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Abstract. The concept of qualification for spectral regularization methods (SRM)
for inverse ill-posed problems is strongly associated to the optimal order of convergence
of the regularization error ([2], [5], [6], [11]). In this article, the definition of
qualification is extended and three different levels are introduced: weak, strong and
optimal. It is shown that the weak qualification extends the definition introduced
by Mathé and Pereverzev ([6]), mainly in the sense that the functions associated
to orders of convergence and source sets need not be the same. It is shown that
certain methods possessing infinite classical qualification, e.g. truncated singular
value decomposition (TSVD), Landweber’s method and Showalter’s method, also
have generalized qualification leading to an optimal order of convergence of the
regularization error. Sufficient conditions for a SRM to have weak qualification are
provided and necessary and sufficient conditions for a given order of convergence to
be strong or optimal qualification are found. Examples of all three qualification levels
are provided and the relationships between them as well as with the classical concept
of qualification and the qualification introduced in [6] are shown. In particular, SRMs
having extended qualification in each one of the three levels and having zero or infinite
classical qualification are presented. Finally several implications of this theory in the
context of orders of convergence, converse results and maximal source sets for inverse
ill-posed problems, are shown.
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R. D. Spies, Instituto de Matemática Aplicada del Litoral, IMAL, CONICET-UNL, Güemes 3450,
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1. Introduction and preliminaries

Let X,Y be infinite dimensional Hilbert spaces and T : X → Y a bounded linear

operator. If R(T ), the range of T , is not closed it is well known that the linear operator

equation

Tx = y (1)

is ill-posed, in the sense that T †, the Moore-Penrose generalized inverse of T , is not

bounded [2]. The Moore-Penrose generalized inverse is strongly related to the least-

squares (LS) solutions of (1). In fact equation (1) has a LS solution if and only if y

belongs to D(T †), the domain of T †, which is defined as D(T †) .
= R(T ) ⊕ R(T )⊥. In

that case, x† .
= T †y is the best approximate solution (i.e. the LS solution of minimum

norm) and the set of all LS solutions of (1) is given by x† + N (T ). If the problem is

ill-posed, then x† does not depend continuously on the data y. Hence if instead of the

exact data y, only an approximation yδ is available, with
∥∥y − yδ

∥∥ ≤ δ, where δ > 0 is

the noise level or observation error, then it is possible that T †yδ does not exist or, if it

exists, then it will not necessarily be a good approximation of x†, even if δ is very small.

This instability becomes evident when trying to approximate x† by standard numerical

methods and procedures. Thus, for instance, except under rather restrictive conditions

([4], [12]), the application of the standard LS approximations procedure on a sequence

{Xn} of finite dimensional subspaces of X, whose union is dense in X, will result in a

sequence {xn} of LS approximating solutions which does not converge to x† (see [9]).

Moreover, this divergence can occur with arbitrarily large speed (see [10]).

Ill-posed problems must be regularized before pretending to successfully attack

the problem of numerically approximating their solutions. Regularizing an ill-posed

problem such as (1) essentially means approximating the operator T † by a parametric

family of continuous operators {Rα}, where α is called the regularization parameter.

More precisely, for α ∈ (0, α0) with α0 ∈ (0, +∞], let Rα : Y → X be a continuous (not

necessarily linear) operator. The set {Rα}α∈(0,α0) is said to be a “family of regularization

operators” (FRO) for T †, if for every y ∈ D(T †), there exists a parameter choice rule

α = α(δ, yδ) such that

lim
δ→0+

sup
yδ∈Y

‖yδ−y‖≤δ

∥∥Rα(δ,yδ)y
δ − T †y

∥∥ = 0.

Here the parameter choice rule α : IR+ × Y → (0, α0) is such that

lim
δ→0+

sup
yδ∈Y

‖yδ−y‖≤δ

α(δ, yδ) = 0.

If y ∈ D(T †), then x† satisfies the normal equation (T ∗T )x† = T ∗y and x† can be

written as

x† .
= T †y =

∫ ‖T‖2+

0

1

λ
dEλT

∗y, (2)
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where {Eλ}λ∈IR is the spectral family associated to the self-adjoint operator T ∗T (see [1],

[2]). However, since we are assuming thatR(T ) is not closed (and therefore D(T †) ( Y ),

if y /∈ D(T †) then the integral in (2) does not exist since in that case 0 ∈ σ(T ∗T ) and 1
λ

has a pole at 0. Moreover in this case, the operator T † defined in (2) for y ∈ D(T †), is not

bounded. For that reason, many regularization methods are based on spectral theory

and consist on defining Rα
.
=

∫ ‖T‖2+

0
gα(λ) dEλ T ∗ where {gα} is a family of functions

appropriately defined such that for every λ ∈ (0, ‖T‖2] there holds lim
α→0+

gα(λ) = 1
λ
.

Let {gα}α∈(0,α0) be a parametric family of functions gα : [0, +∞) → IR defined for

all α ∈ (0, α0). We shall say that {gα}α∈(0,α0) is a “spectral regularization method”

(SRM), if it satisfies the following hypotheses:

H1. For every fixed α ∈ (0, α0), gα(λ) is piecewise continuous with respect to λ, for

λ ∈ [0, +∞);

H2. There exists a constant C > 0 (independent of α) such that |λgα(λ)| ≤ C for

every λ ∈ [0, +∞);

H3. For every λ ∈ (0, +∞), lim
α→0+

gα(λ) = 1
λ
.

It can be shown that if {gα}α∈(0,α0) is a SRM then the family of operators

{Rα}α∈(0,α0) defined by

Rα
.
=

∫
gα(λ) dEλ T ∗ = gα(T ∗T )T ∗,

is a FRO for T † ([2], Theorem 4.1). In this case we shall say that {Rα}α∈(0,α0) is a

“spectral regularization family” for T †. The use of this terminology has to do with the

fact that each one of its elements is defined in terms of an integral with respect to the

spectral family {Eλ}λ∈IR associated to the operator T ∗T . Note that given the operator

T , it is sufficient that gα(λ) be defined for λ ∈ [0, ‖T‖2], since Eλ is “constant” outside

that interval.

It is well known that for ill-posed problems it is not possible to reconstruct the

exact solution x† with any degree of accuracy unless additional a-priori information

about x† is available ([10], [2] Proposition 3.11). On the other hand, given certain a-

priori information about x†, it could be desirable to know the best order of convergence

(of the regularization error
∥∥Rαy − x†

∥∥ as a function of the regularization parameter α,

or of the total error
∥∥Rαyδ − x†

∥∥ as a function of the noise level δ), that can be achieved

with a regularization method under those a-priori assumptions. Conversely, given an

order of convergence, one could be interested in determining the possible existence of

“source sets” on which a certain regularization method reaches that order of convergence.

In this case it could further be of interest to determine “maximal source sets”. All

these problems are strongly related to the concepts of qualification and saturation of a

regularization method ([2], [3], [5], [6], [7], [8]).

In [11] the notion of qualification of a regularization method was introduced for the

first time and the decisive role of this concept in relation to the order of convergence of

the regularization error was shown. In the sequel, we shall simply denote with {gα} the

SRM {gα}α∈(0,α0). We now recall the definition of classical qualification for SRMs (see
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[2]).

Definition 1.1. Let {gα} be a SRM and denote with I(gα) the set

I(gα)
.
= {µ ≥ 0 : ∀λ ∈ [0, +∞),∃ k > 0 such that λµ |1− λgα(λ)| ≤ k αµ , ∀α ∈ (0, α0)}

and let µ0
.
= sup

µ∈I(gα)

µ. If 0 < µ0 < +∞, we say that {gα} has classical qualification and

in that case the number µ0 is called “order” of the classical qualification.

Remark 1.1. Note that 0 ∈ I(gα) by virtue of H2 and therefore I(gα) is always

nonempty.

In [6] Mathé and Pereverzev first introduced the following definition of qualification

for a spectral regularization method, formalizing and extending the classical notion of

the concept.

Definition 1.2. Let ρ : (0, a] → (0,∞) be an increasing function. It is said that the

regularization method {gα} has qualification ρ if there exists a constant γ ∈ (0,∞) such

that

sup
λ∈(0,a]

|1− λgα(λ)| ρ(λ) ≤ γ ρ(α) ∀ α ∈ (0, a]. (3)

In this article we generalize the previous concept, mainly by allowing the function

ρ(λ) appearing in the left hand side of (3) to be substituted by a general function s(λ)

with similar properties.

Remark 1.2. It is important to point out that in [2] the “classical qualification”

of a method was defined to be the number µ0 in Definition 1.1 (even in the case

µ0 = ∞). However, from our point of view the “generalized qualification” of a method

will not be a number but rather a function of the regularization parameter α as an

order of convergence in the sense of Definition 1.2. In the case of SRMs with classical

qualification of positive finite order µ0, the corresponding generalized qualification will be

shown to be the function ρ(α) = αµ0, coinciding with the classical approach. Since in the

extreme cases µ0 = 0 and µ0 = ∞ that function does not define an order of convergence,

we have preferred to exclude them from the definition of classical qualification (Definition

1.1) and, accordingly, we shall say that the method does not have classical qualification.

The organization of this article is as follows. In Section 2 the concepts of weak

and strong source-order pair and of order-source pair are defined and three qualification

levels for SRM are introduced: weak, strong and optimal. A sufficient condition for

the existence of weak qualification is provided and necessary and sufficient conditions

for an order of convergence to be strong or optimal qualification are given. In Section

3, examples of all qualification levels are provided and the relationships between them

and with the classical qualification and the qualification introduced in [6] are shown.

In particular, SRMs having qualification in each one of the three levels and not having

classical qualification are presented. Finally several implications of this theory in the

context of orders of convergence, converse results and maximal source sets for inverse

ill-posed problems are shown in Section 4.
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2. Source-order and order-source pairs. Generalized qualification and

qualification levels.

It is well known that there exist SRMs for which the corresponding µ0 given in Definition

1.1 is infinity, e.g. truncated singular value decomposition (TSVD), Landweber’s

method and Showalter’s method. However, a careful analysis leads to observe that

the concept of qualification as optimal order of convergence of the regularization error

remains alive underlying most of these and many other methods. In this section we

generalize the definition of qualification introduced by Mathé-Pereverzev in [6] and

thereby the notion of classical qualification of a SRM. Also three different levels of

qualification are introduced: weak, strong and optimal. These levels introduce natural

hierarchical categories for the SRMs and we show that the generalized qualification

corresponds to the lowest of these levels. Moreover, a sufficient condition which

guarantees that a SRM possesses qualification in the sense of this generalization is

provided and necessary and sufficient conditions for a given order of convergence to be

strong or optimal qualification are found.

We denote with O the set of all non decreasing functions ρ : IR+ → IR+ such that

lim
α→0+

ρ(α) = 0 and with S the set of all continuous functions s : IR+
0 → IR+

0 satisfying

s(0) = 0 and such that s(λ) > 0 for every λ > 0. If moreover s is increasing, then it is

an index function in the sense of Mathé-Pereverzev ([6]).

Definition 2.1. Let ρ, ρ̃ ∈ O. We say that “ρ precedes ρ̃ at the origin” and we denote

it with ρ ¹ ρ̃, if there exist positive constants c and ε such that ρ(α) ≤ c ρ̃(α) for every

α ∈ (0, ε).

Definition 2.2. Let ρ, ρ̃ ∈ O. We say that “ρ and ρ̃ are equivalent at the origin” and

we denote it with ρ ≈ ρ̃, if they precede each other at the origin, that is, if there exist

constants ε, c1, c2, ε > 0, 0 < c1 < c2 < ∞ such that c1 ρ(α) ≤ ρ̃(α) ≤ c2 ρ(α) for every

α ∈ (0, ε).

Clearly, “≈” introduces an order of equivalence in O. Analogous definitions and

notation will be used for s, s̃ ∈ S.

Definition 2.3. Let {gα} be a SRM, rα(λ)
.
= 1− λgα(λ), ρ ∈ O and s ∈ S.

i) We say that (s, ρ) is a “weak source-order pair for {gα}” if it satisfies

s(λ) |rα(λ)|
ρ(α)

= O(1) for α → 0+, ∀ λ > 0. (4)

ii) We say that (s, ρ) is a “strong source-order pair for {gα}” if it is a weak source-

order pair and there is no λ > 0 for which O(1) in (4) can be replaced by o(1). That is,

if (4) holds and also

lim sup
α→0+

s(λ) |rα(λ)|
ρ(α)

> 0 ∀ λ > 0. (5)
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iii) We say that (ρ, s) is an “order-source pair for {gα}” if there exist a constant

γ > 0 and a function h : (0, α0) → IR+ with lim
α→0+

h(α) = 0, such that

s(λ) |rα(λ)|
ρ(α)

≥ γ ∀ λ ∈ [h(α), +∞). (6)

In the previous definitions we shall refer to the function ρ as the “order of

convergence” and to s as the “source function”. The reason for using this terminology

will become clear in Section 4 when we shall see applications of these concepts in the

context of direct and converse results for regularization methods.

The following observations follow immediately from the definitions.

(i) If (s, ρ) is a weak source-order pair for {gα} which is not a strong source-order pair,

then there exists λ0 > 0 such that lim sup
α→0+

s(λ0)|rα(λ0)|
ρ(α)

= 0 and therefore (ρ, s) cannot

be an order-source pair for {gα}. Thus if (ρ, s) is an order-source pair and (s, ρ)

is a weak source-order pair, then (s, ρ) is further a strong source-order pair in the

sense of ii).

(ii) Let ρ, ρ̃ ∈ O.

(a) If (s, ρ) is a weak source-order pair for {gα} and ρ ¹ ρ̃ then (s, ρ̃) is also a

weak source-order pair for {gα}.
(b) If (s, ρ) is a weak source-order pair for {gα} and s̃ ∈ S is such that there

exists c > 0 for which s̃(λ) ≤ c s(λ) for every λ > 0, then (s̃, ρ) is also a weak

source-order pair for {gα}.
In the following definition we introduce the concept of generalized qualification and

three different levels of it.

Definition 2.4. Let {gα} be a SRM.

i) We say that ρ is “weak or generalized qualification of {gα}” if there exists a

function s such that (s, ρ) is a weak source-order pair for {gα}.
ii) We say that ρ is “strong qualification of {gα}” if there exists a function s such

that (s, ρ) is a strong source-order pair for {gα}.
iii) We say that ρ is “optimal qualification of {gα}” if there exists a function s

such that (s, ρ) is a strong source-order pair for {gα} (it is sufficient that (s, ρ) be a

weak source-order pair) and (ρ, s) is an order-source pair for {gα}.
It is important to observe that weak qualification generalizes the concept of

qualification introduced by Mathé and Pereverzev in [6] and therefore, the notion of

classical qualification. In fact, if {gα} has continuous qualification ρ(α) in the sense of

Definition 1.2 and lim
α→0+

ρ(α) = 0, then the function

ρ̃(α)
.
=





0, si α = 0;

ρ(α), si 0 < α ≤ a;

ρ(a), si α > a.

(7)
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is weak qualification of {gα}. However, these two notions are not equivalent. We shall

see later on that it is possible for a function to be weak qualification of a SRM and not

be qualification according to Definition 1.2 (see comments at the end of Section 3).

It is timely to note here that if {gα} has classical qualification of order µ0, then

ρ(α) = αµ is weak qualification of {gα} and moreover (λµ, αµ) is a weak source-order pair

for {gα} for every µ ∈ (0, µ0]. Conversely, if for µ > 0, (λµ, αµ) is a weak source-order

pair for {gα}, then this method has classical qualification (of order µ0 ≥ µ) provided

that µ0
.
= sup {µ : (λµ, αµ) is a weak source-order pair for {gα}}< +∞.

The following result provides a sufficient condition for the existence of weak

qualification of a SRM.

Theorem 2.1. Let {gα} be a SRM such that for every fixed λ > 0, gα(λ) is decreasing

in α, for α ∈ (0, α0).

a) If there exist an increasing function h : (0, α0) → IR+ with lim
α→0+

h(α) = 0, ρ∗ ∈ O
and ε > 0 such that for every α ∈ (0, ε),

sup
λ∈[h(α),+∞)

|rα(λ)| ≤ ρ∗(α), (8)

then {gα} has weak qualification and in that case ρ∗ is weak qualification of the method.

b) If for every α ∈ (0, α0), rα(λ) is positive and monotone decreasing for λ ∈
(0, +∞), then it is always possible to find h and ρ∗ as in a) satisfying (8) for all

α ∈ (0, α0).

Proof. a) Let h : (0, α0) → IR+ be an increasing function with lim
α→0+

h(α) = 0, ρ∗ ∈ O
and ε > 0 such that for every α ∈ (0, ε) condition (8) holds.

Case I: there exists α̃ ∈ (0, ε) such that sup
λ∈ [h(α̃), +∞)

|rα̃(λ)| > 0.

Since h(α) is increasing, it follows that sup
λ∈ [h(α), +∞)

|rα(λ)| > 0 for every α ∈ (0, α̃].

Let λ0 > 0. Then for every α ∈ (0, α̃],

|rα(λ0)|
ρ∗(α)

≤ |rα(λ0)|
sup

λ∈[h(α),+∞)

|rα(λ)| . (9)

Since lim
α→0+

h(α) = 0, there exists α∗ ∈ (0, α̃) such that λ0 ∈ [h(α), +∞) for every

α ∈ (0, α∗], from which it follows that for every α ∈ (0, α∗],

|rα(λ0)|
sup

λ∈[h(α),+∞)

|rα(λ)| ≤ 1. (10)

¿From (9) and (10) it follows that for every λ0 > 0

lim sup
α→0+

|rα(λ0)|
ρ∗(α)

≤ 1.

Then, for any bounded s ∈ S the pair (s, ρ∗) satisfies (4), i.e., it is a weak source-order

pair for {gα}. Thus we have proved that ρ∗ is weak qualification of {gα}.
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Case II: sup
λ∈[h(α),+∞)

|rα(λ)| = 0 for every α ∈ (0, ε).

Let λ0 > 0. Since lim
α→0+

h(α) = 0, there exists α∗ ∈ (0, ε) such that λ0 ∈ [h(α), +∞)

for every α ∈ (0, α∗]. Then |rα(λ0)| ≤ sup
λ∈[h(α),+∞)

|rα(λ)| = 0 for every α ∈ (0, α∗), from

what it follows that rα(λ0) = 0. Then, for any s ∈ S,

s(λ0)rα(λ0)

ρ∗(α)
= 0 for all α ∈ (0, α∗).

Therefore, (s, ρ∗) is a weak source-order pair for {gα}, which implies that ρ∗ is weak

qualification of {gα}. (Note that in this case any ρ∗ ∈ O is weak qualification of {gα}.)
b) Let {gα} be a SRM such that for every α ∈ (0, α0), rα(λ) is positive and

monotone decreasing for λ ∈ (0, +∞). For λ > 0 we define f(λ)
.
= (1− e−λ)θ(λ), where

θ(λ)
.
= sup{γ ∈ (0, α0) : rα(λ) ≤ λ ∀ α ∈ (0, γ)}.

Since for every λ > 0, lim
α→0+

rα(λ) = 0, it follows that given λ > 0 there exists

γ = γ(λ) > 0 such that rα(λ) ≤ λ for every α ∈ (0, γ). Then θ(λ) 6= −∞, moreover

θ(λ) ∈ (0, α0] for every λ > 0 and therefore, f(λ) ∈ (0, α0) for every λ > 0. On the other

hand, since for every α ∈ (0, α0), rα(λ) is decreasing for λ > 0, it follows immediately

that f is strictly increasing. Furthermore, since f is bounded, it has countably many

jump discontinuity points. Therefore, it is possible to assume, without loss of generality,

that f is continuous (since, if it is not, we can redefine it in such a way that it be

continuous, by subtracting the jumps at the discontinuity points).

Thus f : IR+ → (0, α0) is continuous, strictly increasing with lim
λ→0+

f(λ) = 0.

Therefore, its inverse function f−1 exists over the range of f and it is strictly increasing

and continuous with lim
α→0+

f−1(α) = 0. It is possible to extend f−1 to (0, α0) in such a

way that it preserves all these properties. We shall denote with h this extension.

For α ∈ (0, α0), we define z(α)
.
= sup

λ∈[h(α),+∞)

|rα(λ)| = rα(h(α)). Since for every

α ∈ (0, α0), rα(λ) is positive for all λ > 0, it follows that z(α) is also positive. Since

for every λ > 0, f(λ) < θ(λ), the definition of θ(λ) implies that rf(λ)(λ) ≤ λ for every

λ > 0, or equivalently, rα(h(α)) ≤ h(α) for every α ∈ (0, α0). Then 0 < z(α) ≤ h(α)

for every α ∈ (0, α0) and the fact that lim
α→0+

h(α) = 0 implies that lim
α→0+

z(α) = 0. If

further z is a non decreasing function, then z ∈ O and it suffices to define ρ∗ .
= z. On

the contrary, since z is bounded and positive with lim
α→0+

z(α) = 0, there always exists a

function ρ∗ ∈ O such that z(α) ≤ ρ∗(α) for every α ∈ (0, α0), as we wanted to show. ¥

¿From the previous Theorem, it follows that the SRMs {gα} such that for every

λ > 0, gα(λ) is decreasing for α ∈ (0, α0) and for every α ∈ (0, α0), rα(λ) is positive

and decreasing for λ > 0, do possess weak qualification. It is important to observe that

most of the usual SRMs do in fact satisfy these conditions. In particular this is so for

Landweber’s and Showalter’s methods.
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Now given the SRM {gα} and ρ ∈ O, we define

sρ(λ)
.
= lim inf

α→0+

ρ(α)

|rα(λ)| for λ ≥ 0. (11)

Note that sρ(0) = 0.

In the next three results we will see that the characteristics of a given function

ρ ∈ O, as a possible strong or optimal qualification of a SRM, can be determined from

properties of that function sρ.

Proposition 2.1. (Necessary and sufficient condition for strong qualification.) A

function ρ ∈ O such that sρ ∈ S is strong qualification of {gα} if and only if

0 < sρ(λ) < +∞ for every λ > 0. (12)

Proof. Suppose that ρ is strong qualification of {gα}. Then there exists a function s ∈ S
such that (s, ρ) is a strong source-order pair for {gα}. Then, for every λ > 0,

sρ(λ) = lim inf
α→0+

ρ(α)

|rα(λ)| =
1

lim sup
α→0+

|rα(λ)|
ρ(α)

=
s(λ)

lim sup
α→0+

s(λ)|rα(λ)|
ρ(α)

.

Thus (12) follows from (4) and (5).

Conversely, suppose now that 0 < sρ(λ) < +∞ for every λ > 0. We will show that

ρ is strong qualification of {gα}. For that let us see that (sρ, ρ) is a strong source-order

pair for {gα}. Since 0 < sρ(λ) < +∞ for every λ > 0, it follows that

lim sup
α→0+

sρ(λ) |rα(λ)|
ρ(α)

= sρ(λ) lim sup
α→0+

|rα(λ)|
ρ(α)

= 1 ∀ λ > 0.

Then, sρ verifies (4) and (5), which, together with the fact that sρ ∈ S, implies that

(sρ, ρ) is a strong source-order pair and thus ρ is strong qualification of {gα}. ¥

Proposition 2.2. Let ρ ∈ O be strong qualification of {gα} and s ∈ S. Then (s, ρ) is a

strong source-order pair for {gα} if and only if there exists k > 0 such that s(λ) ≤ k sρ(λ)

for every λ > 0.

Proof. Since ρ is strong qualification, by Proposition 2.1 it follows that sρ(λ) > 0 for

every λ > 0 . Suppose now that (s, ρ) is a strong source-order pair for {gα}. Then there

exist positive constants k and ε such that s(λ)|rα(λ)|
ρ(α)

≤ k for every λ > 0, α ∈ (0, ε).

Then, for every λ > 0

s(λ)

sρ(λ)
= s(λ) lim sup

α→0+

|rα(λ)|
ρ(α)

= lim sup
α→0+

s(λ) |rα(λ)|
ρ(α)

≤ k,

and therefore s(λ) ≤ k sρ(λ) for every λ > 0.

Conversely, suppose that there exists k > 0 such that s(λ) ≤ k sρ(λ) for every

λ > 0. Since sρ(λ) > 0, it then follows that

k ≥ s(λ)

sρ(λ)
= lim sup

α→0+

s(λ) |rα(λ)|
ρ(α)

∀ λ > 0,
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that is, (s, ρ) is a weak source-order pair for {gα}. Moreover since s(λ) and sρ(λ) are

positive for all λ > 0, it follows that s(λ) verifies (5) and therefore (s, ρ) is, furthermore,

a strong source-order pair for {gα}. ¥

Theorem 2.2. (Necessary and sufficient condition for optimal qualification.) A

function ρ ∈ O such that sρ ∈ S is optimal qualification of {gα} if and only if sρ

verifies (6) and (12).

Proof. Suppose that ρ is optimal qualification. Then ρ is strong qualification and

it follows from Proposition 2.1 that sρ verifies (12). Moreover since ρ is optimal

qualification, there exists s ∈ S such that (s, ρ) is a strong source-order pair and (ρ, s)

is an order-source pair. From the latter it follows that there exist a constant γ > 0 and

a function h : (0, α0) → IR+ with lim
α→0+

h(α) = 0, such that

s(λ) |rα(λ)|
ρ(α)

≥ γ ∀ λ ∈ [h(α), +∞). (13)

On the other hand, since (s, ρ) is a strong source-order pair for {gα}, it follows from

Proposition 2.2 that there exists k > 0 such that

s(λ) ≤ k sρ(λ) for every λ > 0. (14)

¿From (13) and (14) it follows that

sρ(λ) |rα(λ)|
ρ(α)

≥ γ

k
∀ λ ∈ [h(α), +∞),

that is, sρ satisfies (6) as we wanted to show.

Conversely, suppose that sρ ∈ S verifies (6) and (12). By Proposition 2.1 we have

that (sρ, ρ) is a strong source-order pair for {gα} and (6) implies that (ρ, sρ) is an

order-source pair. Then, ρ is optimal qualification of {gα}. ¥

Next we will show the uniqueness of the source function.

Theorem 2.3. If ρ is optimal qualification of {gα} then there exists at most one function

s (in the sense of the equivalence classes induced by Definition 2.2) such that (s, ρ) is a

strong source-order pair and (ρ, s) is an order-source pair for {gα}. Moreover if sρ ∈ S,

then sρ is such a unique function.

Proof. Given that ρ is optimal qualification of {gα}, there exists at least one function s

such that (s, ρ) is a strong source-order pair and (ρ, s) is an order-source pair for {gα}.
Suppose now that there exist s1 and s2 such that (s1, ρ) and (s2, ρ) are strong source-

order pairs and (ρ, s1) and (ρ, s2) are order-source pairs for {gα}. Then there exist γ > 0

and a function h : (0, α0) → IR+ with lim
α→0+

h(α) = 0, such that s2(λ)|rα(λ)|
ρ(α)

≥ γ for every

λ ∈ [h(α), +∞). Then,

s1(λ) =

s1(λ)s2(λ)|rα(λ)|
ρ(α)

s2(λ)|rα(λ)|
ρ(α)

≤ s2(λ)

γ

s1(λ) |rα(λ)|
ρ(α)

∀λ ∈ [h(α), +∞),∀α ∈ (0, α0). (15)
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On the other hand, since (s1, ρ) is a strong source-order pair, there exist positive

constants k and ε such that

s1(λ) |rα(λ)|
ρ(α)

≤ k ∀λ > 0,∀α ∈ (0, ε). (16)

¿From (15) and (16) it follows that

s1(λ) ≤ k

γ
s2(λ) ∀λ ∈ [h(α), +∞),∀α ∈ (0, ε).

Since lim
α→0+

h(α) = 0 we have that s1(λ) ≤ k
γ

s2(λ) for every λ > 0. Analogously, by

interchanging s1 and s2 it follows that there exists k̃ > 0 such that s2(λ) ≤ k̃ s1(λ) for

every λ > 0 and therefore, s1 ≈ s2.

Suppose now that sρ ∈ S. Since ρ is optimal qualification of {gα} it follows from

Theorem 2.2 that sρ verifies (6) and (12). Then, sρ is the unique function such that

(sρ, ρ) is a strong source-order pair and (ρ, sρ) is an order-source pair for {gα}. ¥

The following is a result about the uniqueness of the order.

Theorem 2.4. If (s, ρ1) and (s, ρ2) are strong source-order pairs for {gα} and there

exists lim
α→0+

ρ1(α)
ρ2(α)

, then ρ1 ≈ ρ2.

Proof. Suppose that (s, ρ1) and (s, ρ2) are strong source-order pairs for {gα}. We will

first show that lim sup
α→0+

ρ1(α)
ρ2(α)

> 0. Suppose that

lim sup
α→0+

ρ1(α)

ρ2(α)
= 0. (17)

Since (s, ρ1) is a strong source-order pair we have that

s(λ) |rα(λ)|
ρ1(α)

= O(1) for α → 0+, ∀ λ > 0 (18)

and

0 < lim sup
α→0+

s(λ) |rα(λ)|
ρ2(α)

= lim sup
α→0+

s(λ) |rα(λ)|
ρ1(α)

ρ1(α)

ρ2(α)
.

It follows from (17) and (18) that the lim sup on the right-hand side of the previous

expression must be equal to zero, which is a contradiction. Then, lim sup
α→0+

ρ1(α)
ρ2(α)

> 0.

Similarly, it is shown that lim sup
α→0+

ρ2(α)
ρ1(α)

> 0. Since there exists lim
α→0+

ρ1(α)
ρ2(α)

, we then have

that 0 < lim
α→0+

ρ1(α)
ρ2(α)

< +∞ and 0 < lim
α→0+

ρ2(α)
ρ1(α)

< +∞. Then, ρ1 ¹ ρ2 and ρ2 ¹ ρ1, that

is, ρ1 ≈ ρ2, as we wanted to show. ¥
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3. Examples

In this section we present several examples which illustrate the different qualification

levels previously introduced as well as the relationships between them and with the

concept of classical qualification and the qualification introduced in [6]. Although some

of these examples are only of academic interest and nature, they do serve to show the

existence of regularization methods possessing qualification in each one of the levels

introduced in this article.

Example 1. Tikhonov-Phillips regularization method {gα}, where gα(λ)
.
= 1

λ+α

has classical qualification of order µ0 = 1 ([2]). We will see that ρ(α) = α is optimal

qualification in the sense of Definition 2.4 iii). In fact, for λ > 0, rα(λ) = α
α+λ

and if

ρ(α) = α then sρ(λ) = lim inf
α→0+

ρ(α)
|rα(λ)| = lim

α→0
(λ + α) = λ > 0, that is, sρ verifies (12). Also

since

sρ(λ) |rα(λ)|
ρ(α)

=
λ

λ + α
≥ 1

2
∀ λ ∈ [α, +∞),

we have that sρ verifies (6). From Theorem 2.2 it then follows that ρ(α) = α is optimal

qualification of {gα}.
Example 2. Let {gα} be the family of functions associated to the truncated

singular value decomposition (TSVD),

gα(λ)
.
=

{
1
λ
, if λ ∈ [α, +∞)

0, if λ ∈ [0, α).

It follows that µ0 = +∞, where µ0 is as in Definition 1.1. Therefore, TSVD does not

have classical qualification. In this case we have that

rα(λ) =

{
0, if λ ∈ [α, +∞)

1, if λ ∈ [0, α).

Let h(α) = α and ρ ∈ O. Then

sup
λ∈[h(α),+∞)

|rα(λ)| = sup
λ≥α

|rα(λ)| = 0 ≤ ρ(α) for every α ∈ (0, α0).

Then, it follows from Theorem 2.1.a) that any function ρ ∈ O is weak qualification

of the method. However, TSVD does not have strong qualification. In fact, for any

function ρ ∈ O we have that sρ(λ) = lim inf
α→0+

ρ(α)
|rα(λ)| = +∞ for every λ > 0. Proposition

2.1 implies then that ρ is not strong qualification of the method. In [6] it was observed

that TSVD has arbitrary qualification in the sense of Definition 1.2.

Example 3. For α ∈ (0, α0) we define

gα(λ)
.
=

1− e−
1
α

λ + e−
1
α

, for every λ ∈ [0, +∞).
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It can be immediately verified that {gα} satisfies the hypotheses H1-H3 and therefore

is a SRM. Since rα(λ) = 1+λ

1+λ e
1
α

for all λ ∈ [0, +∞), it follows that for every µ > 0,

|rα(λ)|λµ

αµ
=

(1 + λ)λµ

λ e
1
α αµ + αµ

= o(1) for α → 0+ for every λ ∈ [0, +∞).

Then, {gα} does not have classical qualification (more precisely µ0 = +∞, where µ0 is

as in Definition 1.1).

We will now show that ρ(α) = e−
1
α is optimal qualification of {gα}. Since

sρ(λ) = lim inf
α→0+

ρ(α)
|rα(λ)| = λ

1+λ
∈ (0, +∞) for every λ > 0, it follows from Proposition

2.1 that ρ is strong qualification of {gα}. Moreover since

sρ(λ) |rα(λ)|
ρ(α)

=
λ

λ + e−
1
α

≥ 1

2
∀ λ ∈ [e−

1
α , +∞),

it follows that sρ verifies (6). Theorem 2.2 then implies that ρ(α) = e−
1
α is optimal

qualification of {gα}.
Example 4. For α ∈ (0, α0) with α0 < e−1, define

gα(λ)
.
=

1 + (ln α)−1

λ− (ln α)−1
, for every λ ∈ [0, +∞).

Clearly, {gα} satisfies hypotheses H1-H3 and therefore is a SRM. Since rα(λ) = 1+λ
1−λ ln α

for all λ ∈ [0, +∞), it follows that for every µ > 0,

|rα(λ)|λµ

αµ
=

(1 + λ)λµ

αµ − λ αµ ln α
→ +∞ for α → 0+ for every λ ∈ [0, +∞).

Then, µ0 = 0 and therefore {gα} does not have classical qualification.

However, we will show that ρ(α) = −(ln α)−1 is optimal qualification of {gα}. In

fact, since sρ(λ) = lim inf
α→0+

ρ(α)
|rα(λ)| = lim

α→0

λ−(ln α)−1

1+λ
= λ

1+λ
∈ (0, +∞) for every λ > 0 and

sρ(λ) |rα(λ)|
ρ(α)

=
λ

λ− (ln α)−1
≥ 1

2
∀ λ ∈ [−(ln α)−1, +∞),

it follows from Theorem 2.2 that ρ(α) = −(ln α)−1 is optimal qualification of {gα}.
Example 5. Let {gα} be the Tikhonov-Phillips regularization method, which, as

previously mentioned, it has classical qualification of order µ0 = 1. In Example 1 we

saw that ρ(α) = α is optimal qualification of this method and therefore it is also weak

qualification of it. Since α ¹ α
1
2 it follows from Definition 2.4.i) and Observation 2.a)

that ρ∗(α) = α
1
2 is also weak qualification. However, ρ∗ is not strong qualification of

the method. In fact, for any s ∈ S, we have that

lim sup
α→0+

s(λ) |rα(λ)|
ρ∗(α)

= lim sup
α→0+

s(λ) α
1
2

α + λ
= 0 ∀ λ > 0.

Example 6. Let {gα} be the SRM defined in Example 4. This method does

not have classical qualification since µ0 = 0. We proved that −(ln α)−1 is optimal

qualification and therefore, it is also weak qualification. Since −(ln α)−1 ¹ (− ln α)−
1
2 ,
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just like in the previous example, it follows immediately that ρ(α) = (− ln α)−
1
2 is weak

qualification. Let us show now that ρ is not strong qualification of the method. For any

s ∈ S, we have that

lim sup
α→0+

s(λ) |rα(λ)|
ρ(α)

= lim sup
α→0+

s(λ) (1 + λ)

(1− λ ln α) (− ln α)−
1
2

= 0 ∀ λ > 0.

It is important to observe that if ρ(α) = αµ is strong qualification of a SRM then

it follows immediately from the definition of strong source-order pair that the method

has classical qualification of order µ. The converse, however, is not true as the next

example shows. Hence it is the weak and not the strong qualification what generalizes

the classical notion of this concept.

Example 7. For α ∈ (0, α0) with α0 < 1/2 define

hα(λ)
.
=

α

α + ln( α
α+λ

)

and

gα(λ)
.
=





1−hα(λ)
λ+hα(λ)

, if λ ∈ [2α, +∞)

1−hα(2α)
2α+hα(2α)

=
(
2α− α+2α2

ln 3

)−1

, if λ ∈ [0, 2α).

In this case,

rα(λ)
.
=





α(1+λ)
λ ln( α

α+λ
)+α(1+λ)

, if λ ∈ [2α, +∞)

1− λ
(
2α− α+2α2

ln 3

)−1

, if λ ∈ [0, 2α).

One can immediately show that {gα} is a SRM with classical qualification of order

µ0 = 1. However, ρ(α) = α is not strong qualification of the method. In fact, for any

s ∈ S, we can see that

s(λ) |rα(λ)|
α

= o(1) for α → 0+, ∀ λ ≥ 0

and therefore condition (5) is not satisfied.

SRMs possessing strong but not optimal qualification, have very peculiar properties.

Thus for instance, it is possible to show that if ρ is strong qualification which is not

optimal, then ∀λ > 0, the function sρ(λ)|rα(λ)|
ρ(α)

it is not of bounded variation as a function

of α in any neighborhood of α = 0. Even so, the following three examples show the

existence of SRM having strong but not optimal qualification and they show that strong

qualification in no case implies optimal qualification.

Example 8. Given k ∈ IR+, for α, λ > 0 define

gk
α(λ)

.
= λ−1(1− e−

λ
α )− αkλ−3/2

∣∣∣sin(λ
3
2 /α)

∣∣∣ ,
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so that rk
α(λ) = e−

λ
α + αkλ−1/2

∣∣∣sin(λ
3
2 /α)

∣∣∣ . It can be immediately checked that {gk
α} is

a SRM with classical qualification of order k. With ρ(α) = αk we have that ∀λ > 0,

sρ(λ) = lim inf
α→0+

αk

e−
λ
α + αkλ−1/2

∣∣∣sin(λ
3
2 /α)

∣∣∣

=
1

lim sup
α→0+

(
α−ke−

λ
α + λ−1/2

∣∣∣sin(λ
3
2 /α)

∣∣∣
)

= λ1/2.

Since sρ(λ) = λ1/2 ∈ S, from Proposition 2.1 it follows that (sρ, ρ) is a strong source-

order pair and ρ(α) = αk is strong qualification of the method. However, for every

λ > 0,

lim inf
α→0+

sρ(λ) |rα(λ)|
ρ(α)

= lim inf
α→0+

[
λ1/2α−ke−

λ
α +

∣∣∣∣∣sin
(

λ
3
2

α

)∣∣∣∣∣

]
= 0.

Therefore equation (6) does not hold and ρ(α) = αk is not optimal qualification of the

method.

Example 9. For α, λ > 0 define gα(λ) as follows:

gα(λ)
.
= λ−1(1− e−

λ
α )− e

− 1√
α λ−3/2

∣∣∣sin(λ
3
2 /α)

∣∣∣ ,

so that

rα(λ) = e−
λ
α + e

− 1√
α λ−1/2

∣∣∣sin(λ
3
2 /α)

∣∣∣ .

It can be immediately verified that {gα} is a SRM which does not have classical

qualification (µ0 = ∞). However, with ρ(α)
.
= e

− 1√
α we have that

sρ(λ) = lim inf
α→0+

ρ(α)

rα(λ)

=
1

lim sup
α→0+

[
e
− λ

α
+ 1√

α + λ−1/2| sin(λ
3
2 /α)|

]

= λ
1
2 .

Since sρ(λ) = λ1/2 ∈ S, by Proposition 2.1 (sρ, ρ) is a strong source-order pair and

ρ(α) = e−1/
√

α is strong qualification of the method. However, ∀λ > 0 we have that

lim inf
α→0+

sρ(λ)|rα(λ)|
ρ(α)

= lim inf
α→0+

(
λ1/2e

1√
α
− λ

α + | sin(λ
3
2 /α)|

)
= 0,

and therefore (6) does not hold and ρ(α) = e
− 1√

α is not optimal qualification of the

method.

Example 10. For 0 < α < 1 and λ > 0 define

gα(λ)
.
= λ−1(1− e−

λ
α ) + (ln α)−1λ−3/2

∣∣∣sin(λ
3
2 /α)

∣∣∣ ,
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so that

rα(λ) = e−
λ
α − (ln α)−1λ−1/2

∣∣∣sin(λ
3
2 /α)

∣∣∣ .

Just like in Examples 8 and 9 it can be easily checked that {gα} is a SRM which

does not have classical qualification (µ0 = 0), that ρ(α) = −1
ln α

is strong but not optimal

qualification of the method and that (sρ, ρ) is a strong source-order pair with sρ(λ) = λ
1
2 .

Note that examples 2, 3, 4, 6, 9 and 10 correspond to SRMs which do not have

classical qualification but, however, they do have generalized qualification, falling in

some of its three different levels. Also Landweber’s method and Showalter’s method,

which as previously pointed out do not have classical qualification (in both cases

µ0 = ∞), are SRMs defined by gα(λ)
.
= 1

λ
(1− (1− µλ)

1
α ) (where α ≤ 1, µ < 1

‖T‖2 ) and

gα(λ)
.
= 1

λ
(1 − e−

λ
α ), respectively. It can be easily proved, by using Theorem 2.1, that

ρ(α) = (1−µα
1
2 )

1
α is weak qualification of Landweber’s method and ρ(α) = e

− 1√
α is weak

qualification of Showalter’s method. However, in this last case it can be easily shown

that ρ(α) = e
− 1√

α does not satisfy condition (3) and therefore ρ(α) is not qualification

in the sense of Definition 1.2.

The different qualification levels introduced in this article and the relationships

between them are visualized in Figure 1.

4. Orders of convergence, converse results and maximal source sets

The generalization of the concept of qualification of a SRM introduced in the previous

sections is strongly related with and it has a broad spectrum of applications in the

context of orders of convergence, converse results and maximal source sets for inverse

ill-posed problems. We present next some results in this direction. However, we point

out that this is not the main objective of the present article. For that reason, some of

this results will be stated without proof. More detailed results in this regard will appear

in a forthcoming article.

Let X, Y be infinite dimensional Hilbert spaces and T : X → Y a bounded, linear

invertible operator such that R(T ) is not closed. For s ∈ S, the set R(s(T ∗T )), will

be referred to as the “source set associated to the function s and the operator T”. In

all that follows, the hypothesis s ∈ S can be replaced by s continuous on σ(T ∗T ) and

s ∈ M0, where M0 is the set of all functions f : IR → IR+
0 which are measurable with

respect to the measures d ‖Eλx‖2 for every x ∈ X.

The following direct result, whose proof follows immediately from the concept of

weak source-order pair, states that if the exact solution x† of the problem Tx = y

belongs to the source set R(s(T ∗T )) and (s, ρ) is a weak source-order pair for {gα},
then the regularization error

∥∥Rαy − x†
∥∥ has order of convergence ρ(α). For brevity

reasons we do not give the proof here.
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Figure 1. Relationships between the different qualification levels, the classical
qualification and the qualification defined in [6].

Theorem 4.1. Let ρ ∈ O be weak qualification of {gα} and s ∈ S such that (s, ρ) is

a weak source-order pair for {gα}. If x† .
= T †y ∈ R(s(T ∗T )) then

∥∥(Rα − T †)y
∥∥ =

O(ρ(α)) for α → 0+.

It is important to note here that the previous result can be viewed as a

generalization of Theorem 4.3 in [2], to the case of SRM with weak qualification and

general source sets. In fact, that result corresponds to the particular case in which {gα}
has classical qualification of order µ.
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The following converse result states that if the regularization error has order of

convergence ρ(α) and (ρ, s) is an order-source pair, then the exact solution belongs to

the source set given by the range of the operator s(T ∗T ).

Theorem 4.2. If (ρ, s) is an order-source pair for {gα} and
∥∥(Rα − T †)y

∥∥ = O(ρ(α))

for α → 0+, then x† ∈ R(s(T ∗T )).

Proof. The proof follows immediately from the definition of order-source pair for the

SRM {gα}. ¥

It is interesting to note that Theorem 4.2 can also be viewed as a generalization of

Theorem 4.11 in [2]. In fact, this corresponds to the particular case in which s(λ)
.
= λµ

y ρ(α)
.
= αµ. If moreover ρ is optimal qualification then the reciprocal of Theorem 4.2

also holds. This is proved in the following theorem.

Theorem 4.3. If ρ is optimal qualification of {gα} and sρ ∈ S, then
∥∥(Rα − T †)y

∥∥ =

O(ρ(α)) for α → 0+ if and only if x† ∈ R(sρ(T
∗T )).

Proof. Let ρ be optimal qualification of {gα} and sρ ∈ S. Then by Theorem 2.3, (ρ, sρ)

is an order-source pair for {gα} and since
∥∥(Rα − T †)y

∥∥ = O(ρ(α)) for α → 0+, it

follows from Theorem 4.2 that x† ∈ R(sρ(T
∗T )).

Conversely, if x† ∈ R(sρ(T
∗T )), since by virtue of Theorem 2.3 (sρ, ρ) is a strong

source-order pair, Theorem 4.1 implies that
∥∥(Rα − T †)y

∥∥ = O(ρ(α)) for α → 0+. ¥

An important result regarding existence and maximality of source sets is the

following: if ρ is strong qualification of a SRM and sρ ∈ S it follows from Proposition

2.2 that R(sρ(T
∗T )) is a maximal source set where ρ is order of convergence of the

regularization error. More precisely we have the following result.

Theorem 4.4. Let ρ ∈ O be strong qualification of {gα} such that sρ ∈ S and s ∈ S.

If (s, ρ) is a strong source-order pair for {gα} and R(s(T ∗T )) ⊃ R(sρ(T
∗T )) then

R(s(T ∗T )) = R(sρ(T
∗T )).

Proof. Under the hypotheses of the Proposition 2.2, there exists k > 0 such that

s(λ) ≤ k sρ(λ) for every λ > 0, which implies that R(s(T ∗T )) ⊂ R(sρ(T
∗T )). ¥

If moreover ρ is optimal qualification the following stronger result is obtained.

Theorem 4.5. If ρ ∈ O is optimal qualification of {gα} and sρ ∈ S, then R(sρ(T
∗T ))

is the only source set where ρ is order of convergence of the regularization error of {gα}.
Proof. This result follows immediately from Theorem 2.3. ¥

Examples:

1. For the Tikhonov-Phillips regularization method the only source set where

ρ(α) = α is optimal qualification is R(sρ(T
∗T )) = R(T ∗T ), since in this case sρ(λ) = λ.
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2. In Example 3 of Section 3 we saw that ρ(α) = e−
1
α is optimal qualification of

{gα} and sρ(λ) = λ
1+λ

. Since λ
1+λ

≈ λ it follows that R(sρ(T
∗T )) = R(T ∗T ) is the only

source set where ρ is order of convergence of the regularization error.

3. In Example 8 of the previous section, for ρ(α) = αk we have that sρ(λ) = λ1/2.

Since ρ is strong qualification of this SRM, it follows that R(sρ(T
∗T )) = R(T ∗T )1/2 is

a maximal source set where ρ(α) is order of convergence of the regularization error.

4. As pointed out at the end of Section 3, ρ(α) = e
− 1√

α is weak qualification of

Showalter’s method. It can be easily shown that for every s ∈ S, (s, ρ) is a weak source-

order pair for the method. Therefore, it follows from Theorem 4.1 that the regularization

error
∥∥Rαy − x†

∥∥ has order of convergence ρ(α) = e
− 1√

α whenever x† ∈ ⋃
s∈S
R(s(T ∗T )).

5. Same as 4. happens with Landweber’s method and ρ(α) = (1− µ
√

α )
1
α .

5. Conclusions

In this article we have extended the definition of qualification for spectral regularization

methods introduced by Mathé and Pereverzev in [6]. This extension was constructed

bearing in mind the concept of qualification as the optimal order of convergence of the

regularization error that a method can achieve ([2], [5], [6], [11]). Three different levels

of generalized qualification were introduced: weak, strong and optimal. In particular,

the first of these levels extends the definition introduced in [6] and a SRM having

weak qualification which is not qualification in the sense of Definition 1.2 was shown.

Sufficient conditions for a SRM to have weak qualification were provided, as well as

necessary and sufficient conditions for a given order of convergence to be strong or

optimal qualification. Examples of all three qualification levels were provided and

the relationships between them as well as with the classical concept of qualification

and the qualification introduced in [6] were shown. Several SRMs having generalized

qualification in each one of the three levels and not having classical qualification were

presented. In particular, it was shown that the well known TSVD, Showalter’s and

Landweber’s methods do have weak qualification. Finally several implications of this

theory in the context of orders of convergence, converse results and maximal source

sets for inverse ill-posed problems, were briefly shown. More detailed results on these

implications will appear in a forthcoming article.
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