MAXIMAL OPERATORS, RIESZ TRANSFORMS AND
LITTLEWOOD-PALEY FUNCTIONS ASSOCIATED WITH BESSEL
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J. J. BETANCOR, A. CHICCO RUIZ, J. C. FARINA, AND L. RODRIGUEZ-MESA

ABSTRACT. In this paper we study boundedness properties of certain harmonic analysis op-
erators (maximal operators for heat and Poisson semigroups, Riesz transform and Littlewood-
Paley g-functions) associated with Bessel operators, on the space BMO,(R) that consists of

the odd functions with bounded mean oscillation on R.

1. INTRODUCTION

By BMO,(R) we denote the space constituted by all those odd functions with bounded
mean oscillation on R. This space can be characterized as follows. An odd function f € L} (R)
is in BMO(R), that is, f has bounded mean oscillation on R, if and only if, for all 1 < p < o0

(equivalently, for some 1 < p < 0o) there exists Cp, > 0 such that, for every interval I = (a,b)

(1) |}|/I|f(x)—f1|pdac§0p, 0<a<b< oo

and also

(2) ’z/l|f(x)|pda;30p, 0=a<b< 0.

Here, as usual, |I| denotes the length of I and f; = ﬁ J; f(x)dxz. Moreover, for every

1 < p < oo, inf{C, > 0 : (1) and (2) hold} is equivalent to the usual ||f|prom) (see,
for instance, [14, Chapter 1] definitions and properties concerning to BMO(R)). BMO,(R)
coincides with the dual H}(R)" of the subspace H!(R) of H'(R) that consists of all the odd
functions in the Hardy space H!(R). The space H!(R) was studied in [4] and [10], where
several characterizations of H!(R) are obtained. In the sequel we denote by BMO, the
space that consists of all those f € L] ([0,00)) such that the odd extension f, of f to R is

in BMO(R). On BMO4 we consider the natural norm. Our objective in this paper is to
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study the behavior on BM O, of maximal operator, Riesz transform and Littlewood-Paley
g-functions associated with Bessel operators.

Muckenhoupt and Stein [12] began the development of harmonic analysis related to Bessel
operators. They considered the Bessel operator By, A > 0, defined by By = —z~2*D2*'D,
with D = %. In [12] Poisson integrals and conjugate of Poisson integrals associated with B)
were introduced. Recently, LP-boundedness properties for the higher order Riesz transform
([5]) and for the Littlewood-Paley g-functions ([6]) in the By context have been established.

Here we consider the Bessel operator Ay = —z *Dz**Dz~*, with A > 0. If J, denotes
the Bessel function of the first kind and order v, for every y > 0, the function ¢,(z) =

VZyJ,_1(xy), x € (0,00), is an eigenfunction of Ay and
2

A)\(\/a:yJ)ﬁ%(xy)) = y2\/xy<]>\7%(l‘y), z,y € (0,00).

The Poisson kernel associated with the operator Ay is given by
o
PA(t,x,y) = / e Fpu(2)py(2)dz, ta,y € (0,00).
0

According to [12, (16.4)] (see also [19]) we have that

; 22t (zy) /” (sin §)%A—1
A - .
(t,z,y) - . (= 92+ + 205(1 — cos G))M1 do, t,x,y e (0,00)

The Poisson integral PA(f) is defined by

RO@ = [ Ptnpfwd, >
0

The family {P};~¢ constitutes a semigroup of linear and bounded operators in LP(0, c0),

1 < p < o0o. LP-boundedness properties of the maximal operator

PM(f) = sup | P} f)]
t>0

were established in [7] and [8].

The heat kernel associated with the operator A) is

WA(t, z,y) :/ e_tZQQOx(z)goy(z) dz, t,z,y € (0,00).
0

According to [18, 13.31(1)], we can write

1 /xy\3 TY\ 2?4y’
WA(tal‘ay) = ﬁ (?t) ’ I)\f% <?t) € -, tx,y € (0,00),
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where I,, denotes the modified Bessel function of the first kind and order . The heat integral

WA(f) of f is defined by
WA () = / WAt 2,9)f(y) dy, t,2> 0.

Then, {W};~¢ is a semigroup of bounded and linear operators in LP(0, ), 1 < p < co. The
maximal operator associated with {W};~q is given by

W (f) = sup [W(f)|
t>0

and it was investigated on LP-spaces in [7].

Bennett, DeVore and Sharpley ([2, Th. 4.2 (b)]) proved that if M denotes the (uncentered)
Hardy-Littlewood maximal operator on R", then, for every f € BMO(R"), either Mf €
BMO(R"™) or Mf = oo. The function f(z) = log, |z|, x € R", is an example of the second
situation. In [9] it was introduced a BMO type space on R™ associated with Schrodinger
operators where the maximal operator M is bounded. This is the case for the maximal
operators, W, P} and the Hardy-Littlewood maximal operator Mg on (0,00), on BMO, as

we state in the following proposition.

Proposition 1. Let A > 0. We denote by N the operators Mg, W) or P}. There eists
C > 0 such that

INfllsmo. < ClfllBvo,, fe BMO,.

Riesz transforms in the Ay-setting were studied in [3]. The operator Ay admits the factor-
ization Ay = D3Dy, where Dy = 2Dz~ and Dy represents the (formal) adjoint of D) in

L%(0, 00). Following the ideas developed by Stein in [13], the Riesz transform R, is defined by
_1
Raf =D A2 f, feCZ(0,00).

Here C2°(0,00) denotes the space of smooth functions with compact support in (0,00). The
operator Ry can be extended to LP(0,00) as a bounded operator on LP(0,o0), for every
1 < p < o0, and to L'(0,00) as a bounded operator from L'(0, 0o) into L1*°(0, c0). Moreover,
for each f € LP(0,00), 1 < p < 00,

oo

3) Ryf(x) = lim Rx(z,y)f(y)dy, a.e. z € (0,00),
€=V Jo,|z—y|>e
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being
R)\(‘T’y) :/ D)x,mp)\(t’xvy) dta T,y € (0500)7 z 7é Y.
0

According to [1, (1.6)] (also see [7]) we get

T
T <y
2At2° =Y
(@) Ra(ep)] < | V) m
g1 V<Y <i
and
1 1 1 /T
(5) Ry(z,y) — — ’SC’(I—FlogJr y), 0<£<y<2x.
TT -y y |z —yl 2

Then, we can prove that the Riesz transform R) is well defined on L*°(0,00). This fact
establishes a difference between the behavior of Ry and the Hilbert transform on bounded
functions ([16, p. 294]).

The vertical Littlewood-Paley g-function associated with the heat semigroup {W}s~q for

1
2dt 2
t )

and the corresponding one for the Poisson semigroup {P};~¢ is given by

1
2 @ 2
/ .

The behavior of the Riesz transforms and g-functions on BM Oy is established in the next

the Bessel operator Ay is defined by

Pal)@) = { [

grA (/) () = { [ lertoe)

proposition.

Proposition 2. Let A > 0. We denote by N the operators Ry, gnx and gpy. There exists
C > 0 such that
IN fllBro, < CllfllBmos, f€ BMO,.

As for maximal operators the property stated in Proposition 2 for g5 » and gp) contrasts
with the corresponding one for vertical classical Littlewood-Paley g-functions (see [17]).

This paper is organizated as follows. In Section 2 we prove Proposition 1 and the proof of
Proposition 2 is showed in Section 3 and Section 4 where we establish the estimates for the
Riesz transform and for the g-functions, respectively.

Throughout this paper we always denote by C a suitable positive constant that can change

from a line to the other one.
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2. MAXIMAL OPERATORS IN BMO,.

In this section we present a proof of Proposition 1. We divide the proof in three parts.
Each part is concerned with one of the maximal operators under considerations.

(i) By My we denote the Hardy-Littlewood maximal operator on (0,00), that is, if f €
Llloc([()? OO))’
M()(a) = s [ 1wl d. @ € 0.00),

zel

where the supremum is taken over all the bounded intervals I on (0, 00) such that = € I.
Assume that f € BMO,, then f, € BMO,(R). Let a > 0, we write f, = fi1 + fo where
J1 = foX(~2a,2¢)- Since f, € L} (R), Mfi(z) < oo, a.e. x € R, where M denotes the Hardy-
Littlewood maximal operator on R. Moreover, if z € (—a,a) and I is a bounded interval such
that € I and I N (—2a,2a)¢ # 0, by denoting J = (—b,b), where b = max{|y|,y € I}, we

have

1
6 o d —Ci o d _C .
© ) ewlid =g oy ol < 5 [ 10y < Clslswo,

Note that |I| < |J| < 2(|I| + a) < 4|I]. Hence M(f2)(z) < oo, a.e. z, |x| < a. Then, we
obtain that M f,(z) < oo, a.e. x, |z| < a. Hence, we conclude that M f,(z) < oo, a. e. z € R.

Since f € BMO(0,00), a wellknown result due to Bennett, DeVore and Sharpley ([2, The-
orem 4.2]) implies that Mof € BMO(0,00) and ||[Mof|lBro,00) < CllfllBrmo, - Moreover,

for every a > 0,

(7) / Mo(f)(x)dz < C| fllBmo, -

Indeed, let a > 0. As above we write f = f1 + f2, where f1 = fXx(024)- Then, by proceeding

as in (6) we get

(8) Mo(f2)(x) <2[fllB7mo,, = € (0,0a).

Also, since My is bounded on L?(0, 00), it has

a a % 2a 3
L[ sl < (5 [Cnawpa) <c (5 [T iropa) < cllao,.

From (8) and (9) we deduce that (7) holds.
By combining the above arguments we conclude that (Mo f), € BMO,(R) and || Mo f| Bymo. <}

CllfllBaro, -

-
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(ii) We now analyze the maximal operator W, associated with the heat semigroup {W;* };~o.
Assume that f € BMO,.
According to [11, (5.16.5)] we have that

1 z—y)?
(10) 0<WA(ta,y) < C—e 5, ta,y € (0,00),
Vit
and also,
A 2, .2
() e, Pe,
Vit 2 =
(11) WA(ta,y) < C
1 sxy\* _G@-»?* ay
L gy
Vi Nt 2t
It is wellknown that
1 (@y?
(12) sup [ —ze” @ | f(y)|dy < CMo(f)(z), =z € (0,00).
>0 Jo Vi

Then
W2(f)(x) < CMo(f)(x), = € (0,00).
Hence, by (7), for every a > 0, we have

(13) L[ W@ de < Clfllavo..

On the other hand, we can write

sup [W(f)(x)| — sup
t>0 t>0

2x
L WA(t, 2. 9)f (y) dy

< sup /0 WAy f @) dy +sup [ WG 2, y)| ()] dy, € (0,00).

t>0 t>0 J2x

From (10) it follows that

[ waaaisoia < o [F Lo pmiae [T Lo R
’ o Vvt 0 Vi
C [:

By using (11) we get

_(z—y)?

4t
f(y)|dy
BN If(y)]

2

0 o Ae_th o e
WA(t, z, dy < C / it d +/

. (t,z, y)|f(y)| dy 2x,’;i?t’§1( t) Ny |f(y)|dy i
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(e%] 2/
oY\ e 1o *|f(y A /W” |f )l
< < d
< C - <t> VA ’ y)|ldy < Cx / /\+1 =Cx ; ok A Y

\ 0 1 2(k+1)2/A < 1 1 (k+1)2/2
k=1 k=1

< ClfllBmos, t,x € (0,00).

Hence, we have proved that

2z
sup W (f) ()] — sup / WA(t, 2, ) f(y) dy| € (0, 00),
t>0 t>0 %
and
2x \
(14) sup [W(£)()] — sup / WAt 2, 9) f ) dy|| < Cllfllso, .
t>0 t>0 % .
Moreover,
WA Gy fly) d /% L ) dy| € 100, 00)
su , T, — sup ,00),
t>g z Yy ey >0 |J2 VAt
and
(15) WA Gy fly) d /zx L S ryayl|| <l
su , Ly — su S BMO. -
=0 |z PPN 0 e Vam i +

Indeed, we can write

2x N 2x 1 (w—1)2 f( )d
su WA, x,y) f(y) dy sup/ e & y) dy
t>%)) ( v ) t>0 [Jz 4wt
<o | WAy - e 1)y, @ € (0,00
su , L, Y) — e , T y OO
s, Y - = y)ldy
According to (10), it follows that
2x
1 _(z—y)
L Wy - e S ) dy
g,%ﬁl 4t
2x
1 TY\A oc+y
<o () 1) irwla
5.1 Vi
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Also, by using [11, 5.16.5], we get

1 _(z=y)? u)

2z q £\ 2 (a—y)?
£y |dy<0/ ﬁ(m) ST ()| dy

C 2x
<¢ /0 F@)|dy < Cllfllao,. £ € (0,00).

T

Hence (15) is established.
Now we denote by {W;};~¢ the classical heat semigroup, that is, we write

T (o )
fo(y)dy, t € (0,00) and z € R.

Wilfo) () = w%

Since f, is an odd function we can write

(16) Wi(fo)(x) \/H ( e _ e(sz)2> fy)dy, te(0,00)andz € R.

Moreover Wy(f,) is odd, for every ¢t > 0. By splitting the integral it gets

2 1 (z—1)?
% x) — e 4t d
)= [ e
1 3 . .
< [T S rw)lay
4rt Jo
1 Xl @y =) 1 22 (ary)?
+ Y T It d —|—/ e 4t d
izt o |f(y)ldy Vit s |f(y)ldy
C 2 (z—y)? - (x+9)?] _@w?
< — e 1t d
<= < / = £()ldy

T4y (2—1)2 2 ()2
- >\ sy + [ Sl

<[ IF

% oo 2 2

<c ( W oo £y >rdy+/2 et )l + [ 'f”y'y>
1 o q 1 [

<c (m g+ [~ iy + / !f(y)!dy>
1 0 2x(k+1)2 1

<C (x !dy+a:2/2xk2 yzf(y)!dy>

k=1
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1 2 S 1 1 2$(k+1)2
< - R <
<C 95/0 If(y)ldy+k§:1 12 2x(k+1)2/0 [fWldy | < CllfllBmoy,

for every t,z € (0,00). Hence,

up W£o)@)| - sup / : W%e‘wﬁf(y) dy| € L=(0,00),
and
(17) sup [Wi(fo)(x)| — sup /29” 1 6_%1’@) dy|l| < CllfllBmo,-
t€(0,00) >0 |Jz  dmt . +

We deduce from (14), (15) and (17) that

Sup WAf) ()| — Sup [Wi(fo)(z)| € L(0,00)

and
(18) sup W) = sup W 2| < Clf oo
>0 >0 .
According to (13) and (18), to see that
sup [W(f)| € BMOy and |[sup [Wi(f)|) < C|fllBmo,,
t>0 t>0 BMO,

it is sufficient to see that sup |Wi(f,)|) € BMO(R) and that
t>0

Isup Wil o)l Bro) < Clifollsro):

We have to show that sup [Wi(f,)(z)| < 00, a.e. € R (see [15]). From (7) and (12) we get
t>0

1 a
/ sup |Wi(fo)(z)|dz < C||fllBMo,, a>0.
aJo t>0

Then, since sup |Wi(f,)| is even, sup [Wi(fo)(z)] < oo, a.e. x € R. Thus we prove that
>0 >0
WX(f) € BMOy and [W2(f)l Bmo, < CllfllBymo,-

(iii) Let f € BMO,. By using subordination formula we can write

t2

1 0 o—u
(19) PA(t,SC,y) = ﬁ/(; WW)\ <4u7$7y> d'LL, taxay € (07 OO)
Then,

sup | PX(f)] < Csup |[W(f)].
t>0 t>0
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Hence, from (13) we deduce that

(20) / P f)(@)dz < C|fllsao.. a> 0.

Moreover, by (18), it follows

sup [P(f)(2)] — sup | P:(fo) ()] € L¥(0, 00),

t>0
and
(21) sup |PM(f)(@)| — sup B ()@ < Cllf oo,
>0 >0 o
where
1 [To° t
(22) RN =1 [ aph)ds >0, sk

From (12) it infers that sup |P:(fo)(z)| < CMo(f)(z), € (0,00). Then, by (7),
>0

1 a
! / sup [Py (fo)(@)|dz < Cllf | a0, a> 0.
0

t>0

Hence, since sup |P;(f,)| is even, sup |P:(f,)(x)| < o0, a.e. = € R. It deduces that sup |P;(f,)| €
>0 >0 >0

BMO(R) (see [15]). (20) and (21) allow us to conclude that P} f € BM O, and || P2 f|| gamo, <}

CllfllBaro, -

3. RIESZ TRANSFORM IN BMO,.

Our objective is to show Proposition 2 for the Riesz transforms Ry. Firstly, note that, by
(4) and (5), the Riesz transform R} is defined on L*°(0,00). Indeed, let f € L>(0,00). It is
known (see, for instance, [16, p. 294]) that the limit

o 1 1
23 lim fly ( + X(1,00 y>dy
(23) i [ 10 (5 e,
exists for almost every x € (0,00). We now prove that
2x 00
@)= [ Bate o) dy + I By [ B Sy
Silz—y|>e z

for almost all x € (0,00). According to (4), we get

/0 I Rata )l £ w)ldy < Oy /O L W)ldy < Clflloer € (0, 00),

and

| il < et [“ U8 lay < i o€ 0,0)

T
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On the other hand, it has

/Qx Bx(z,y)f(y)dy = /% (Rx(x,y)f(y)—l : )f(y)dy

%:\x*y|>5 %7|$7y‘>5 T _y

2z
(24) +1/ L f(y)dy, e,z € (0,00).

From (5) it deduces that, for every = € (0, 00),

/Q.T
z

: |

2x 2
1 /Ty
because / (1 +log = ’> dy = / <1 +log, |1\/ﬁ ’> du. Moreover, we write
Y 1 —u

x

2x 1
d
/;,|a:—y|>ax_yf(y> Y /x y|>£( )
X(1 00) < n X(1,00) (y)) d
/,Im y|>E /,|x y>e \¥ —Y Yy Ty

2x
Ra(e,y) - \ flay<Clfle [ <1+1 ogs ‘r )dy < O] oo

2

I ym(

Note that, for each x € (0, )

y)dy, e,z € (0,00).

dy
Y)X (1,00) (V)] m < Ol flloos

_ X)) ] () ldy
Yy
2x+1 1 1 [e'e) 1
< Ol (/ ( +) v [ dy) sc<+1) T
2x ’fL‘ - y| Yy 2x+1 |a7 - y‘y x
1 _ X(l,oo)(y)

[ |55 - 2= iy < € (14 )l

Then, by (23) and (24) we conclude that the limit

and

(25) RA(f)(x) = lim Ra(z,y)f(y)dy

e—0 0,|lz—y|>e
exists for almost every = € (0,00). This property shows different behaviour of Hilbert trans-
form (see (23)) and Rjy-transform on L*°(0, 0o).

We now prove Proposition 2 for Riesz transform R).
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Assume that f € BMO,. If we consider f. the even extension of f to R, according to [16,

p. 294],

H(fe)(z) = lim

e—0 J_

too ( 1 +X(—1,1)c(y)
r—y

! ) fu(y)dy € BMO(R),

oo,|lz—y|>e
because f. € BMO(R). Since f, is even we can write

o0

H{fe)@) =l 0,Jo—y|>e (96 i y ' X(I’O;)(y)> fu)dy

0 1 X(—o0,—1) (y)> .
+/—oo,x—y|>a <.T -y " Yy f( y)dy

— i [ ( 1 +X(1’°°)(y)>f(y)dy
z—y

=0 Jo |z—y|>e Yy
+/ < - fy) ) dy
0,|lz+yl>e \T TY Y W)
2x 1 0o
— lim < + X )(y)> fy)dy
0L Ja—yl>e \T Y Y

T 2 2z
+/0 xz—y2f(y)dy+/2x T_yzf(y)dy
2z
(o - X)) . e 0.00)

r+y a Y
Note that H(f.) is odd. We are going to see that

2x
(26) H(f.)(x) - lim (2 + 2o (y)) Fy)dy € L=(0,00)

e—=0 %7|x7y‘>€ y

and

< CllfllBmos. -

2x
(27) HH(fe)(fﬂ)—lim (2 + X020 fypay

=0 /2 ja—yl>e \ T~ Y y

We have to analyze three terms. It gets, as in the proof of (17) in the previous section,

‘ / P2y
0

1'2_212

1 x
<oy [ 1#ldy < Cllflano. . = € (0.0,

and

o0 00 d
/2 2$2f(y)dy' < Cfﬂ/ 1f(y) y—? < C|fllemo,, z € (0,00).

2
x L7 —Y 2x

Also, we obtain

ﬁ;x <xJ1ry - x(l,o;)(y)) Fu)dy

C 2z
= x/o [fW)ldy < CllfllBymo,, « € (0,00).
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Thus (26) and (27) are established. By using (25), (4) and (5) we have that

2z
Ra(f)(z) — L (x i . 4 X(l,oo)(y)) Fy)dy

me=0 %7‘I—y‘>5 y
2 VZY 2% X (1.00)(Y)
<c / - (1 +log, ) 1f(y)|dy + / 2LV f(y)|dy
Y [z =y 2 y

1 2 A A1 < f(y)l
+ 1")\+1/0 y | f(y)ldy + , Wdl/

xT

cof ([ (v a) (3 o)

2

o1 [itwlase [T ) < oo, = € 0.0)
0

2x Yy

because

2x 1 ey 2 2 1 2

/ - <1+log+$'y> dy:/ — <1+log+\/ﬁ> du < oo, z € (0,00).

z Y |z -yl 1w 1 —ul
Hence,
(28) Ry(f)(z) — 1 lim - ( ! + X{1,00) (y)> fly)dy € L=(0, 00),

me—0 Z lz—y|>e \T — Y Yy
and
[ I oo)(y)>

29 Ry(f)(z) — — lim ( + —= flydy|| <C|f :
(29) A(f)(z) — — lim s Joyioe \T—¥ ; (¥) . 1fllBato..
By combining (26), (27),(28) and (29) we conclude that
(30) Ra(f) — H(fe) € L7(0,00) and [|[RA(f) = H(fe)lloo < CllfllBMO. -

Moreover, since H(f.) € BMO(R) and H(f.) is odd, for every a € (0,0),

1 1

1 a a 1 a a
L@l = o [ @i = 5 [ TG @ - 52 [ Hi

< ClH(fe)llBmow) < Cllfell Brow) < CllfllBrmo, -

dx

Then, from (30), for every a € (0,0),

i/oa|R)\(f)(l’)’dm < 1/Oa’RA(f)(w)—H(fe)(x)]da:+i/oa|H(fe)(x)\dxgC’fHBMOJr‘

a
Hence Ry(f) € BMO and ||[R)f|pmo, < C| fl|Bmo,. Thus the proof of Proposition 2 for
R) is finished.
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4. LITTLEWOOD-PALEY ¢g-FUNCTIONS IN BMO4
In this section we prove Proposition 2 for the Littlewood-Paley g-functions g; x and gp

associated with the heat and the Poisson semigroups for Ay, respectively.

Firstly we study gy . Let f € BMO4. Minkowski inequality implies that

2
dt

t 2x

t& W)\<t,l‘,y)f(y)dy 1

3. §</ /ZZ>WAtq:y)f()dy
< (/0+/°°> f(y)!{/o t| o b,

According to [7, Lemma 8] we have that

ana(F) (@) — /0 N

1
2

@
t

2 2
dt} dy, x € (0,00).

A
1 y x
2d 2 W70<y<§7
t <C o)
2z <y < oo.

(31) {/000 ;WA(t,x,y)

From (31) we deduce that, for every x € (0, 00),

5 fe'e) o % T
/ \f(y){ | g ey dt} dy < C / Tl <€ | \f(y)\dy<cufHBMO+,|

and, as in the proof of (14) in Section 2,

/2:O|f(y)|{ \WA (t.2.9)

Hence, we conclude that

)
y ML

2
dt} dy < Cx / AHd y < CfllBmoy,-

N

2

| 9 2z
B aa@ =S [ [ W e o] T e 170.0)
and
| 9 2z 2 %
6 Joa@ -3 [l [ eewswa] T < Clflavo.
0 5

o0
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By using again Minkowski inequality and [7, Lemma 8] we get

1
2 2
wl fr
t 0
1 (z—y)?

q [* _
A e

2w o 0 A 1 _(@—y)? 2 2
SL”@){A (g (Pt - e 4t>|ﬁ}dy

2x
SCﬁlﬂmwéﬂmmmwxe@w»
2

2
8/29” 1 _@-y?
t— e 4t d
o) Vimt f(y)dy

X
Then
<| g )
0 T
1
<l 9 [ 1 (@—y) ? ’
- 12 —5 dyl % e (o,
/0 até ¢ ¢ fWdy (0,00)
and
| 9 [ Nk
JR— A JR—
(3) {A o [ WA ) f)y t}
<9 [ 1 (&= :
_ _ - t — < .
{/O tatﬁ Nz f(y)dy } < C|fllBmo,
We denote by
x| 9 Zat)?
gh(fo)(l’):{/ ’tatWt(fo)(x) t} , T€R
0

We are going to see that

(36) %uau>{ém

15
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and
1

2
dt

a [* 1 @
n < C|fllBmos-

Il ; d
ot J: = f(y)dy

670 (o)) - /Ooot

o0

Note firstly that according to (16) the Minkowski inequality leads to

1

2
dt

t

00 2z .
(38) |gn(fo)(x) — /O 10 [ = sy

ot VAt

N|—=

2
o [~ 1 @2 (aty)? o [ 1 (2—1)2
t— U h T — e @ dy — t— -7 dyl =
| (5 =) s 815/;- e ()|
2 2 %
* * 10 1 (z+y)?
< o 2
</ If(y)l{/o (g ()| dt} y

3 00 < |19 1 (@-w)?  (aty)?
+(/O+2x)\f<y>\{/o (|2 ([ )

() + Ta(f)(x), = € (0,00).

2 )2
dt} dy

I
=
—~
)
N~—

It is not hard to see that

0 1 (@+y)? 1 _@+w?
< etf)‘ﬁcge gf ) t7$7y€(0700)'

Ot \ Vit 3
Then
2z © ] (iy? % 2%
e < o [l [ e Wl w <o [T,
3 0 z T+y
1 2x
< ;[ 1fldy < Cliflawo.. =€ (0.50)

Also, by using the mean value theorem, we get

0 1 _(z—y)? _(@ty)?
@ |5 ([ )

)2 = 2 _ 2 22 2 > 2
<Ci3 JEC~ <) N (x —y) e (x+y) om0
s 4t 4t
X (z—y) x
§C—§/e_ st , t € (0,00) and 0<y<§, ory > 2x.



OPERATORS ON THE ODD BMO(R) SPACE 17

Hence

(z—y)?

To(f)(x) < c</0+/°°> f@)xy{/o"%;dt} dy§0</02+/:> W)=
)

5 -y e .
: C/o ‘f(y)‘;dﬁx/ | (y)|dy§0$/0 ’f(y)’dy+:c/2 ‘;?j dy,

00 Y z
and by proceeding as in the proof of (17) we obtain that T>(f)(z) < C||f| Brmo,, 2 € (0,00).
From (38) we deduce (36) and (37). By using (33), (35) and (37) we conclude that g, x(f) €
BMOy provided that g, (f,) € BMO(R), and that there exists C' > 0 such that

i/oa gn(fo)(z)dz < C, a € (0,00).

Since f, € BMO(R), gn(f,) € BMO(R) when gp(fo)(x) < oo, a.e. x € R ([17]). Let a > 0.

We write f, = fi1 + fo + f3, where

2a
f(e) = 50 [ Iy = foz. @ € (0.50)

fo(z) = (f(z) - f(0,2a))X(0,2a)(x)a z € (0,00),

f3(x) = (f(x) - f(0,2a))X(2a,oo)(x)v T € (Oa OO)’

and fi(z) = —fi(—z), x € (—00,0), and i=1,2,3.
Note that, for each z € (0,00),

9 [ 1 _(=—y)?  (@+y)?
(40) gh(fl)(ﬂ?)=|f(o,2a)\{/o ‘té)t/o g (e o — e >dy

2 o0
=7 | f0.20)] {/0

Rl B R
< Clflavo. | | \t

4t2

th% ooa;2 _ﬁ %
~ ( = Clflsao, L wdt o < C|lfllBmoy -

Since g (f1) is even, gn(f1)(xz) < C||fllBMo,, * € R. It is wellknown that g, is a bounded
operator from L?(R) into itself. Then

1

/Oa p = \/a{/ﬂo ’9h(f2)(w)|2d9;}% = C\/&{/OQG | f(z) — f(o,za)}zdac}2

—0o0

(41)

IN

CallfllBmos, -

Hence, since gp,(f2)(x) is even, gn(f2)(z) < 00, a.e. x € (—a,a).
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Finally, by proceeding as in the proof of (17), we obtain

/Oa gn(f3)(x)dx = /Oa 9 ((f = f(0,2a0))X 2a,00)) (%) d < C/Oax/zzo 1f(y) — f(o,za)|jgdx

a o0 d a Ood
c(/ o [TV dr 1l o [ de)gcananMm.
0 2z ) 0 200 Y

Then, gn(f3)(x) < o0, a.e. € (—a,a). We conclude that g,(f,)(z) < oo, a.e. = € (—a,a).

IN

(42)

Hence, since a > 0 is arbitrary g5(fo)(z) < oo, a.e. x € R, and then g,(f,) € BMO(R).
Moreover, from (40), (41) and (42) we obtain that,

clz/o lgn(f)(2)|dz < C||fllBrMo,, a>0.

Thus, we deduce that g; x(f) € BMO4 and ||gn\(f)| Bro. < C|lfllBMmoOs, -

To analyze the Littlewood-Paley g-function gp associated with the Poisson semigroup
{Pt)‘}t>0 for the Bessel operator, we can proceed as for the gj, » case. We compare gp ) with
the g-function for the classical Poisson semigroup on R.

According to the results established in [6, (2.11)] we can write

< a9 [y 1 t 2dt)?
{/0 ‘tat [P (t,r,y) — ﬂ_X{g<y<2x}(y)(x_y)2_’_t2:| t}
e 0<y <5,

< Clay){ y 2 (1+10g (14 525, § <y <2,

y Ay > 2.

-

Then, by using Minkowski inequality we get, for every x € (0, c0),

0o 2z 2 2
@) Jama@ -3 [l [ o)
00 00 2z 2 %
<1/ tat</0 Pt =~ | o ) y> i

[

2 2
dt
} §C||f”BMO+

0 | 9 A\ 1 t
g/o £ (y)| {/0 ‘tat <P (t,z,y) - ﬂX{g<y<2z}(y)(x_y)2+tz) ;

On the other hand a straightforward manipulation allows us to write, for each x € R,

1 [*ee ¢ 1 [ ¢ ¢
r@ =1 [ty =1 [ (e G ) T
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We are going to see that

(44) gMﬂMﬂ{Am

2 2
t} S LOO(O,OO)

to [ t

and
fe'e) t 8 2x t 2 %
@) ot - [ Wmé@_whwgwm/ < Ol flsaro,
where
19 dt|?
gwnmwz{A Pmamm> f}, v R,

being P, f, as in (22). Indeed, Minkowski inequality implies, for every x € (0, 00),
1

oo 2z 2 2
(46) gMﬁMﬂ{A ) e (L ?}

< {/ooo ‘tgt [/ooo ((z e A e +t2> fody
t

2z + th %
_L mf(y)dy n
L) [Le ; Nk
< %%é@%wﬁ+ﬂﬂwy 0
{ 0 a </ /Zx) )2 412 - ($+y)2+t2> f(y)dy
o0 ; 2 )2
’{ 0 $+y) (z+y)?2+1t2 t} dy
0 t t 2
</ /2f>|f {0 6’f((fﬂ—.y)24rt2_(:n+y)2+152>

Moreover, we have that

/°° ’tat
0 | Ot(x+y)?+1t2

2dt<0/C>o ¢ dt < ¢ <g £< < 2x
t = Jo (@t +22" = @try? = o v

19
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and
2
00 2 z 2z <y
0 t t dt A ’
t— — — <0 Y,
0 |0t \(z—y)2+t2 (z+y)?+¢t? t Yy x
x

Hence, (46) leads to

o0 2x 2
R A A

z
2

2x % 0o
<C 1/1 !f(y)!dy+i/0 \f(y)\derm/ |f(§>‘dy < C|flBro,, = € (0,00).

x 2z Yy

Thus (44) and (45) are established. From (43), (44) and (45) we deduce that

9pA(f) —gp(fo) € L>(0,00) and [lgpa(f) = gp(fo)llee < CliflBMOL -

To see that gpa(f) € BMO, and |gpx(f)llBmo, < C| fllBmo, we can proceed as in the

proof of the corresponding property for gy .
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