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of a time and a spatial parts. The spatial part is known as the
Kelvin kernel, which is the sum of two Rankine sources and a
wave-like kernel, being the last one written using the Haskind-
Havelock representation. Numerical efficiency is improved by
an analytical integration of the two Rankine kernels and the use
of a singularity subtractive technique for the Haskind-Havelock
integral, where a globally adaptive quadrature is performed for
the regular part and an analytic integration is used for the sin-
gular one. The proposed computation is employed in a low or-
der panel method with flat triangular elements. As a numerical
example, an oscillating floating unit hemisphere in heave and
surge modes is considered, where analytical and semi-analytical
solutions are taken as a reference.

Mathematical subject classification: Primary: 33F05; Secondary: 65N38.

*Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET): PIP
5271–05.

Universidad Nacional del Litoral (UNL): CAI+D 2009–III–4–2.
Agencia Nacional de Promoción Cient́ıfica y Tecnológica (ANPCyT): PICT

1506–06, PICT 1141–07 and PAE 22592–04 nodo 22961.
1
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1. Introduction

In seakeeping flow problems for ship hydrodynamics, a rigid body

placed on the free surface of an incompressible inviscid fluid can

oscillate in any of the six degrees of freedom around its mean position

due to a passing front wave [1]. The standard potential flow theory

assumes that the motion is relatively small and harmonic in time [2,

3].

The classical analysis with a linearized free-surface boundary con-

dition splits the problem in seven parts. First, six radiative modal

potentials Φk(x, t) have to be determined, for k = 1, 2, ...6, where

the rigid body performs imposed small harmonic oscillations in each

degree of freedom. Next, a diffraction potential Φ7(x, t), due to a

passing harmonic monochromatic wave of small amplitude, has to

be found, where x is the position vector and t is the time. These

modal velocity potentials Φk(x, y, z, t), for k = 1, 2, .., 7, are found by

solving seven boundary integral equations, where the left hand sides

have the same integral operator and only the independent terms are

specific for each mode, e.g. see [4].

As it is well known, boundary element methods, or panel meth-

ods [5], are a natural choice for obtaining numerical solutions of

boundary integral equations [6] through collocation or Galerkin tech-

niques [7], as well as they are closely related to the Green function

theory [8].

The Green function Ĝ(x, t) for seakeeping is expressed as the prod-

uct of a time factor T (t) and a spatial G(x) one. As the incident front

wave is assumed as monochromatic in time, with absolute circular

frequency ω, then, the time factor takes the simple form T (t) = eiωt,

and all computations can be performed in the frequency domain.

The spatial part of the Green function G(x) is also known as the

Kelvin kernel which, in turn, is decomposed in the sum of two Rank-

ine ones and a wave-like kernel. Both Kelvin and Rankine kernels
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are widely used in numerical ship hydrodynamics although neither of

them satisfy the slip boundary condition over the wetted hull surface

and, consequently, it must be enforced for a numerical computation.

On one hand, the Rankine kernel has rather simple mathematical

properties, however, it does not satisfy neither the outgoing radiation

nor the free-surface boundary conditions. Thus, a finite portion of

the free surface must be also discretized in order to impose these

missing properties. Aside of these drawbacks, a great advantage of

the Rankine kernel appears in unsteady potential flow problems with

non-linear boundary conditions [9, 10].

On other hand, the use of the Kelvin kernel avoids the discretiza-

tion of the free surface, and the outgoing radiation boundary condi-

tion is automatically satisfied. However, it involves several mathe-

matical expressions rather elaborated and tends to be ill-conditioned

for field points nearby the axisymmetric axis of the local cylindrical

frame at each panel, which is a serious numerical drawback, partic-

ularly in hull meshes with relatively high number of panels.

In this work, a computation of the Kelvin kernel is proposed

through a singularity substraction technique, where the boundary

integral is split in the sum of a regular term and a singular one.

For the regular term, a globally adaptive numerical quadrature is

employed, while an analytic integration is performed for the singu-

lar one. The proposed computation is used with a low order panel

method where only the hydrostatic wetted body surface is discretized

with flat triangles. As a numerical example, the oscillating floating

unit hemisphere in heave and surge modes is considered, where an-

alytical and semi-analytical solutions are available.

2. Seakeeping flow problem

2.1. Differential formulation. A Cartesian (x, y, z) coordinate sys-

tem is chosen, where the plane z = 0 matches the still water plane

and the z-axis is positive upwards. The complex time dependency

eiωt is implicitly assumed, where ω is the circular frequency of the

periodic motion.
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An infinitesimal rigid body oscillating in the k degree of freedom

and placed under the free surface of a fluid without a uniform mean

current, is described with the linearized governing equation [11]

(1)

∆φk = 0 for z < 0;

∂zφk = Kφk at z = 0;

φk = O(|x|−1) for |x| → ∞;

where ∆ = ∂xx + ∂yy + ∂zz is three–dimensional Laplacian operator,

φk is the k-modal radiation potential, and K = ω2/g is the wave-

number for gravity waves in deep water.

2.2. Boundary integral equation. A boundary integral equation

for solving Eq. (1) is given by [2]

(2)
1

2
φk(x) +

1

4π

∫
S

dSξ G,n(x, ξ)φk(ξ) = Qk(x) ;

for x ∈ S, where x and ξ are the field and source points, respectively,

and S is the boundary of the flow domain Ω. The independent term

is

(3) Qk(x) =
1

4π

∫
S

dSξ G(x, ξ)σk(ξ) ;

while φk(x), for k = 1, ..., 6, is the k-radiation velocity potential,

and σk are known fluxes. A standard panel method imposes the

integral boundary equation (2) by means of a collocation technique

at the panel centroids, obtaining a complex valued linear system

Aφk = Cσk = bk, where φk is the k-velocity potential vector, and

σk is the k-flux vector correspondig to the k-mode. The dipolar

matrix, which is non-symmetric and regular, is given by

(4) Aij =
1

4π

∫
S

dSξ G,n(x, ξ) ;

and the monopolar one, symmetric, is

(5) Cij =
1

4π

∫
S

dSξ G(x, ξ) .
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Both monopolar C and dipolar A matrices are square and full pop-

ulated. They include the spatial Green function G(x, ξ) and the

normal derivative G,n(x, ξ), respectively.

2.3. Kelvin and Rankine kernels in the spatial Green func-

tion. The spatial Green function G(x, ξ) in Eq. (5), that satisfies

Eq. (1), is known as the Kelvin kernel, which gives the interaction

between the field point x = (x, y, z) and the source point ξ = (ξ, η, ζ)

[12]. The physical meaning of the Green function is given by the real

part Re {Geiωt}, which is the disturbed velocity potential measured

at the field point x, at time t, and caused by a pulsating source

ξ of circular frequency ω and unit intensity [1]. It should be noted

that the outgoing radiation and free surface boundary conditions are

automatically satisfied by the Kelvin kernel.

Due to the local axisymmetry around the source point ξ, it is

convenient to introduce the non-dimensional cylindrical coordinates

(6)
X = K{(x− ξ)2 + (y − η)2}1/2 ;

Y = K|z + ζ| ;

where X is the radial coordinate and Y the vertical one. Then, the

Kelvin kernel for seakeeping is written as

(7) G = r−1 + s−1 + G̃ ;

where

(8) r, s = {(x− ξ)2 + (y − η)2 + (z ∓ ζ)2}1/2 ;

are the Euclidean distances betweeng the field point x and the source

point ξ, and between the field point x and the image point ξ′ =

(ξ, η,−ζ), respectively. The first two terms r−1 and s−1 in Eq. (7) are

the Rankine kernels, while the G̃ term inherits the spatial wave prop-

erties of the Kelvin one and, then, it is termed the “wave-kernel”.

2.4. Haskind-Havelock representation of the wave-kernel. The

wave kernel G̃ involves several transcendental functions and, conse-

quently, the computational cost can be rather expensive. Moreover,

the Haskind-Havelock representation tends to be ill-conditioned for
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field points located near the axisymmetric axis, as well as for far

away regions. Thus, a semi-analytical integration strategy is pro-

posed as a compromise solution between numerical cost and compli-

cated mathematical expressions, specially in numerical simulations

with non-linear boundary conditions, e.g. when there is a mesh mo-

tion and the Jacobian of the system matrix is required.

The Haskind-Havelock representation for the wave part of the

Kelvin kernel is written as [12]

(9) G̃(X, Y ) = −πKe−Y [H0(X) + Y0(X) + P0(X, Y ) + 2iJ0(X)] ;

where H0(X) is the Struve function of zero order, J0(X) and Y0(X)

are the Bessel functions of zero order and first and second kind,

respectively [13], and P0(X, Y ) is the Haskind-Havelock integral [12]

(10) P0(X, Y ) =
2

π

∫ Y

0

dα
eα√

α2 +X2
.

The asymptotic behavior of the Kelvin kernel given by Eq. (7), at

very low and very high frequencies, is derived in Sec. 4.2 and 4.3.

3. Evaluation of the Kelvin kernel

3.1. Rankine kernels. The Rankine kernels r−1 and s−1 can be

evaluated in several ways. One possibility is a numerical integra-

tion, which has the advantage that high order distributions can be

considered without further complications altough it is rather sensi-

tive to the mesh quality and, moreover, the diagonal terms deserve

a special treatment. Another alternative is an analytic integration,

where the surface integral over each panel is replaced by its closed

contour integration and a side local frame is used for each side con-

tribution [14, 15, 16].

3.2. Normal derivative of the Haskind-Havelock kernel. The

normal derivative of the Haskind-Havelock kernel is found from G̃,n =

(∇ξG̃,nξ), where nξ = (nξ, nη, nζ) is the unit normal of dSξ and

∇ξG̃ = (G̃,ξ, G̃,η, G̃,ζ) is the gradient of G, both evaluated on the
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source point ξ = (ξ, η, ζ). By the chain rule in Eqs. (6) and (9)

(11)

G̃,ξ = G̃,XX,ξ ;

G̃,η = G̃,XX,η ;

G̃,ζ = G̃,Y Y,ζ ;

where

(12)

X,ξ = −K2(x− ξ)/X ;

X,η = −K2(y − η)/X ;

Y,ζ = Ksign(z + ζ) .

Note that the gradients of the wave-kernel of the Green function,

evaluated in the field point x = (x, y, z) and the source point ξ =

(ξ, η, ζ) are linked as

(13) (G̃,ξ, G̃,η, G̃,ζ) = (−G̃,x,−G̃,y, G̃,z) .

The complex kernel is

(14) G̃ = G̃′ + iG̃′′ ;

where the real part, Re {..} ≡ (..)′, and the imaginary one, Im {..} ≡
(..)′′, are given by

(15)

G̃′ = −λ(H0 + Y0 + P0) ;

G̃′′ = −λ(2J0) ;

λ = πKe−Y .

The partial derivatives of G̃′ are

(16)
G̃′,X = −λ(H0,X + Y0,X + P0,X) ;

G̃′,Y = −G̃− P0,Y .

3.3. Ill-conditioning of the Haskind-Havelock kernel. The Haskind-

Havelock finite integral is given by

(17) P0 =
2

π

∫ Y

0

dα
eα

(α2 +X2)1/2
;
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and its partial derivatives are

(18) P0,X = − 2

π
X

∫ Y

0

dα
eα

(α2 +X2)3/2
;

(19) P0,Y =
2

π
eY (Y 2 +X2)−1/2 .

The Haskind-Havelock finite integral P0 evaluated at t = 0 tends

to be ill-conditioned when X � 1, that is, for field points near the

axisymmetric axis. This is a serious numerical drawback, in par-

ticular in hull meshes with high number of panels. For overcoming

this disadvantage, a singularity substraction technique is proposed,

where the integral is split in the sum of a regular term and a singular

one. For the regular term, a globally adaptive numerical quadrature

is employed, while an analytic integration is performed for the sin-

gular one. On the other hand, a direct computation of the Struve

functions H0 and J0 can be performed through their definitions and

asymptotic expansions.

4. Semi-analytical computation of the

Haskind-Havelock kernel

4.1. Singularity substraction technique. The Haskind-Havelock

integral given by Eq. (17) is split in the sum of a regular term and

a singular one. For the regular term, a globally adaptive numerical

integration can be used, while an analytic integration is performed

for the singular one. Thus, Eq. (17) is rewritten as

(20) P0 =
2

π
(P̂0 + P̃0) ;

where

(21) P̂0 =

∫ Y

0

dα
eα − 1

(α2 +X2)1/2
;

is a regular integral which can be evaluated accurately by a globally

adaptive integration, for example, the qag routines of the Netlib
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Repository (http://www.netlib.org). The remaining integral

(22) P̃0 =

∫ Y

0

dα
1

(α2 +X2)1/2
;

contains a logarithmic singularity when X = 0, and it is ill-con-

ditioned when X → 0. Then, it is evaluated in a closed form by

performing the following variable changes

(23)

α = X sinh(θ) ;

dα = X cosh(θ) dθ ;

(α2 +X2)1/2 = X cosh(θ) ;

for which

(24)
α1 = 0 → θ1 = 0 ;

α2 = Y → θ2 = sinh−1(Y/X) ;

then

(25) P̃0 =

∫ θ2

0

dθ = sinh−1(Y/X) .

The partial X-derivative of Eq. (20) is similarly decoupled as

(26) P0,X =
2

π
(P̂0,X + P̃0,X) ;

where

(27) P̂0,X = −X
∫ Y

0

dα
eα − (1 + α + α2/2)

(α2 +X2)3/2
;

is a regular integral, whereas

(28) P̃0,X = −X
∫ Y

0

dα
1 + α + α2/2

(α2 +X2)3/2
;

is the integral that contains the singularity and it is computed in

closed form. The variable change α = X sinh θ is introduced again

and

(29) P̃0,X =

∫ θ2

0

dθ
−1−X sinh θ −X2/2 sinh2 θ

X cosh2 θ
.
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As cosh2 θ − sinh2 θ = 1, then

(30) P̃0,X =
X2/2− 1

X
A− 1

X
B − X

2
C .

The A term is given by

(31) A =

∫ θ2

0

dθ

cosh2 θ
;

with the variable change

(32)
v = eθ → dθ = dv/v ;

cosh2 θ = (v + v−1)2/4 .

Replacing

(33) A =

∫ θ2

0

4v dv

(v2 + 1)2
=
−2

v2 + 1

∣∣∣∣θ2
0

;

and then

(34) A = 1− e−θ2

cosh θ2

.

Next, the B term is given by

(35) B =

∫ θ2

0

X sinh θ dθ

cosh2 θ
;

introducing the variable changes

(36)
u = cosh θ ; du = X sinh θ dθ ;

α = X sinh θ ; u = (X2 + α2)1/2 ;

for which

(37)
α1 = 0 → u1 = X ;

α2 = Y → u2 = (X2 + Y 2)1/2 ;

it results

(38) B = X −X2(X2 + Y 2)−1/2 .

Finally, the trivial C term is

(39) C = θ2 = sinh−1(Y/X) .
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However, when the field point x = (x, y, z) is on the axisymmetric

axis of the source point ξ = (ξ, η, ζ), then X = 0 and these expres-

sions are not applicable. In such case, the asymptotic representation

[11]

(40) G̃(X, Y ) = 2
∞∑
k=0

W k(X, Y )− 2πiJ0(X) ;

can be used when X � 1, where

(41) W k(X, Y ) =
(−X2/4)k

(k!)2
bk ;

with

(42) bk =
2k∑
j=0

(j − 1)!

Y j

(j − 1)

Y j
− e−Y Ei (Y ) for X � 1 ;

where Ei (Y ) is the exponential integral [13]. Then

(43) G̃ = 2W0 + 2
∞∑
k=1

W k(X, Y )− 2πiJ0(X) ;

that is

(44) G̃ = −2Ei (Y ) + 2
∞∑
k=1

W k(X, Y )− 2πiJ0(X) ;

which is valid for X � 1. As W k(X, Y ) and its derivatives tend

uniformly to zero in a small neighborhood of X = 0, then, Eq. (44)

can be written as

(45)

G̃ = −λ[Ei (Y ) + πiJ0(X)] ;

G̃,X = −λ[Ei (Y )− πiJ1(X)] ;

G̃,Y = −G̃− λeY /Y ;

at X = 0, where λ was defined in Eq. (15).
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Figure 1. Real (left) and imaginary (right) parts of

the free surface boundary condition G,z = KG at z =

0, due a square panel of length L = 0.1, submerged at

depth H = 1 and pulsating at frequency ω.

4.2. Kelvin kernel at very low frequencies or near the verti-

cal axis. For very low frequencies K � 1, or in the neighborhood

of X = 0, it can be shown that the terms H0, Y0 and P0 in Eq.

(9) tend to cancel among each other and, consequently, the paren-

thesis results bounded (...) < D, with D a constant independent of

K. Then, when the field point x = (x, y, z) does not match the

source one ξ = (ξ, η, ζ), the Kelvin kernel has the asymptotic form

G → r−1 + s−1 for K → 0 (low frequencies) or X → 0 (near the

vertical axis).

4.3. Kelvin kernel at very high frequencies or far away. For

very high frequencies K � 1 or far away from the origin, it is verified

that X, Y � 1 and, then, the following expansion can be used [1]

(46)

∫ Y

0

dα
eα−Y√
α2 +X2

≈ 1√
Y 2 +X2

+O(s−3) ;

which is valid for X, Y � 1. From this,

(47) P0 ≈
2

π

eY√
Y 2 +X2

=
2

π

eY

Ks
.



SEMI-ANALYTICAL COMPUTATION OF THE KELVIN KERNEL 13

Moreover (see [13])

(48)

Jn ≈
√

2/(πX) cos(X − nπ/2− π/4) ;

Yn ≈
√

2/(πX) sin(X − nπ/2− π/4) ;

H0 ≈Y0(X) +O(1/X) ;

therefore Jn, Yn, H0 ∼ O(X−1/2) and

(49) G̃ ≈ −2πKe−Y (Y0 + iJ0)− 2s−1 ; for X � 1.

Thus, for very high frequencies K � 1 or far away from the origin,

it is verified that X, Y � 1, and the wave kernel has the asymptotic

form G̃ → −2s−1. Then, the Kelvin one has the asymptotic form

G→ r−1 − s−1 for K � 1 (high frequencies) or X � 1 (far away).

4.4. Direct computation of the special functions. The Struve

differential equation is (see chap. 9 [13])

(50) z2 d2w

dz2
+ z

dw

dz
+ (z2 − ν2) =

4(z/2)ν+1

√
π Γ(ν + 1/2)

;

where z = x + iy is the complex variable and Γ is the factorial

function. Its general solution is

(51) w = aJν(z) + bYν(z) +Hν(z) ;

where Jν and Yν are the Bessel functions, of first and second kind,

respectively, Hν is the Struve one, all these of integer order ν, and

a, b are constants. A direct computation involves ascending and

descending series. The ascending series for the Bessel function of

first class Jn(X) and order n = 0, 1 are

(52) J0(X) =
∞∑
k=0

(−X2/4)k

k!(k + 1)!
;

(53) J1(X) =
X

2

∞∑
k=0

(−X2/4)k

k!k!
.

While the corresponding ones for the Bessel function of second kind
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Figure 2. Bessel functions of the first kind J0 and J1

(top-left), Bessel functions of the second kind Y0 and

Y1 (bottom-left), Struve functions H0 and H1 (top-

right), and exponential integral Ei (x) (bottom-right).

Yn(X) are

(54) Y0(X) =
2

π
{[ln(X/2) + γ]J0(X) + A} ;

and

(55) Y1(X) =
2

π
{ln(X/2)J1(X)− 1/X −B} ;

where

(56) A =
∞∑
k=1

(−1)k+1(X2/4)k

k!k!
sk ;
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(57) B =
X

4

∞∑
k=0

ψk+3/2(−X2/4)k

k!(k + 1)!
;

with ψk+3/2 = ψk+1 + ψk+2 and

(58) sk =
k∑

m=1

1

m
;

(59) ψ(n) = −γ +
n−1∑
m=1

k−1 ;

where γ = 0.5772... is the Euler constant and ψ(1) = −γ. On the

other hand, for the Struve functions Hn(X) of order n = 0, 1 (see

chap. 9 [13])

(60) H0(X) =
2

π

∞∑
k=0

(−1)kX2k+1

k∏
s=0

1

(2s + 1)2
;

and

(61) H1(X) =
2

π

∞∑
k=0

(−1)k+1X2k

(2k + 1)

k−1∏
s=0

1

(2s + 1)2
.

When the abscissa X is far from the origin, these series show slow

rate of convergence and numerical instability. Then, they are re-

placed by the asymptotic expansions

(62) Jn(X) ≈
√

2

πX
cos
(
X − nπ

2
− π

4

)
;

(63) Yn(X) ≈
√

2

πX
sin
(
X − nπ

2
− π

4

)
;

for X > 25, while for the Struve ones the expressions adopted are

(64) H0(X) ≈ Y0(X) +
2

π
h0(X) ;

(65) H1(X) ≈ Y1(X) +
2

π
[h1(X) + 1] ;
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where

(66) h0(X) ≈
∞∑
k=0

1

(−1)kX2k+1

k−1∏
s=0

(2s+ 1)2 ;

(67) h1(X) ≈
∞∑
k=1

2k − 1

(−1)k+1X2k

k−2∏
s=0

(2s+ 1)2 ;

for X > 30. The derivatives of Eq. (54) and (64) with respect to X

are, respectively,

(68)
dY0/ dX = −Y1 ;

dH0/ dX = 2/π −H1 .

Finally, an asymptotic expansion for the exponential integral Ei(Y )

(see chap. 5 [13]) is

(69) Ei(Y ) = γ + ln(Y ) +
∞∑
k=0

Y k

k k!
for Y > 0.

In Fig. 2 the following plots are shown: (i) the Bessel functions of the

first kind J0 and J1 (top-left), (ii) the Bessel functions of the second

kind Y0 and Y1 (bottom-left), (iii) the Struve functions H0 and H1

(top-right), and (iv) the exponential integral Ei (x) (bottom-right).

5. Numerical examples

5.1. Free surface test. The Kelvin kernel computation is validated

by a numerical test, where the free surface boundary condition

(70)
∂G

∂z
= KG at z = 0 ;

is explicitly computed on a grid over the plane z = 0, inside a finite

sector |x, y|/L < 200. The source is a square panel of length L = 0.1,

submerged at depth H and harmonically pulsating at frequency ω.

Thus, Eq. (70) is verified at machine precision. In Fig. 3 (left),

a three-dimensional view of the wave pattern on the plane z = 0

produced by the submerged source panel is shown.
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Figure 3. Wave pattern on the z = 0 plane caused by

a square panel of length L = 0.1, submerged at depth

H = 1 and pulsating at frequency ω (left). Conver-

gence plot for the surge added mass of the unit hemi-

sphere at very low frequencies (ω → 0) obtained with

a lineal regression analysis (exact A′11 = 1/2) (right).

5.2. Body coordinates and motions. In seakeeping, the body

coordinate system (X, Y, Z) is fixed to the rigid body, i.e. it moves

together with it. The Z-axis is upwards, the X-axis to bow and,

when there is not motion, the plane Z = 0 matches the still water

plane, as represented in Fig. 4 (left). The harmonic body motion

is given by the instantaneous position of the body coordinate sys-

tem (X, Y, Z) with respect to the moving-frame (x, y, z) and it is

decomposed on surge, sway and heave oscillating translations along

the body-axes, and on its roll, pitch and yaw oscillating rotations,

also around the body-axes, see Fig. 4 (left).

5.3. Oscillating floating unit hemisphere. An oscillating hemi-

sphere of radius R = 1 in surge (k = 1) and heave (k = 3) modes

is considered. Due to the symmetry between the surge and sway

(k = 2) modes, it is not necessary determining the sway mode,

nevertheless, for a code validation, it was also verified at machine

precision, in a perfectly symmetric mesh. The added mass coeffi-

cients are computed as A′kk = Akk/(ρV ), and the damping ones as

D′kk = Dkk/(ρV ω), where V = (2/3)πR3 is the hemisphere volume,

ρ is fluid density and ω is the imposed circular frequency. In Fig.
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Figure 4. Degrees of freedom with respect to the

body coordinate system (left). Boundary mesh with

3 000 Kelvin panels over a hemisphere (right).

3 (right), a convergence plot for the surge added mass at very slow

frequencies (ω → 0) is shown, obtained with a lineal regression anal-

ysis (exact value A′11 = 1/2). The mesh is shown in Fig. 4 (right)

and has 3 000 Kelvin panels over the wetted body surface. Plots of

the added mass A′kk and damping coefficients D′kk, as a function of

the wave number coefficient KR, are shown for the surge and sway

modes in Fig. 5 (left), and the heave one (right), which are in good

agreement with the literature results [17]. The asymptotic values

of these coefficients, for very slow and very high frequencies, can be

obtained analytically, e.g. by variable separation or image meth-

ods. For the surge/sway mode at very slow frequency, the boundary

condition φ,z = 0 is equivalent to a symmetry operation with re-

spect to the plane z = 0 and, then, corresponds to the solution of

a sphere oscillating in an infinite medium. The added mass for the

last case is half of the displaced volume, then, the surge/sway added

mass coefficient is A′11 = 1/2 with respect to the true displaced mass

(2/3)πR3ρ, where the half factor is due to the analytic prolongation.
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Figure 5. Added mass A′kk and damping coefficients

D′kk of the oscillating unit hemisphere, for surge-sway

(left) and heave (right) modes, as a function of the

wave number coefficient KR.

On the other hand, the asymptotic values of the added mass in heave

mode are not easy to obtain and could be computed with spherical

harmonics (e.g. see [18]). Bounds for the surge A′11 and heave A′33

added mass coefficients of the oscillating unit hemisphere at very

slow and very high frequencies are summarized in Table 1. The

first column corresponds to those found in [18]. The values for the

surge/sway mode in the second column correspond to those found

in [19] and [20], while the corresponding ones to the heave mode are

taken from [21] and [22]. It should be noted that only the inter-

vals [0.25, 1.50] and [0.6, 1.5] were considered in [20], respectively,

and, then, the extrapolations are rather doubtful. The third column

corresponds to the results found in [23]. Korsmeyer used a panel

method with Fourier transform and complex impedance extended to

very slow frequencies, while Hulme used spherical harmonics. The

Sierevogel, Prins and Liapis results were obtained with other panel
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[18] A′11 from [19, 20] [23, 22]

A′33 from [21]

limKR→0A
′
11 0.5 0.5 0.5

limKR→∞A
′
11 0.272 220 012 593 0.25 ... 0.273 239...

limKR→0A
′
33 0.830 949 128 536 0.80 ... 0.830 951...

limKR→∞A
′
33 0.5 0.45 0.5

Table 1. Added mas coefficients for surge/sway

mode A′11 and heave A′33 one taken from literature.

methods with Kelvin kernels. In general, the concordance among

the present results and the literature ones is good.

6. Conclusions

A semi-numerical scheme for computing the Kelvin kernel for sea-

keeping flow problems has been proposed. The Kelvin kernel is de-

composed as the sum of two Rankine sources and a wave one. The

Rankine sources are the standard Green functions for the Lapla-

cian equation, one due to the generic panel on the body surface,

placed below the plane z = 0, and the other one due to the mirror

image with respect to the same plane. The wave kernel (i) tends

to be ill-conditioned for field points near or over the local axisym-

metric axis; and (ii) involves a rather heavy computation, due to

the Haskind-Havelock integral which, in turn, involves the computa-

tion of Bessel and Strouve functions. The Haskind-Havelock integral

was accurately computed with a singularity substraction technique

that involves a regular closed term and a numerical adaptive quad-

rature, while the Bessel and Strouve functions were calculated with

asymptotic expansions. The semi-numerical proposed scheme was

validated with analytical and semi-analytical solutions for the unit

hemisphere in surge and heave motions, without showing numerical

instabilities nor severe precision loss.
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