x) ≤ µ(B̃)

µ(B)

1

µ(Bδ)

∫
Bδ

Θ

(
f(x)

C̃C0λ0

)
dµ(x)

≤ C̃

µ(Bδ)

∫
Bδ

Θ

(
f(x)

C̃C0λ0

)
dµ(x)

≤ 1

µ(Bδ)

∫
Bδ

Θ

(
f(x)

C0λ0

)
dµ(x) ≤ 1.

Thus,

‖f‖Θ,B ≤ C̃C0λ0 = C̃C0||MΦf ||Ψ0,Bδ
≤ C̃2C0||MΦf ||Ψ0,B̃,

and we get inequality (3.1) with C = C̃2C0.

Now, by the definition of the function Θ we get that∫
Bδ

Θ

(
f(x)

C0λ0

)
dµ(x) =

∫
Bδ

∫ f(x)
C0λ0

0

Ψ′
0(u)Φ

(
f(x)

C0λ0u

)
du dµ(x)

=

∫ ∞

1

Ψ′
0(u)

∫
{

x∈Bδ :
f(x)
C0λ0

>u
} Φ

(
f(x)

C0λ0u

)
dµ(x) du

≤
∫ ∞

1

Ψ′
0(u)

∫
{

x∈Bδ : Φ
(

f(x)
C0λ0u

)
>1

} Φ

(
f(x)

C0λ0u

)
dµ(x) du.

Notice that in the last inequality we have used that the Young function Φ is strictly
increasing for t > 1 (this is a consequence of the convexity and the assumption Φ(1) =
1). Now, let us observe that, since u > 1 and Ψ0 ≈∞ Ψ, C0λ0u > C0||MΦf ||Ψ0,Bδ

≥
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C0C1||MΦf ||Ψ,Bδ
≥ C0C1||f ||Φ,B̃ ≥ C0C1

C̃
||f ||Φ,Bδ

, where C̃ is such that µ(B̃) ≤ C̃µ(B).

Then, choosing C0 such that C0C1 ≥ C̃ and applying Lemma 2.4 we get that

∫
Bδ

Θ

(
f(x)

C0λ0

)
dµ(x) ≤ C

∫ ∞

1

Ψ′
0(u)µ({x ∈ Bδ : MΦf(x) > DC0λ0u}) du

≤ C

∫
Bδ

Ψ0

(
MΦf(x)

DC0λ0

)
dµ(x) ≤ Cµ(Bδ)

DC0

.

Then, choosing C0 ≥ max{CD−1, C̃C−1
1 }, we clearly obtain (3.2).

Now, we shall prove the other inequality in (1.7), that is, there exists C > 0 such
that Mα,Ψ(MΦf)(x) ≤ CMα,Θf(x) for all x ∈ X. Let x ∈ X such that Mα,Θf(x) < ∞.
First, we shall show that there exists C > 0 such that

||MΦf ||Ψ0,B ≤ C||f ||Θ,B, (3.3)

for any ball B such that x ∈ B and for any function f with support in B. By an homo-
geneous argument, we may assume ||f ||Θ,B = 1/2, that is, 1

µ(B)

∫
B

Θ(2f(x)) dµ(x) ≤ 1.

Now, applying (2.4) we get that∫
B

Ψ0(MΦf(x)) dµ(x) =

∫ ∞

0

Ψ′
0(u)µ({x ∈ B : MΦf(x) > u}) du

≤ C

∫ ∞

1

Ψ′
0(u)

(∫
{x∈B: f(x)>u/2}

Φ

(
2f(x)

u

)
dµ(x)

)
du

= C

∫
B

(∫ 2f(x)

1

Ψ′
0(u)Φ

(
2f(x)

u

)
du

)
dµ(x)

= C

∫
B

Θ(2f(x)) dµ(x) ≤ Cµ(B).

So, we get (3.3) for any f with supp(f) ⊂ B. For an arbitrary f ≥ 0, let x ∈ X,
B = B(z, R) a ball such that x ∈ B and B̃ = B(x, 2KR). We write f = f1 + f2 with
f1 = fχB̃. Then

µ(B)α||MΦf ||Ψ0,B ≤ µ(B̃)α||MΦf1||Ψ0,B̃ + µ(B)α||MΦf2||Ψ0,B = I + II.

By (3.3) we get that

I ≤ Cµ(B̃)α||f ||Θ,B̃ ≤ Mα,Θf(x).

To estimate II, let us observe that, as in [4], we can prove that Φ ≺∞ Θ. In fact,
notice that there exists t0 > 1 such that Ψ0(u) ≥ 1 for all u ≥ t0, then for t ≥ 2t0,

Θ(t) =

∫ t

1

Ψ′
0(u)Φ(t/u) du

≥
∫ t

1

Ψ0(u)Φ′(t/u)tu−2 du

≥
∫ t

t0

Φ′(t/u)tu−2 du
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=

∫ t/t0

1

Φ′(v) dv = c0Φ(t/t0).

Then, MΦf(x) ≤ CMΘf(x). Now, using twice Lemma 2.5 we get that

II ≤ µ(B)α|| inf
z∈B

MΦf2(z)||Ψ0,B

≤ Cµ(B)α inf
z∈B

MΦf2(z)

≤ Cµ(B)α inf
z∈B

MΘf2(z) ≤ CMα,Θf(x).

Finally, putting together the estimates for I and II we are done.
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[13] C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-
Littlewood maximal function, J. Fourier Anal. Appl., 3, No.6, (1997), 743-756.
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