MAXIMAL OPERATORS, RIESZ TRANSFORMS AND LITTLEWOOD-PALEY FUNCTIONS ASSOCIATED WITH BESSEL OPERATORS ON BMO

J. J. BETANCOR, A. CHICCO RUIZ, J. C. FARIÑA, AND L. RODRÍGUEZ-MESA

ABSTRACT. In this paper we study boundedness properties of certain harmonic analysis operators (maximal operators for heat and Poisson semigroups, Riesz transform and Littlewood-Paley g-functions) associated with Bessel operators, on the space $BMO_o(\mathbb{R})$ that consists of the odd functions with bounded mean oscillation on \mathbb{R} .

1. Introduction

By $BMO_o(\mathbb{R})$ we denote the space constituted by all those odd functions with bounded mean oscillation on \mathbb{R} . This space can be characterized as follows. An odd function $f \in L^1_{loc}(\mathbb{R})$ is in $BMO(\mathbb{R})$, that is, f has bounded mean oscillation on \mathbb{R} , if and only if, for all $1 \leq p < \infty$ (equivalently, for some $1 \leq p < \infty$) there exists $C_p > 0$ such that, for every interval I = (a, b)

(1)
$$\frac{1}{|I|} \int_{I} |f(x) - f_{I}|^{p} dx \le C_{p}, \quad 0 < a < b < \infty,$$

and also

(2)
$$\frac{1}{|I|} \int_{I} |f(x)|^{p} dx \le C_{p}, \quad 0 = a < b < \infty.$$

Here, as usual, |I| denotes the length of I and $f_I = \frac{1}{|I|} \int_I f(x) dx$. Moreover, for every $1 \leq p < \infty$, $\inf\{C_p > 0 : (1) \text{ and } (2) \text{ hold}\}$ is equivalent to the usual $\|f\|_{BMO(\mathbb{R})}$ (see, for instance, [14, Chapter 1] definitions and properties concerning to $BMO(\mathbb{R})$). $BMO_o(\mathbb{R})$ coincides with the dual $H_o^1(\mathbb{R})'$ of the subspace $H_o^1(\mathbb{R})$ of $H^1(\mathbb{R})$ that consists of all the odd functions in the Hardy space $H^1(\mathbb{R})$. The space $H_o^1(\mathbb{R})$ was studied in [4] and [10], where several characterizations of $H_o^1(\mathbb{R})$ are obtained. In the sequel we denote by BMO_+ the space that consists of all those $f \in L^1_{loc}([0,\infty))$ such that the odd extension f_o of f to \mathbb{R} is in $BMO(\mathbb{R})$. On BMO_+ we consider the natural norm. Our objective in this paper is to

Date: January 22, 2009.

 $2000\ \textit{Mathematics Subject Classification}.\ 42\text{C}05\ (\text{primary}),\ 42\text{C}15\ (\text{secondary}).$

This paper is partially supported by MTM2007/650609.

study the behavior on BMO_+ of maximal operator, Riesz transform and Littlewood-Paley g-functions associated with Bessel operators.

Muckenhoupt and Stein [12] began the development of harmonic analysis related to Bessel operators. They considered the Bessel operator B_{λ} , $\lambda > 0$, defined by $B_{\lambda} = -x^{-2\lambda}Dx^{2\lambda}D$, with $D = \frac{d}{dx}$. In [12] Poisson integrals and conjugate of Poisson integrals associated with B_{λ} were introduced. Recently, L^p -boundedness properties for the higher order Riesz transform ([5]) and for the Littlewood-Paley g-functions ([6]) in the B_{λ} context have been established.

Here we consider the Bessel operator $\Delta_{\lambda} = -x^{-\lambda}Dx^{2\lambda}Dx^{-\lambda}$, with $\lambda > 0$. If J_{ν} denotes the Bessel function of the first kind and order ν , for every y > 0, the function $\varphi_y(x) = \sqrt{xy}J_{\lambda-\frac{1}{2}}(xy), x \in (0,\infty)$, is an eigenfunction of Δ_{λ} and

$$\Delta_{\lambda}(\sqrt{xy}J_{\lambda-\frac{1}{2}}(xy))=y^2\sqrt{xy}J_{\lambda-\frac{1}{2}}(xy),\ x,y\in(0,\infty).$$

The Poisson kernel associated with the operator Δ_{λ} is given by

$$P^{\lambda}(t, x, y) = \int_0^{\infty} e^{-tz} \varphi_x(z) \varphi_y(z) dz, \quad t, x, y \in (0, \infty).$$

According to [12, (16.4)] (see also [19]) we have that

$$P^{\lambda}(t,x,y) = \frac{2\lambda t(xy)^{\lambda}}{\pi} \int_0^{\pi} \frac{(\sin \theta)^{2\lambda - 1}}{((x-y)^2 + t^2 + 2xy(1 - \cos \theta))^{\lambda + 1}} d\theta, \quad t, x, y \in (0, \infty).$$

The Poisson integral $P_t^{\lambda}(f)$ is defined by

$$P_t^{\lambda}(f)(x) = \int_0^\infty P^{\lambda}(t, x, y) f(y) dy, \quad t, x > 0.$$

The family $\{P_t^{\lambda}\}_{t>0}$ constitutes a semigroup of linear and bounded operators in $L^p(0,\infty)$, $1 \leq p \leq \infty$. L^p -boundedness properties of the maximal operator

$$P_*^{\lambda}(f) = \sup_{t>0} |P_t^{\lambda}(f)|$$

were established in [7] and [8].

The heat kernel associated with the operator Δ_{λ} is

$$W^{\lambda}(t,x,y) = \int_0^{\infty} e^{-tz^2} \varphi_x(z) \varphi_y(z) dz, \quad t,x,y \in (0,\infty).$$

According to [18, 13.31(1)], we can write

$$W^{\lambda}(t,x,y) = \frac{1}{\sqrt{2t}} \left(\frac{xy}{2t}\right)^{\frac{1}{2}} I_{\lambda - \frac{1}{2}} \left(\frac{xy}{2t}\right) e^{-\frac{x^2 + y^2}{4t}}, \quad t,x,y \in (0,\infty),$$

where I_{ν} denotes the modified Bessel function of the first kind and order ν . The heat integral $W_t^{\lambda}(f)$ of f is defined by

$$W_t^{\lambda}(f)(x) = \int_0^\infty W^{\lambda}(t, x, y) f(y) \, dy, \quad t, x > 0.$$

Then, $\{W_t^{\lambda}\}_{t>0}$ is a semigroup of bounded and linear operators in $L^p(0,\infty)$, $1 \leq p \leq \infty$. The maximal operator associated with $\{W_t^{\lambda}\}_{t>0}$ is given by

$$W_*^{\lambda}(f) = \sup_{t>0} |W_t^{\lambda}(f)|$$

and it was investigated on L^p -spaces in [7].

Bennett, DeVore and Sharpley ([2, Th. 4.2 (b)]) proved that if \mathcal{M} denotes the (uncentered) Hardy-Littlewood maximal operator on \mathbb{R}^n , then, for every $f \in BMO(\mathbb{R}^n)$, either $\mathcal{M}f \in BMO(\mathbb{R}^n)$ or $\mathcal{M}f \equiv \infty$. The function $f(x) = \log_+ |x|, x \in \mathbb{R}^n$, is an example of the second situation. In [9] it was introduced a BMO type space on \mathbb{R}^n associated with Schrödinger operators where the maximal operator \mathcal{M} is bounded. This is the case for the maximal operators, W_*^{λ} , P_*^{λ} and the Hardy-Littlewood maximal operator \mathcal{M}_0 on $(0, \infty)$, on BMO_+ as we state in the following proposition.

Proposition 1. Let $\lambda > 0$. We denote by \mathcal{N} the operators \mathcal{M}_0 , W_*^{λ} or P_*^{λ} . There exists C > 0 such that

$$\|\mathcal{N}f\|_{BMO_{+}} \le C\|f\|_{BMO_{+}}, \quad f \in BMO_{+}.$$

Riesz transforms in the Δ_{λ} -setting were studied in [3]. The operator Δ_{λ} admits the factorization $\Delta_{\lambda} = D_{\lambda}^* D_{\lambda}$, where $D_{\lambda} = x^{\lambda} D x^{-\lambda}$ and D_{λ}^* represents the (formal) adjoint of D_{λ} in $L^2(0,\infty)$. Following the ideas developed by Stein in [13], the Riesz transform R_{λ} is defined by

$$R_{\lambda}f = D_{\lambda}\Delta_{\lambda}^{-\frac{1}{2}}f, \quad f \in C_{c}^{\infty}(0, \infty).$$

Here $C_c^{\infty}(0,\infty)$ denotes the space of smooth functions with compact support in $(0,\infty)$. The operator R_{λ} can be extended to $L^p(0,\infty)$ as a bounded operator on $L^p(0,\infty)$, for every $1 , and to <math>L^1(0,\infty)$ as a bounded operator from $L^1(0,\infty)$ into $L^{1,\infty}(0,\infty)$. Moreover, for each $f \in L^p(0,\infty)$, 1 ,

(3)
$$R_{\lambda}f(x) = \lim_{\varepsilon \to 0} \int_{0,|x-y|>\varepsilon}^{\infty} R_{\lambda}(x,y)f(y)dy, \text{ a.e. } x \in (0,\infty),$$

being

$$R_{\lambda}(x,y) = \int_0^\infty D_{\lambda,x} P^{\lambda}(t,x,y) dt, \quad x,y \in (0,\infty), \ x \neq y.$$

According to [1, (1.6)] (also see [7]) we get

(4)
$$|R_{\lambda}(x,y)| \le C(xy)^{\lambda} \begin{cases} \frac{x}{y^{2\lambda+2}}, & 2x \le y, \\ \frac{1}{x^{2\lambda+1}}, & 0 < y < \frac{x}{2}, \end{cases}$$

and

(5)
$$\left| R_{\lambda}(x,y) - \frac{1}{\pi} \frac{1}{x-y} \right| \le C \frac{1}{y} \left(1 + \log_{+} \frac{\sqrt{xy}}{|x-y|} \right), \quad 0 < \frac{x}{2} < y < 2x.$$

Then, we can prove that the Riesz transform R_{λ} is well defined on $L^{\infty}(0,\infty)$. This fact establishes a difference between the behavior of R_{λ} and the Hilbert transform on bounded functions ([16, p. 294]).

The vertical Littlewood-Paley g-function associated with the heat semigroup $\{W_t^{\lambda}\}_{t>0}$ for the Bessel operator Δ_{λ} is defined by

$$g_{h,\lambda}(f)(x) = \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} W_t^{\lambda}(f)(x) \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}},$$

and the corresponding one for the Poisson semigroup $\{P_t^{\lambda}\}_{t>0}$ is given by

$$g_{P,\lambda}(f)(x) = \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} P_t^{\lambda}(f)(x) \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}}.$$

The behavior of the Riesz transforms and g-functions on BMO_+ is established in the next proposition.

Proposition 2. Let $\lambda > 0$. We denote by \mathcal{N} the operators R_{λ} , $g_{h,\lambda}$ and $g_{P,\lambda}$. There exists C > 0 such that

$$\|\mathcal{N}f\|_{BMO_{+}} \le C\|f\|_{BMO_{+}}, \quad f \in BMO_{+}.$$

As for maximal operators the property stated in Proposition 2 for $g_{h,\lambda}$ and $g_{P,\lambda}$ contrasts with the corresponding one for vertical classical Littlewood-Paley g-functions (see [17]).

This paper is organizated as follows. In Section 2 we prove Proposition 1 and the proof of Proposition 2 is showed in Section 3 and Section 4 where we establish the estimates for the Riesz transform and for the g-functions, respectively.

Throughout this paper we always denote by C a suitable positive constant that can change from a line to the other one.

2. Maximal operators in BMO_{+} .

In this section we present a proof of Proposition 1. We divide the proof in three parts. Each part is concerned with one of the maximal operators under considerations.

(i) By \mathcal{M}_0 we denote the Hardy-Littlewood maximal operator on $(0, \infty)$, that is, if $f \in L^1_{loc}([0, \infty))$,

$$\mathcal{M}_0(f)(x) = \sup_{x \in I} \frac{1}{|I|} \int_I |f(y)| \, dy, \quad x \in (0, \infty),$$

where the supremum is taken over all the bounded intervals I on $(0, \infty)$ such that $x \in I$.

Assume that $f \in BMO_+$, then $f_o \in BMO_o(\mathbb{R})$. Let a > 0, we write $f_o = f_1 + f_2$ where $f_1 = f_o\chi_{(-2a,2a)}$. Since $f_o \in L^1_{loc}(\mathbb{R})$, $\mathcal{M}f_1(x) < \infty$, a.e. $x \in \mathbb{R}$, where \mathcal{M} denotes the Hardy-Littlewood maximal operator on \mathbb{R} . Moreover, if $x \in (-a,a)$ and I is a bounded interval such that $x \in I$ and $I \cap (-2a,2a)^c \neq \emptyset$, by denoting J = (-b,b), where $b = \max\{|y|, y \in I\}$, we have

(6)
$$\frac{1}{|I|} \int_{I} |f_2(y)| \, dy = \frac{1}{|I|} \int_{I \cap (-2a, 2a)^c} |f_o(y)| \, dy \le C \frac{1}{|J|} \int_{J} |f_o(y)| \, dy \le C \|f\|_{BMO_+}.$$

Note that $|I| \leq |J| \leq 2(|I| + a) \leq 4|I|$. Hence $\mathcal{M}(f_2)(x) < \infty$, a.e. $x, |x| \leq a$. Then, we obtain that $\mathcal{M}(f_0)(x) < \infty$, a.e. $x, |x| \leq a$. Hence, we conclude that $\mathcal{M}(f_0)(x) < \infty$, a. e. $x \in \mathbb{R}$.

Since $f \in BMO(0, \infty)$, a wellknown result due to Bennett, DeVore and Sharpley ([2, Theorem 4.2]) implies that $\mathcal{M}_0 f \in BMO(0, \infty)$ and $\|\mathcal{M}_0 f\|_{BMO(0,\infty)} \leq C\|f\|_{BMO_+}$. Moreover, for every a > 0,

(7)
$$\frac{1}{a} \int_0^a \mathcal{M}_0(f)(x) \, dx \le C \|f\|_{BMO_+}.$$

Indeed, let a > 0. As above we write $f = f_1 + f_2$, where $f_1 = f\chi_{(0,2a)}$. Then, by proceeding as in (6) we get

(8)
$$\mathcal{M}_0(f_2)(x) \le 2||f||_{BMO_+}, \quad x \in (0, a).$$

Also, since \mathcal{M}_0 is bounded on $L^2(0,\infty)$, it has

$$(9) \quad \frac{1}{a} \int_0^a |M_0 f_1(x)| dx \le \left(\frac{1}{a} \int_0^a |M_0 f_1(x)|^2 dx\right)^{\frac{1}{2}} \le C \left(\frac{1}{a} \int_0^{2a} |f(x)|^2 dx\right)^{\frac{1}{2}} \le C \|f\|_{BMO_+}.$$

From (8) and (9) we deduce that (7) holds.

By combining the above arguments we conclude that $(\mathcal{M}_0 f)_o \in BMO_o(\mathbb{R})$ and $\|\mathcal{M}_0 f\|_{BMO_+} \leq \mathbb{R}$ $C\|f\|_{BMO_+}$. (ii) We now analyze the maximal operator W_*^{λ} associated with the heat semigroup $\{W_t^{\lambda}\}_{t>0}$. Assume that $f \in BMO_+$.

According to [11, (5.16.5)] we have that

(10)
$$0 \le W^{\lambda}(t, x, y) \le C \frac{1}{\sqrt{t}} e^{-\frac{(x-y)^2}{4t}}, \quad t, x, y \in (0, \infty),$$

and also,

(11)
$$W^{\lambda}(t,x,y) \leq C \begin{cases} \frac{1}{\sqrt{t}} \left(\frac{xy}{t}\right)^{\lambda} e^{-\frac{y^2 + x^2}{4t}}, & \frac{xy}{2t} \leq 1, \\ \frac{1}{\sqrt{t}} \left(\frac{xy}{t}\right)^{\lambda} e^{-\frac{(x-y)^2}{4t}}, & \frac{xy}{2t} \geq 1. \end{cases}$$

It is wellknown that

(12)
$$\sup_{t>0} \int_0^\infty \frac{1}{\sqrt{t}} e^{-\frac{(x-y)^2}{4t}} |f(y)| \, dy \le C\mathcal{M}_0(f)(x), \quad x \in (0,\infty).$$

Then

$$W_*^{\lambda}(f)(x) \le C\mathcal{M}_0(f)(x), \quad x \in (0, \infty).$$

Hence, by (7), for every a > 0, we have

(13)
$$\frac{1}{a} \int_0^a W_*^{\lambda}(f)(x) \, dx \le C \|f\|_{BMO_+}.$$

On the other hand, we can write

$$\begin{split} \left| \sup_{t>0} |W_t^{\lambda}(f)(x)| - \sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} W^{\lambda}(t,x,y) f(y) \, dy \right| \right| \\ & \leq \sup_{t>0} \int_0^{\frac{x}{2}} W^{\lambda}(t,x,y) |f(y)| \, dy + \sup_{t>0} \int_{2x}^{\infty} W^{\lambda}(t,x,y) |f(y)| \, dy, \quad x \in (0,\infty). \end{split}$$

From (10) it follows that

$$\int_{0}^{\frac{x}{2}} W^{\lambda}(t,x,y)|f(y)| \, dy \leq C \int_{0}^{\frac{x}{2}} \frac{1}{\sqrt{t}} e^{-\frac{(x-y)^{2}}{4t}} |f(y)| \, dy \leq C \int_{0}^{\frac{x}{2}} \frac{1}{\sqrt{t}} e^{-\frac{x^{2}}{16t}} |f(y)| \, dy$$

$$\leq \frac{C}{x} \int_{0}^{\frac{x}{2}} |f(y)| \, dy \leq C \|f\|_{BMO_{+}}, \ t, x \in (0,\infty).$$

By using (11) we get

$$\int_{2x}^{\infty} W^{\lambda}(t,x,y)|f(y)| \, dy \le C \left(\int_{2x,\frac{xy}{2t} \le 1}^{\infty} \left(\frac{xy}{t} \right)^{\lambda} \frac{e^{-\frac{y^2}{4t}}}{\sqrt{t}} |f(y)| \, dy + \int_{2x,\frac{xy}{2t} > 1}^{\infty} \frac{e^{-\frac{(x-y)^2}{4t}}}{\sqrt{t}} |f(y)| \, dy \right) dy$$

$$\leq C \int_{2x}^{\infty} \left(\frac{xy}{t}\right)^{\lambda} \frac{e^{-\frac{y^2}{16t}}}{\sqrt{t}} |f(y)| \, dy \leq Cx^{\lambda} \int_{2x}^{\infty} \frac{|f(y)|}{y^{\lambda+1}} \, dy = Cx^{\lambda} \sum_{k=1}^{\infty} \int_{2k^{2/\lambda}x}^{2(k+1)^{2/\lambda}x} \frac{|f(y)|}{y^{\lambda+1}} \, dy \\ \leq Cx^{\lambda} \sum_{k=1}^{\infty} \frac{1}{(2k^{2/\lambda}x)^{\lambda+1}} \int_{0}^{2(k+1)^{2/\lambda}x} |f(y)| \, dy \leq C \sum_{k=1}^{\infty} \frac{1}{k^2} \frac{1}{2(k+1)^{2/\lambda}x} \int_{0}^{2(k+1)^{2/\lambda}x} |f(y)| \, dy \\ \leq C \|f\|_{BMO_+}, \ t, x \in (0, \infty).$$

Hence, we have proved that

$$\sup_{t>0} |W_t^{\lambda}(f)(x)| - \sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} W^{\lambda}(t,x,y) f(y) \, dy \right| \in L^{\infty}(0,\infty),$$

and

(14)
$$\left\| \sup_{t>0} |W_t^{\lambda}(f)(x)| - \sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} W^{\lambda}(t,x,y) f(y) \, dy \right| \right\|_{\infty} \le C \|f\|_{BMO_+}.$$

Moreover,

$$\sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} W^{\lambda}(t,x,y) f(y) \, dy \right| - \sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) \, dy \right| \in L^{\infty}(0,\infty),$$

and

(15)
$$\left\| \sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} W^{\lambda}(t,x,y) f(y) \, dy \right| - \sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) \, dy \right| \right\|_{\infty} \le C \|f\|_{BMO_+}.$$

Indeed, we can write

$$\begin{aligned} \left| \sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} W^{\lambda}(t,x,y) f(y) \, dy \right| - \sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) \, dy \right| \right| \\ & \leq \sup_{t>0} \int_{\frac{x}{2}}^{2x} \left| W^{\lambda}(t,x,y) - \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} \right| |f(y)| \, dy, \ \ x \in (0,\infty). \end{aligned}$$

According to (10), it follows that

$$\begin{split} \int_{\frac{x}{2},\frac{xy}{2t} \leq 1}^{2x} |W^{\lambda}(t,x,y) - \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} ||f(y)| \, dy \\ & \leq C \int_{\frac{x}{2},\frac{xy}{2t} \leq 1}^{2x} \frac{1}{\sqrt{t}} \left(\left(\frac{xy}{t}\right)^{\lambda} + 1 \right) e^{-\frac{x^2+y^2}{4t}} |f(y)| \, dy \\ & \leq C \int_{\frac{x}{2}}^{2x} \frac{|f(y)|}{\sqrt{x^2+y^2}} \, dy \leq \frac{C}{x} \int_{0}^{2x} |f(y)| \, dy \leq C ||f||_{BMO_+}, \ t, x \in (0,\infty). \end{split}$$

Also, by using [11, 5.16.5], we get

$$\int_{\frac{x}{2}, \frac{xy}{2t} \ge 1}^{2x} \left| W^{\lambda}(t, x, y) - \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} \right| |f(y)| \, dy \le C \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{t}} \left(\frac{t}{xy}\right)^{\frac{1}{2}} e^{-\frac{(x-y)^2}{4t}} |f(y)| \, dy$$

$$\le \frac{C}{x} \int_{0}^{2x} |f(y)| \, dy \le C ||f||_{BMO_{+}}, \quad t, x \in (0, \infty).$$

Hence (15) is established.

Now we denote by $\{W_t\}_{t>0}$ the classical heat semigroup, that is, we write

$$W_t(f_o)(x) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-y)^2}{4t}} f_o(y) \, dy, \ \ t \in (0, \infty) \text{ and } x \in \mathbb{R}.$$

Since f_o is an odd function we can write

(16)
$$W_t(f_o)(x) = \frac{1}{\sqrt{4\pi t}} \int_0^\infty \left(e^{-\frac{(x-y)^2}{4t}} - e^{-\frac{(x+y)^2}{4t}} \right) f(y) \, dy, \ t \in (0, \infty) \text{ and } x \in \mathbb{R}.$$

Moreover $W_t(f_o)$ is odd, for every t > 0. By splitting the integral it gets

$$\begin{split} \left| W_t(f_0)(x) - \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) \, dy \right| \\ & \leq \frac{1}{\sqrt{4\pi t}} \int_0^{\frac{x}{2}} \left| e^{-\frac{(x-y)^2}{4t}} - e^{-\frac{(x+y)^2}{4t}} \right| |f(y)| \, dy \\ & + \frac{1}{\sqrt{4\pi t}} \int_{2x}^{\infty} \left| e^{-\frac{(x-y)^2}{4t}} - e^{-\frac{(x+y)^2}{4t}} \right| |f(y)| \, dy + \frac{1}{\sqrt{4\pi t}} \int_{\frac{x}{2}}^{2x} e^{-\frac{(x+y)^2}{4t}} |f(y)| \, dy \\ & \leq \frac{C}{\sqrt{t}} \left(\int_0^{\frac{x}{2}} \left| \frac{(x-y)^2 - (x+y)^2}{4t} \right| e^{-\frac{(x-y)^2}{4t}} |f(y)| \, dy \right. \\ & + \int_{2x}^{\infty} \left| \frac{(x-y)^2 - (x+y)^2}{4t} \right| e^{-\frac{(x-y)^2}{4t}} |f(y)| \, dy + \int_{\frac{x}{2}}^{2x} e^{-\frac{(x+y)^2}{4t}} |f(y)| \, dy \right) \\ & \leq C \left(\int_0^{\frac{x}{2}} \frac{xy}{t^{\frac{3}{2}}} e^{-\frac{x^2}{16t}} |f(y)| \, dy + \int_{2x}^{\infty} \frac{xy}{t^{\frac{3}{2}}} e^{-\frac{y^2}{16t}} |f(y)| \, dy + \int_{\frac{x}{2}}^{2x} \frac{|f(y)|}{x+y} \, dy \right) \\ & \leq C \left(\frac{1}{x} \int_0^{\frac{x}{2}} |f(y)| \, dy + x \int_{2x}^{\infty} \frac{1}{y^2} |f(y)| \, dy + \frac{1}{x} \int_{\frac{x}{2}}^{2x} |f(y)| \, dy \right) \\ & \leq C \left(\frac{1}{x} \int_0^{2x} |f(y)| \, dy + x \sum_{k=1}^{\infty} \int_{2xk^2}^{2x(k+1)^2} \frac{1}{y^2} |f(y)| \, dy \right) \end{split}$$

$$\leq C \left(\frac{1}{x} \int_0^{2x} |f(y)| dy + \sum_{k=1}^{\infty} \frac{1}{k^2} \frac{1}{2x(k+1)^2} \int_0^{2x(k+1)^2} |f(y)| dy \right) \leq C \|f\|_{BMO_+},$$

for every $t, x \in (0, \infty)$. Hence,

$$\sup_{t \in (0,\infty)} |W_t(f_o)(x)| - \sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) \ dy \right| \in L^{\infty}(0,\infty),$$

and

(17)
$$\left\| \sup_{t \in (0,\infty)} |W_t(f_o)(x)| - \sup_{t>0} \left| \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) \, dy \right| \right\|_{\infty} \le C \|f\|_{BMO_+}.$$

We deduce from (14), (15) and (17) that

$$\sup_{t>0} |W_t^{\lambda}(f)(x)| - \sup_{t>0} |W_t(f_o)(x)| \in L^{\infty}(0,\infty)$$

and

(18)
$$\left\| \sup_{t>0} |W_t^{\lambda}(f)| - \sup_{t>0} |W_t(f_o)| \right\|_{\infty} \le C \|f\|_{BMO_+}.$$

According to (13) and (18), to see that

$$\sup_{t>0} |W_t^{\lambda}(f)| \in BMO_+ \text{ and } \left\| \sup_{t>0} |W_t(f)| \right\|_{BMO_+} \le C \|f\|_{BMO_+},$$

it is sufficient to see that $\sup_{t>0} |W_t(f_o)| \in BMO(\mathbb{R})$ and that

$$\|\sup_{t>0} |W_t(f_o)|\|_{BMO(\mathbb{R})} \le C\|f_o\|_{BMO(\mathbb{R})}.$$

We have to show that $\sup_{t>0} |W_t(f_o)(x)| < \infty$, a.e. $x \in \mathbb{R}$ (see [15]). From (7) and (12) we get

$$\frac{1}{a} \int_{0}^{a} \sup_{t>0} |W_t(f_o)(x)| dx \le C ||f||_{BMO_+}, \quad a > 0.$$

Then, since $\sup_{t>0} |W_t(f_o)|$ is even, $\sup_{t>0} |W_t(f_o)(x)| < \infty$, a.e. $x \in \mathbb{R}$. Thus we prove that $W_*^{\lambda}(f) \in BMO_+$ and $\|W_*^{\lambda}(f)\|_{BMO_+} \le C\|f\|_{BMO_+}$.

(iii) Let $f \in BMO_+$. By using subordination formula we can write

(19)
$$P^{\lambda}(t,x,y) = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{e^{-u}}{\sqrt{u}} W^{\lambda}\left(\frac{t^2}{4u},x,y\right) du, \quad t,x,y \in (0,\infty).$$

Then,

$$\sup_{t>0} |P_t^{\lambda}(f)| \le C \sup_{t>0} |W_t^{\lambda}(f)|.$$

Hence, from (13) we deduce that

(20)
$$\frac{1}{a} \int_0^a P_*^{\lambda}(f)(x) dx \le C ||f||_{BMO_+}, \quad a > 0.$$

Moreover, by (18), it follows

$$\sup_{t>0} |P_t^{\lambda}(f)(x)| - \sup_{t>0} |P_t(f_o)(x)| \in L^{\infty}(0,\infty),$$

and

(21)
$$\left\| \sup_{t>0} |P_t^{\lambda}(f)(x)| - \sup_{t>0} |P_t(f_o)(x)| \right\|_{\infty} \le C \|f\|_{BMO_+},$$

where

(22)
$$P_t(f_o)(x) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{t}{(x-y)^2 + t^2} f_o(y) \, dy, \quad t > 0, \quad x \in \mathbb{R}.$$

From (12) it infers that $\sup_{t>0} |P_t(f_o)(x)| \le C\mathcal{M}_0(f)(x), \ x \in (0,\infty)$. Then, by (7),

$$\frac{1}{a} \int_0^a \sup_{t>0} |P_t(f_o)(x)| dx \le C ||f||_{BMO_+}, \quad a > 0.$$

Hence, since $\sup_{t>0} |P_t(f_o)|$ is even, $\sup_{t>0} |P_t(f_o)(x)| < \infty$, a.e. $x \in \mathbb{R}$. It deduces that $\sup_{t>0} |P_t(f_o)| \in BMO(\mathbb{R})$ (see [15]). (20) and (21) allow us to conclude that $P_*^{\lambda} f \in BMO_+$, and $\|P_*^{\lambda} f\|_{BMO_+} \leq \|C\|f\|_{BMO_+}$.

3. Riesz transform in BMO_{+} .

Our objective is to show Proposition 2 for the Riesz transforms R_{λ} . Firstly, note that, by (4) and (5), the Riesz transform R_{λ} is defined on $L^{\infty}(0,\infty)$. Indeed, let $f \in L^{\infty}(0,\infty)$. It is known (see, for instance, [16, p. 294]) that the limit

(23)
$$\lim_{\varepsilon \to 0} \int_{0,|x-y| > \varepsilon}^{\infty} f(y) \left(\frac{1}{x-y} + \chi_{(1,\infty)}(y) \frac{1}{y} \right) dy$$

exists for almost every $x \in (0, \infty)$. We now prove that

$$R_{\lambda}f(x) = \int_{0}^{\frac{x}{2}} R_{\lambda}(x,y)f(y) \, dy + \lim_{\varepsilon \to 0} \int_{\frac{x}{\varepsilon},|x-y| > \varepsilon}^{2x} R_{\lambda}(x,y)f(y) dy + \int_{2x}^{\infty} R_{\lambda}(x,y)f(y) dy,$$

for almost all $x \in (0, \infty)$. According to (4), we get

$$\int_0^{\frac{x}{2}} |R_{\lambda}(x,y)| |f(y)| dy \le C \frac{1}{x^{\lambda+1}} \int_0^{\frac{x}{2}} y^{\lambda} |f(y)| dy \le C ||f||_{\infty}, \quad x \in (0,\infty),$$

and

$$\int_{2x}^{\infty} |R_{\lambda}(x,y)| |f(y)| dy \le Cx^{\lambda+1} \int_{2x}^{\infty} \frac{|f(y)|}{y^{\lambda+2}} dy \le C ||f||_{\infty}, \ x \in (0,\infty).$$

On the other hand, it has

$$\int_{\frac{x}{2},|x-y|>\varepsilon}^{2x} R_{\lambda}(x,y)f(y)dy = \int_{\frac{x}{2},|x-y|>\varepsilon}^{2x} \left(R_{\lambda}(x,y)f(y) - \frac{1}{\pi}\frac{1}{x-y}\right)f(y)dy
+ \frac{1}{\pi}\int_{\frac{x}{2},|x-y|>\varepsilon}^{2x} \frac{1}{x-y}f(y)dy, \quad \varepsilon, x \in (0,\infty).$$
(24)

From (5) it deduces that, for every $x \in (0, \infty)$,

$$\int_{\frac{x}{2}}^{2x} \left| R_{\lambda}(x,y) - \frac{1}{\pi} \frac{1}{x-y} \right| |f(y)| dy \le C \|f\|_{\infty} \int_{\frac{x}{2}}^{2x} \frac{1}{y} \left(1 + \log_{+} \frac{\sqrt{xy}}{|x-y|} \right) dy \le C \|f\|_{\infty},$$

because
$$\int_{\frac{x}{2}}^{2x} \frac{1}{y} \left(1 + \log_+ \frac{\sqrt{xy}}{|x-y|} \right) dy = \int_{\frac{1}{2}}^{2} \left(1 + \log_+ \frac{\sqrt{u}}{|1-u|} \right) du$$
. Moreover, we write

$$\begin{split} \int_{\frac{x}{2},|x-y|>\varepsilon}^{2x} \frac{1}{x-y} f(y) dy &= \int_{0,|x-y|>\varepsilon}^{\infty} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y}\right) f(y) dy \\ &- \int_{\frac{x}{2},|x-y|>\varepsilon}^{2x} f(y) \frac{\chi_{(1,\infty)}(y)}{y} dy - \int_{2x,|x-y|>\varepsilon}^{\infty} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y}\right) f(y) dy \\ &- \int_{0,|x-y|>\varepsilon}^{\frac{x}{2}} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y}\right) f(y) dy, \quad \varepsilon, x \in (0,\infty). \end{split}$$

Note that, for each $x \in (0, \infty)$,

$$\int_{\frac{x}{2}}^{2x} \left| f(y)\chi_{(1,\infty)}(y) \right| \frac{dy}{y} \le C||f||_{\infty},$$

that

$$\int_{2x}^{\infty} \left| \frac{1}{x - y} - \frac{\chi_{(1,\infty)}(y)}{y} \right| |f(y)| dy$$

$$\leq C \|f\|_{\infty} \left(\int_{2x}^{2x + 1} \left(\frac{1}{|x - y|} + \frac{1}{y} \right) dy + \int_{2x + 1}^{\infty} \frac{x}{|x - y|y} dy \right) \leq C \left(\frac{1}{x} + 1 \right) \|f\|_{\infty},$$

and

$$\int_0^{\frac{x}{2}} \left| \frac{1}{x - y} - \frac{\chi_{(1, \infty)}(y)}{y} \right| |f(y)| dy \le C (1 + x) \, ||f||_{\infty}.$$

Then, by (23) and (24) we conclude that the limit

(25)
$$R_{\lambda}(f)(x) = \lim_{\varepsilon \to 0} \int_{0,|x-y|>\varepsilon}^{\infty} R_{\lambda}(x,y)f(y)dy$$

exists for almost every $x \in (0, \infty)$. This property shows different behaviour of Hilbert transform (see (23)) and R_{λ} -transform on $L^{\infty}(0, \infty)$.

We now prove Proposition 2 for Riesz transform R_{λ} .

Assume that $f \in BMO_+$. If we consider f_e the even extension of f to \mathbb{R} , according to [16, p. 294],

$$H(f_e)(x) = \lim_{\varepsilon \to 0} \int_{-\infty}^{+\infty} \int_{|x-y| > \varepsilon}^{+\infty} \left(\frac{1}{x-y} + \frac{\chi_{(-1,1)^c}(y)}{y} \right) f_e(y) dy \in BMO(\mathbb{R}),$$

because $f_e \in BMO(\mathbb{R})$. Since f_e is even we can write

$$H(f_e)(x) = \lim_{\varepsilon \to 0} \int_{0,|x-y| > \varepsilon}^{\infty} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y} \right) f(y) dy$$

$$+ \int_{-\infty,|x-y| > \varepsilon}^{0} \left(\frac{1}{x-y} + \frac{\chi_{(-\infty,-1)}(y)}{y} \right) f(-y) dy$$

$$= \lim_{\varepsilon \to 0} \int_{0,|x-y| > \varepsilon}^{\infty} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y} \right) f(y) dy$$

$$+ \int_{0,|x+y| > \varepsilon}^{\infty} \left(\frac{1}{x+y} - \frac{\chi_{(1,\infty)}(y)}{y} f(y) \right) dy$$

$$= \lim_{\varepsilon \to 0} \int_{\frac{x}{2},|x-y| > \varepsilon}^{2x} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y} \right) f(y) dy$$

$$+ \int_{0}^{\frac{x}{2}} \frac{2x}{x^2 - y^2} f(y) dy + \int_{2x}^{\infty} \frac{2x}{x^2 - y^2} f(y) dy$$

$$+ \int_{\frac{x}{2}}^{2x} \left(\frac{1}{x+y} - \frac{\chi_{(1,\infty)}(y)}{y} \right) f(y) dy, \quad x \in (0,\infty).$$

Note that $H(f_e)$ is odd. We are going to see that

(26)
$$H(f_e)(x) - \lim_{\varepsilon \to 0} \int_{\frac{x}{\varepsilon}, |x-y| > \varepsilon}^{2x} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y} \right) f(y) dy \in L^{\infty}(0,\infty)$$

and

(27)
$$\|H(f_e)(x) - \lim_{\varepsilon \to 0} \int_{\frac{x}{2}, |x-y| > \varepsilon}^{2x} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y} \right) f(y) dy \|_{\infty} \le C \|f\|_{BMO_+}.$$

We have to analyze three terms. It gets, as in the proof of (17) in the previous section,

$$\left| \int_0^{\frac{x}{2}} \frac{2x}{x^2 - y^2} f(y) dy \right| \le C \frac{1}{x} \int_0^x |f(y)| dy \le C ||f||_{BMO_+}, \quad x \in (0, \infty),$$

and

$$\left| \int_{2\pi}^{\infty} \frac{2x}{x^2 - y^2} f(y) dy \right| \le Cx \int_{2\pi}^{\infty} |f(y)| \frac{dy}{y^2} \le C ||f||_{BMO_+}, \ x \in (0, \infty).$$

Also we obtain

$$\left| \int_{\frac{x}{2}}^{2x} \left(\frac{1}{x+y} - \frac{\chi_{(1,\infty)}(y)}{y} \right) f(y) dy \right| \le \frac{C}{x} \int_{0}^{2x} |f(y)| dy \le C ||f||_{BMO_{+}}, \ x \in (0,\infty).$$

Thus (26) and (27) are established. By using (25), (4) and (5) we have that

$$\left| R_{\lambda}(f)(x) - \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{\frac{x}{2}, |x-y| > \varepsilon}^{2x} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y} \right) f(y) dy \right| \\
\leq C \left(\int_{\frac{x}{2}}^{2x} \frac{1}{y} \left(1 + \log_{+} \frac{\sqrt{xy}}{|x-y|} \right) |f(y)| dy + \int_{\frac{x}{2}}^{2x} \frac{\chi_{(1,\infty)}(y)}{y} |f(y)| dy \right. \\
\left. + \frac{1}{x^{\lambda+1}} \int_{0}^{\frac{x}{2}} y^{\lambda} |f(y)| dy + x^{\lambda+1} \int_{2x}^{\infty} \frac{|f(y)|}{y^{\lambda+2}} dy \right) \\
\leq C \left(\left(\int_{\frac{x}{2}}^{2x} \frac{1}{y} \left(1 + \log_{+} \frac{\sqrt{xy}}{|x-y|} \right)^{2} dy \right)^{\frac{1}{2}} \left(\frac{1}{x} \int_{\frac{x}{2}}^{2x} |f(y)|^{2} dy \right)^{\frac{1}{2}} \\
+ \frac{1}{x} \int_{0}^{x} |f(y)| dy + x \int_{2x}^{\infty} \frac{|f(y)|}{y^{2}} dy \right) \leq C ||f||_{BMO_{+}}, \quad x \in (0, \infty),$$

because

$$\int_{\frac{x}{2}}^{2x} \frac{1}{y} \left(1 + \log_{+} \frac{\sqrt{xy}}{|x - y|} \right)^{2} dy = \int_{\frac{1}{2}}^{2} \frac{1}{u} \left(1 + \log_{+} \frac{\sqrt{u}}{|1 - u|} \right)^{2} du < \infty, \quad x \in (0, \infty).$$

Hence,

(28)
$$R_{\lambda}(f)(x) - \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{\frac{x}{2}, |x-y| > \varepsilon}^{2x} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y} \right) f(y) dy \in L^{\infty}(0,\infty),$$

and

(29)
$$\left\| R_{\lambda}(f)(x) - \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{\frac{x}{2}, |x-y| > \varepsilon}^{2x} \left(\frac{1}{x-y} + \frac{\chi_{(1,\infty)}(y)}{y} \right) f(y) dy \right\|_{\infty} \le C \|f\|_{BMO_{+}}.$$

By combining (26), (27), (28) and (29) we conclude that

(30)
$$R_{\lambda}(f) - H(f_e) \in L^{\infty}(0, \infty) \text{ and } \|R_{\lambda}(f) - H(f_e)\|_{\infty} \le C\|f\|_{BMO_{+}}.$$

Moreover, since $H(f_e) \in BMO(\mathbb{R})$ and $H(f_e)$ is odd, for every $a \in (0, \infty)$,

$$\frac{1}{a} \int_{0}^{a} |H(f_{e})(x)| dx = \frac{1}{2a} \int_{-a}^{a} |H(f_{e})(x)| dx = \frac{1}{2a} \int_{-a}^{a} |H(f_{e})(x) - \frac{1}{2a} \int_{-a}^{a} |H(f_{e})(u) du du dx$$

$$\leq C ||H(f_{e})||_{BMO(\mathbb{R})} \leq C ||f_{e}||_{BMO(\mathbb{R})} \leq C ||f||_{BMO_{+}}.$$

Then, from (30), for every $a \in (0, \infty)$,

$$\frac{1}{a} \int_0^a |R_{\lambda}(f)(x)| dx \leq \frac{1}{a} \int_0^a |R_{\lambda}(f)(x) - H(f_e)(x)| dx + \frac{1}{a} \int_0^a |H(f_e)(x)| dx \leq C \|f\|_{BMO_+}.$$

Hence $R_{\lambda}(f) \in BMO_{+}$ and $||R_{\lambda}f||_{BMO_{+}} \leq C||f||_{BMO_{+}}$. Thus the proof of Proposition 2 for R_{λ} is finished.

4. Littlewood-Paley g-functions in BMO_+

In this section we prove Proposition 2 for the Littlewood-Paley g-functions $g_{h,\lambda}$ and $g_{P,\lambda}$ associated with the heat and the Poisson semigroups for Δ_{λ} , respectively.

Firstly we study $g_{h,\lambda}$. Let $f \in BMO_+$. Minkowski inequality implies that

$$\left| g_{h,\lambda}(f)(x) - \left\{ \int_0^\infty \left| t \frac{t}{\partial t} \int_{\frac{x}{2}}^{2x} W^{\lambda}(t,x,y) f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \right|$$

$$\leq \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \left(\int_0^{\frac{x}{2}} + \int_{2x}^\infty \right) W^{\lambda}(t,x,y) f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}}$$

$$\leq \left(\int_0^{\frac{x}{2}} + \int_{2x}^\infty \right) |f(y)| \left\{ \int_0^\infty t \left| \frac{\partial}{\partial t} W^{\lambda}(t,x,y) \right|^2 dt \right\}^{\frac{1}{2}} dy, \quad x \in (0,\infty).$$

According to [7, Lemma 8] we have that

(31)
$$\left\{ \int_0^\infty t \left| \frac{\partial}{\partial t} W^{\lambda}(t, x, y) \right|^2 dt \right\}^{\frac{1}{2}} \le C \left\{ \begin{array}{l} \frac{y^{\lambda}}{x^{\lambda + 1}}, \ 0 < y < \frac{x}{2}, \\ \frac{x^{\lambda}}{y^{\lambda + 1}}, \ 2x < y < \infty. \end{array} \right.$$

From (31) we deduce that, for every $x \in (0, \infty)$,

$$\int_0^{\frac{x}{2}} |f(y)| \left\{ \int_0^{\infty} t \left| \frac{\partial}{\partial t} W^{\lambda}(t,x,y) \right|^2 dt \right\}^{\frac{1}{2}} dy \leq C \int_0^{\frac{x}{2}} \frac{|f(y)| y^{\lambda}}{x^{\lambda+1}} dy \leq \frac{C}{x} \int_0^x |f(y)| dy \leq C \|f\|_{BMO_+},$$

and, as in the proof of (14) in Section 2.

$$\int_{2x}^{\infty} |f(y)| \left\{ \int_{0}^{\infty} t \left| \frac{\partial}{\partial t} W^{\lambda}(t, x, y) \right|^{2} dt \right\}^{\frac{1}{2}} dy \le Cx^{\lambda} \int_{2x}^{\infty} \frac{|f(y)|}{y^{\lambda + 1}} dy \le C \|f\|_{BMO_{+}}.$$

Hence, we conclude that

(32)
$$g_{h,\lambda}(f)(x) - \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} W^{\lambda}(t,x,y) f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \in L^{\infty}(0,\infty),$$

and

(33)
$$\left\| g_{h,\lambda}(f)(x) - \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} W^{\lambda}(t,x,y) f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \right\|_{\infty} \le C \|f\|_{BMO_+}.$$

By using again Minkowski inequality and [7, Lemma 8] we get

$$\begin{split} \left| \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} W^\lambda(t,x,y) f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} - \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \right| \\ & \leq \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \left(W^\lambda(t,x,y) - \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} \right) f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \\ & \leq \int_{\frac{x}{2}}^{2x} |f(y)| \left\{ \int_0^\infty t \left| \frac{\partial}{\partial t} \left(W^\lambda(t,x,y) - \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} \right) \right|^2 dt \right\}^{\frac{1}{2}} dy \\ & \leq C \frac{1}{x} \int_{\frac{x}{2}}^{2x} |f(y)| dy \leq C \|f\|_{BMO_+}, \quad x \in (0,\infty). \end{split}$$

Then

$$(34) \quad \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} W^{\lambda}(t, x, y) f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \\ - \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \in L^{\infty}(0, \infty)$$

and

$$(35) \quad \left\| \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} W^{\lambda}(t, x, y) f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} - \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \right\|_{\infty} \le C \|f\|_{BMO_+}.$$

We denote by

$$g_h(f_o)(x) = \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} W_t(f_o)(x) \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}}, \quad x \in \mathbb{R}.$$

We are going to see that

$$(36) g_h(f_o)(x) - \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \in L^\infty(0,\infty)$$

and

(37)
$$\left\| g_h(f_o)(x) - \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \right\|_{\infty} \le C \|f\|_{BMO_+}.$$

Note firstly that according to (16) the Minkowski inequality leads to

$$(38) \left| g_h(f_0)(x) - \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \right|$$

$$\leq \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_0^\infty \frac{1}{\sqrt{4\pi t}} \left(e^{-\frac{(x-y)^2}{4t}} - e^{\frac{(x+y)^2}{4t}} \right) f(y) dy - t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}}$$

$$\leq \int_{\frac{x}{2}}^{2x} |f(y)| \left\{ \int_0^\infty t \left| \frac{\partial}{\partial t} \left(\frac{1}{\sqrt{4\pi t}} e^{-\frac{(x+y)^2}{4t}} \right) \right|^2 dt \right\}^{\frac{1}{2}} dy$$

$$+ \left(\int_0^{\frac{x}{2}} + \int_{2x}^\infty \right) |f(y)| \left\{ \int_0^\infty t \left| \frac{\partial}{\partial t} \left(\frac{1}{\sqrt{4\pi t}} \left[e^{-\frac{(x-y)^2}{4t}} - e^{-\frac{(x+y)^2}{4t}} \right] \right) \right|^2 dt \right\}^{\frac{1}{2}} dy$$

$$= T_1(f)(x) + T_2(f)(x), \quad x \in (0, \infty).$$

It is not hard to see that

$$\left| \frac{\partial}{\partial t} \left(\frac{1}{\sqrt{4\pi t}} e^{-\frac{(x+y)^2}{4t}} \right) \right| \le C \frac{1}{t^{\frac{3}{2}}} e^{-\frac{(x+y)^2}{8t}}, \quad t, x, y \in (0, \infty).$$

Then

$$T_{1}(f)(x) \leq C \int_{\frac{x}{2}}^{2x} |f(y)| \left\{ \int_{0}^{\infty} \frac{1}{t^{2}} e^{-\frac{(x+y)^{2}}{4t}} dt \right\}^{\frac{1}{2}} dy \leq C \int_{\frac{x}{2}}^{2x} \frac{|f(y)|}{x+y} dy$$

$$\leq C \frac{1}{x} \int_{0}^{2x} |f(y)| dy \leq C ||f||_{BMO_{+}}, \quad x \in (0, \infty).$$

Also, by using the mean value theorem, we get

$$(39) \quad \left| \frac{\partial}{\partial t} \left(\frac{1}{\sqrt{4\pi t}} \left[e^{-\frac{(x-y)^2}{4t}} - e^{-\frac{(x+y)^2}{4t}} \right] \right) \right|$$

$$\leq C \frac{1}{t^{\frac{3}{2}}} \left(\left| e^{-\frac{(x-y)^2}{4t}} - e^{-\frac{(x+y)^2}{4t}} \right| + \left| \frac{(x-y)^2}{4t} e^{-\frac{(x-y)^2}{4t}} - \frac{(x+y)^2}{4t} e^{-\frac{(x+y)^2}{4t}} \right| \right)$$

$$\leq C \frac{xy}{t^{\frac{5}{2}}} e^{-\frac{(x-y)^2}{8t}}, \quad t \in (0, \infty) \text{ and } 0 < y < \frac{x}{2}, \text{ or } y > 2x.$$

Hence

$$T_{2}(f)(x) \leq C \left(\int_{0}^{\frac{x}{2}} + \int_{2x}^{\infty} \right) |f(y)| xy \left\{ \int_{0}^{\infty} \frac{e^{-\frac{(x-y)^{2}}{8t}}}{t^{4}} dt \right\}^{\frac{1}{2}} dy \leq C \left(\int_{0}^{\frac{x}{2}} + \int_{2x}^{\infty} \right) |f(y)| \frac{xy}{|x-y|^{3}} dy$$

$$\leq C \int_{0}^{\frac{x}{2}} |f(y)| \frac{y}{x^{2}} dy + x \int_{2x}^{\infty} \frac{|f(y)|}{y^{2}} dy \leq C \frac{1}{x} \int_{0}^{x} |f(y)| dy + x \int_{2x}^{\infty} \frac{|f(y)|}{y^{2}} dy,$$

and by proceeding as in the proof of (17) we obtain that $T_2(f)(x) \leq C ||f||_{BMO_+}, x \in (0, \infty)$. From (38) we deduce (36) and (37). By using (33), (35) and (37) we conclude that $g_{h,\lambda}(f) \in BMO_+$ provided that $g_h(f_o) \in BMO(\mathbb{R})$, and that there exists C > 0 such that

$$\frac{1}{a} \int_0^a g_h(f_o)(x) dx \le C, \quad a \in (0, \infty).$$

Since $f_o \in BMO(\mathbb{R})$, $g_h(f_o) \in BMO(\mathbb{R})$ when $g_h(f_o)(x) < \infty$, a.e. $x \in \mathbb{R}$ ([17]). Let a > 0. We write $f_o = f_1 + f_2 + f_3$, where

$$f_1(x) = \frac{1}{2a} \int_0^{2a} f(y)dy := f_{(0,2a)}, \quad x \in (0,\infty),$$

$$f_2(x) = (f(x) - f_{(0,2a)})\chi_{(0,2a)}(x), \quad x \in (0,\infty),$$

$$f_3(x) = (f(x) - f_{(0,2a)})\chi_{(2a,\infty)}(x), \quad x \in (0,\infty),$$

and $f_i(x) = -f_i(-x)$, $x \in (-\infty, 0)$, and i = 1, 2, 3.

Note that, for each $x \in (0, \infty)$,

$$(40) g_h(f_1)(x) = \left| f_{(0,2a)} \right| \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_0^\infty \frac{1}{\sqrt{4\pi t}} \left(e^{-\frac{(x-y)^2}{4t}} - e^{-\frac{(x+y)^2}{4t}} \right) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}}$$

$$= \frac{2}{\sqrt{\pi}} \left| f_{(0,2a)} \right| \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} \int_0^{\frac{x}{2\sqrt{t}}} e^{-u^2} du \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}}$$

$$\leq C \|f\|_{BMO_+} \left\{ \int_0^\infty \left| t \frac{x}{4t^{\frac{3}{2}}} e^{-\frac{x^2}{4t}} \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} = C \|f\|_{BMO_+} \left\{ \int_0^\infty \frac{x^2}{t^2} e^{-\frac{x^2}{2t}} dt \right\}^{\frac{1}{2}} \leq C \|f\|_{BMO_+}.$$

Since $g_h(f_1)$ is even, $g_h(f_1)(x) \leq C||f||_{BMO_+}$, $x \in \mathbb{R}$. It is wellknown that g_h is a bounded operator from $L^2(\mathbb{R})$ into itself. Then

$$\int_{0}^{a} g_{h}(f_{2})(x)dx \leq \sqrt{a} \left\{ \int_{-\infty}^{+\infty} \left| g_{h}(f_{2})(x) \right|^{2} dx \right\}^{\frac{1}{2}} \leq C\sqrt{a} \left\{ \int_{0}^{2a} \left| f(x) - f_{(0,2a)} \right|^{2} dx \right\}^{\frac{1}{2}} \\
\leq Ca \|f\|_{BMO_{+}}.$$

Hence, since $g_h(f_2)(x)$ is even, $g_h(f_2)(x) < \infty$, a.e. $x \in (-a, a)$.

Finally, by proceeding as in the proof of (17), we obtain

$$\int_{0}^{a} g_{h}(f_{3})(x)dx = \int_{0}^{a} g_{h}((f - f_{(0,2a)})\chi_{(2a,\infty)})(x)dx \leq C \int_{0}^{a} x \int_{2x}^{\infty} |f(y) - f_{(0,2a)}| \frac{dy}{y^{2}} dx$$

$$\leq C \left(\int_{0}^{a} x \int_{2x}^{\infty} |f(y)| \frac{dy}{y^{2}} dx + |f_{(0,2a)}| \int_{0}^{a} x \int_{2x}^{\infty} \frac{dy}{y^{2}} dx \right) \leq Ca ||f||_{BMO_{+}}.$$

Then, $g_h(f_3)(x) < \infty$, a.e. $x \in (-a, a)$. We conclude that $g_h(f_o)(x) < \infty$, a.e. $x \in (-a, a)$. Hence, since a > 0 is arbitrary $g_h(f_0)(x) < \infty$, a.e. $x \in \mathbb{R}$, and then $g_h(f_o) \in BMO(\mathbb{R})$. Moreover, from (40), (41) and (42) we obtain that,

$$\frac{1}{a} \int_0^a |g_h(f)(x)| dx \le C ||f||_{BMO_+}, \quad a > 0.$$

Thus, we deduce that $g_{h,\lambda}(f) \in BMO_+$ and $||g_{h,\lambda}(f)||_{BMO_+} \leq C||f||_{BMO_+}$.

To analyze the Littlewood-Paley g-function $g_{P,\lambda}$ associated with the Poisson semigroup $\{P_t^{\lambda}\}_{t>0}$ for the Bessel operator, we can proceed as for the $g_{h,\lambda}$ case. We compare $g_{P,\lambda}$ with the g-function for the classical Poisson semigroup on \mathbb{R} .

According to the results established in [6, (2.11)] we can write

$$\left\{ \int_{0}^{\infty} \left| t \frac{\partial}{\partial t} \left[P^{\lambda}(t, x, y) - \frac{1}{\pi} \chi_{\left\{ \frac{x}{2} < y < 2x \right\}}(y) \frac{t}{(x - y)^{2} + t^{2}} \right] \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} \\
\leq C(xy)^{\lambda} \left\{ \begin{array}{l} x^{-2\lambda - 1}, & 0 < y \leq \frac{x}{2}, \\ y^{-2\lambda - 1} \left(1 + \log \left(1 + \frac{xy}{|x - y|^{2}} \right) \right), & \frac{x}{2} < y < 2x, \\ y^{-2\lambda - 1}, & y \geq 2x. \end{array} \right.$$

Then, by using Minkowski inequality we get, for every $x \in (0, \infty)$,

$$(43) \quad \left| g_{P,\lambda}(f)(x) - \frac{1}{\pi} \left\{ \int_{0}^{\infty} \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{t}{(x-y)^{2} + t^{2}} f(y) dy \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} \right|$$

$$\leq \left\{ \int_{0}^{\infty} \left| t \frac{\partial}{\partial t} \left(\int_{0}^{\infty} P^{\lambda}(t,x,y) f(y) dy - \frac{1}{\pi} \int_{\frac{x}{2}}^{2x} \frac{t}{(x-y)^{2} + t^{2}} f(y) dy \right) \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}}$$

$$\leq \int_{0}^{\infty} |f(y)| \left\{ \int_{0}^{\infty} \left| t \frac{\partial}{\partial t} \left(P^{\lambda}(t,x,y) - \frac{1}{\pi} \chi_{\{\frac{x}{2} < y < 2x\}}(y) \frac{t}{(x-y)^{2} + t^{2}} \right) \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} \leq C \|f\|_{BMO_{+}}.$$

On the other hand a straightforward manipulation allows us to write, for each $x \in \mathbb{R}$,

$$P_t(f_o)(x) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{t}{(x-y)^2 + t^2} f_o(y) dy = \frac{1}{\pi} \int_0^{\infty} \left(\frac{t}{(x-y)^2 + t^2} - \frac{t}{(x+y)^2 + t^2} \right) f(y) dy.$$

We are going to see that

$$(44) g_P(f_o)(x) - \left\{ \int_0^\infty \left| \frac{t}{\pi} \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{t}{(x-y)^2 + t^2} f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \in L^\infty(0, \infty)$$

and

(45)
$$\left\| g_P(f_o)(x) - \left\{ \int_0^\infty \left| \frac{t}{\pi} \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{t}{(x-y)^2 + t^2} f(y) dy \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}} \right\|_{\infty} \le C \|f\|_{BMO_+},$$

where

$$g_P(f_o)(x) = \left\{ \int_0^\infty \left| t \frac{\partial}{\partial t} P_t(f_o)(x) \right|^2 \frac{dt}{t} \right\}^{\frac{1}{2}}, \quad x \in \mathbb{R},$$

being $P_t f_o$ as in (22). Indeed, Minkowski inequality implies, for every $x \in (0, \infty)$,

$$(46) \quad \left| g_{P}(f_{o})(x) - \left\{ \int_{0}^{\infty} \left| \frac{t}{\pi} \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{t}{(x-y)^{2} + t^{2}} f(y) dy \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} \right|$$

$$\leq \frac{1}{\pi} \left\{ \int_{0}^{\infty} \left| t \frac{\partial}{\partial t} \left[\int_{0}^{\infty} \left(\frac{t}{(x-y)^{2} + t^{2}} - \frac{t}{(x+y)^{2} + t^{2}} \right) f(y) dy \right. \right.$$

$$\left. - \int_{\frac{x}{2}}^{2x} \frac{t}{(x-y)^{2} + t^{2}} f(y) dy \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}}$$

$$\leq \frac{1}{\pi} \left\{ \int_{0}^{\infty} \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{t}{(x+y)^{2} + t^{2}} f(y) dy \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}}$$

$$+ \frac{1}{\pi} \left\{ \int_{0}^{\infty} \left| t \frac{\partial}{\partial t} \left(\int_{0}^{\frac{x}{2}} + \int_{2x}^{\infty} \right) \left(\frac{t}{(x-y)^{2} + t^{2}} - \frac{t}{(x+y)^{2} + t^{2}} \right) f(y) dy \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}}$$

$$\leq \frac{1}{\pi} \int_{\frac{x}{2}}^{2x} |f(y)| \left\{ \int_{0}^{\infty} \left| t \frac{\partial}{\partial t} \frac{t}{(x+y)^{2} + t^{2}} \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} dy$$

$$+ \frac{1}{\pi} \left(\int_{0}^{\frac{x}{2}} + \int_{2x}^{\infty} \right) |f(y)| \left\{ \int_{0}^{\infty} \left| t \frac{\partial}{\partial t} \left(\frac{t}{(x-y)^{2} + t^{2}} - \frac{t}{(x+y)^{2} + t^{2}} \right) \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} dy.$$

Moreover, we have that

$$\int_0^\infty \left| t \frac{\partial}{\partial t} \frac{t}{(x+y)^2 + t^2} \right|^2 \frac{dt}{t} \le C \int_0^\infty \frac{t}{((x+y)^2 + t^2)^2} dt \le \frac{C}{(x+y)^2} \le \frac{C}{x^2}, \quad \frac{x}{2} < y < 2x,$$

and

$$\int_0^\infty \left| t \frac{\partial}{\partial t} \left(\frac{t}{(x-y)^2 + t^2} - \frac{t}{(x+y)^2 + t^2} \right) \right|^2 \frac{dt}{t} \le C \left\{ \begin{array}{l} \frac{x^2}{y^4}, \ 2x < y, \\ \frac{y^2}{x^4}, \ 0 < y \le \frac{x}{2}. \end{array} \right.$$

Hence, (46) leads to

$$\left| g_{p}(f_{o})(x) - \left\{ \int_{0}^{\infty} \left| t \frac{\partial}{\partial t} \int_{\frac{x}{2}}^{2x} \frac{t}{(x-y)^{2} + t^{2}} f(y) dy \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} \right|$$

$$\leq C \left(\frac{1}{x} \int_{\frac{x}{2}}^{2x} |f(y)| dy + \frac{1}{x} \int_{0}^{\frac{x}{2}} |f(y)| dy + x \int_{2x}^{\infty} \frac{|f(y)|}{y^{2}} dy \right) \leq C \|f\|_{BMO_{+}}, \quad x \in (0, \infty).$$

Thus (44) and (45) are established. From (43), (44) and (45) we deduce that

$$g_{P,\lambda}(f) - g_P(f_o) \in L^{\infty}(0,\infty) \text{ and } \|g_{P,\lambda}(f) - g_P(f_o)\|_{\infty} \le C\|f\|_{BMO_+}.$$

To see that $g_{P,\lambda}(f) \in BMO_+$ and $||g_{P,\lambda}(f)||_{BMO_+} \leq C||f||_{BMO_+}$ we can proceed as in the proof of the corresponding property for $g_{h,\lambda}$.

References

- [1] K. F. Andersen and R. A. Kerman, Weighted norm inequalities for generalized Hankel conjugate transformations, Studia Math. 71 (1981/82), 15–26.
- [2] C. Bennett, R. A. DeVore, and R. Sharpley, $Weak-L^{\infty}$ and BMO, Ann. of Math. (2) 113 (1981), 601–611.
- [3] J. J. Betancor, D Buraczewski, J. C. Fariña, T. Martínez, and J. L. Torrea, Riesz transforms related to Bessel operators, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 701–725.
- [4] J. J. Betancor, J. Dziubański, and J. L. Torrea, Remarks on Hardy spaces associated with Bessel operators, J. Analyse Math. (to appear).
- [5] J. J. Betancor, J. C. Fariña, T. Martínez, and L. Rodríguez-Mesa, Higher order Riesz transforms associated with Bessel operators, Ark. Mat. 46 (2008), 219–250.
- [6] J. J. Betancor, J. C. Fariña, and A. Sanabria, On Littlewood-Paley functions associated with Bessel operators, Glasg. Math. J. 51 (2009), 55-70.
- [7] J. J. Betancor, E. Harboure, A. Nowak, and B. Viviani, Mapping properties of fundamental operators in harmonic analysis related to Bessel operators, preprint, (arxiv:0802.3497) (2008).
- [8] J. J. Betancor and K. Stempak, On Hankel conjugate functions, Stud. Sci. Math. Hung. 41 (2004), 59–91.
- [9] J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), 329–356.
- [10] S. Fridli, Hardy spaces generated by an integrability condition, J. Approx. Theory 113 (2001), 91–109.
- [11] N. N. Lebedev, Special functions and their applications, Dover Publications Inc., New York, 1972.

- [12] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17–92.
- [13] E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J., 1970.
- [14] ______, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, N.J., 1993.
- [15] K. Stempak and J. L. Torrea, BMO results for operators associated to Hermite expansions, Illinois J. Math. 49 (2005), 1111–1131.
- [16] A. Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press Inc., Orlando, FL, 1986.
- [17] S. L. Wang, Some properties of the Littlewood-Paley g-function, Classical real analysis, Contemp. Math., vol. 42, Amer. Math. Soc., Providence, RI, 1985, pp. 191–202.
- [18] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1995.
- [19] A. Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1948), 342–354.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE LA LAGUNA, CAMPUS DE ANCHIETA, AVDA. ASTROFÍSICO FRANCISCO SÁNCHEZ, S/N, 38271 LA LAGUNA (STA. CRUZ DE TENERIFE), SPAIN

E-mail address: jbetanco@ull.es; jcfarina@ull.es; lrguez@ull.es

INSTITUTO DE MATEMÁTICA APLICADA DEL LITORAL, GÜEMES 3450, SANTA FE, ARGENTINA E-mail address: achiccoruiz@yahoo.com.ar