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Abstract. A standard engineering procedure for approximating the solutions of an
infinite-dimensional inverse problem of the form Ax = y, where A is a given compact
linear operator on a Hilbert space X and y is the given data, is to find a sequence
{XN} of finite-dimensional approximating subspaces of X whose union is dense in X

and to construct the sequence {xN} of least squares solutions of the problem in XN .
In [1], Seidman showed that if the problem is ill-posed, then, without any additional
assumptions on the exact solution or on the sequence of approximating subspaces XN ,
it cannot be guaranteed that the sequence {xN} will converge to the exact solution.
In this article this result is extended in the following sense: it is shown that if X is
separable, then for any y ∈ X, y 6= 0 and for any arbitrarily given function s : IN → IR+

there exists an injective, compact linear operator A and an increasing sequence of finite-
dimensional subspaces XN ⊂ X such that

∥∥xN −A−1y
∥∥ ≥ s(N) for all N ∈ IN, where

xN is the least squares solution of Ax = y in XN .
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1. Introduction

A wide variety of applied problems lead to equations of the form

Ax = y (1)

where x is an unknown element of a certain infinite-dimensional space, y is the data,

supposed to be known up to a certain degree of noise and A is a given operator used for

modeling the system under consideration. Very often, A†, the Moore-Penrose generalized

inverse of A, is unbounded and therefore the inverse problem (1) is ill-posed. It is well

known that the best approximate solution, i.e. the least squares solution of minimum

norm of (1) is x† = A†y (see [2]). In the application of the least squares method to

any concrete infinite-dimensional problem, discretization usually starts by choosing an

increasing sequence of finite dimensional subspaces XN of X whose union is dense in

X, and then the sequence {xN}∞N=1, with xN ∈ XN minimizing ‖Ax− y‖2 over XN , is

constructed.

Luecke and Hickey [3] characterized the strong convergence to x† of the sequence

{xN}∞N=1 of least squares solutions of (1). They proved that if A is a continuous

linear operator and y ∈ D(A†), then xN → x† if and only if lim sup
N→∞

‖xN‖ ≤
∥∥x†

∥∥.

They also found a sufficient condition for convergence which does not require of any

a-priori knowledge about the norm of the true solution. More precisely, they showed

that if y ∈ D(A†) then xN → x† provided that sup
N

∥∥∥(A†
N)∗xN

∥∥∥ < ∞ (or equivalently

sup
N

∥∥(A∗
N)†xN

∥∥ < ∞), where AN
.
= APXN

with PXN
being the orthogonal projection of

X onto XN . Moreover they proved that if A is compact and it has infinite rank, then

this condition is not necessary for convergence. As a corollary they established that the

uniform boundedness of the sequence
{∥∥∥A†

N

∥∥∥
}∞

N=1
is also a sufficient condition for the

strong convergence of xN to x†.
On the other hand, Luecke and Hickey [3] also showed that the boundedness of

the sequence {‖xN‖}∞N=1 is not sufficient to guarantee strong convergence. However,

Groetsch and Neubauer [4] proved that if y ∈ D(A†) then that condition is sufficient

and, moreover necessary, for weak convergence. As a corollary of this result, they were

also able to derive in a much more comprehensive manner the necessary and sufficient

condition for strong convergence established earlier by Luecke and Hickey.

In order to guarantee convergence it is necessary that the subspaces XN be carefully

chosen. For example, if A is compact and the XN ’s are the eigenspaces associated to the

singular value decomposition of A, Luecke and Hickey [3] showed that one always has

that xN → x†. They also proved that this convergence is guaranteed if A is bounded and

the subspaces XN are chosen so that they all reduce A (in the sense that A(XN) ⊂ XN

and A(X⊥
N) ⊂ X⊥

N).

On the contrary, if the subspaces XN are carelessly chosen, e.g. when the XN are

poorly or inadequately associated to the operator A, then almost anything can happen.

For instance in [1] Seidman proved that if problem (1) is ill-posed, then without any
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additional assumptions on x† it cannot be guaranteed that xN → x† and that it is

possible for
∥∥xN − x†

∥∥ →∞ to increase without bound. In this article we further show

that if the subspaces XN are not carefully chosen, then not only things might go wrong

with the application of the least squares method, but they can go arbitrarily bad. In

fact, it will be shown that it is possible for
∥∥xN − x†

∥∥ to increase at any arbitrary rate.

2. Preliminaries

The following result can be immediately derived from Example 3.1 in [1]:

Theorem 2.1. Let X be an infinite-dimensional separable Hilbert space, B
.
= {en}∞n=1

an orthonormal basis of X and XN
.
= span{e1, ..., eN}. Then, there exist a linear,

injective, compact, self-adjoint operator A : X → X whose range is dense in X and

b ∈ R(A) with b = Ax∗ for some x∗ ∈ X, such that if xN is the least squares solution

of Ax = b in XN , then ‖xN − x∗‖ → ∞.

Remark 2.2. The operator A0 : X → X of Example 3.1 in [1] is not necessarily self-

adjoint. If {(σn; vn, un)} denotes the singular system associated to the compact operator

A0 and U : X → X is the linear unitary operator defined by Uvn = un, then the

linear operator A
.
= U−1A0, besides being compact, injective and having dense range, is

self-adjoint and ‖A0x− y‖ = ‖Ax− U−1y‖ for every y ∈ X.

Corollary 2.3. Let X and Y be infinite-dimensional Hilbert spaces, X separable,

B
.
= {en}∞n=1 an orthonormal basis of X and XN

.
= span{e1, ..., eN}. Then, there

exist a linear, injective, compact operator A : X → Y whose range is dense in Y and

an element b ∈ R(A), b = Ax∗ for some x∗ ∈ X, such that if xN is the least squares

solution of Ax = b in XN , then ‖xN − x∗‖ → ∞.

Proof. From Theorem 2.1 there exist A0 : X → X and b0 ∈ R(A0), b0 = A0x
∗ for

some x∗ ∈ X, such that ‖x0
N − x∗‖ → ∞, where x0

N is the least squares solution of

A0x = b0 in XN . Let V : X → Y be an arbitrary unitary operator and let us define

A
.
= V A0 and b

.
= V b0. Then it follows immediately that the operator A : X → Y is

linear, compact, injective, with range dense in Y and b ∈ R(A). Let xN be the least

squares solution of Ax = b in XN . Since ‖Ax− b‖Y = ‖A0x− b0‖X , then it turns out

that x0
N is also the least squares solution of Ax = b in XN , that is, x0

N = xN . Therefore

‖xN − x∗‖ → ∞.

3. Main Results

In this section we will prove some results than are more general than those of Theorem

2.1 and Corollary 2.3. More precisely we will show that for any infinite-dimensional

separable Hilbert space X, for any b ∈ X, b 6= 0, and for any arbitrarily given function

s : IN → IR+ it is possible to find an injective operator A and a sequence of subspaces

XN ⊂ X such that ‖xN − A−1b‖ ≥ s(N) for all N ∈ IN, where xN is the least squares

solution of Ax = b in XN . The following definitions will be needed.
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Definition 3.1. Let X be an infinite-dimensional separable Hilbert space and B
.
=

{en}∞n=1 an orthonormal basis of X. An element x ∈ X is said to be “degenerate

with respect to B” if x can be written as a finite linear combination of elements of

B. Otherwise we say that x is “non-degenerate with respect to B”. In particular, if

〈x, en〉 6= 0 ∀ n ∈ IN then we say that x is “strongly non-degenerate with respect to B”.

If 〈x, en〉 6= 0 for infinitely many n’s, then we say that x is “weakly non-degenerate with

respect to B”. Clearly, if an element is strongly non-degenerate with respect to a basis,

then it is also weakly non-degenerate with respect to the same basis.

The following results will also be needed later.

Lemma 3.2. Let X be an infinite-dimensional separable Hilbert space and b ∈ X, b 6= 0.

Then there exists an orthonormal basis B of X such that b is strongly non-degenerate

with respect to B.

Proof. Given b ∈ X, b 6= 0, let {gn}∞n=1 be an orthonormal basis of [span{b}]⊥ and

define fn
.
= b + gn, n ∈ IN. Suppose that for a certain sequence of scalars α1, α2, . . .,

one has

0 =
∑

n

αnfn =

(∑
n

αn

)
b +

∑
n

αngn.

Since {b}∪{gn}∞n=1 is an orthogonal system, it is linearly independent and therefore, the

equation above implies αn = 0 for every n ∈ IN. Hence the fn’s are linearly independent.

We will now use the Gram-Schmidt process (see [5]) to construct an orthonormal

system starting from the fn’s (note that 〈fi, fj〉 = ‖b2‖+ δi,j for i, j ∈ IN). For that, let

us define

e1
.
=

f1

‖f1‖ ,

and for n ≥ 2, define en recursively by

en
.
=

(
fn −

n−1∑
j=1

〈fn, ej〉 ej

) ∥∥∥∥∥fn −
n−1∑
j=1

〈fn, ej〉 ej

∥∥∥∥∥

−1

.

Then, it turns out that

span{fn}∞n=1 = span{en}∞n=1 (2)

and {en}∞n=1 is an orthonormal system in X (see [5]). Moreover, this system is complete

in X. In fact, suppose there exists y1 ∈ X such that 〈y1, en〉 = 0 for every n ∈ IN. This

implies that 〈y1, fn〉 = 0 for every n ∈ IN by virtue of (2) and therefore

〈y1, gn〉 = −〈y1, b〉 for every n ∈ IN. (3)

But, since {gn}∞n=1 is an orthonormal system in X, the sequence {〈y1, gn〉}∞n=1 must be

in `2. Thus, since by (3) that sequence is constant, we must have 〈y1, gn〉 = 0 for every

n ∈ IN which, again by virtue of (3), implies that also 〈y1, b〉 = 0. Thus y1 = 0 since

{b, g1, g2, . . .} is complete in X. Hence {en}∞n=1 is a complete orthonormal system in X.
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Next, we will show that b is strongly non-degenerate with respect to the basis

B
.
= {en}∞n=1. On the contrary, suppose there exists n∗ ∈ IN such that 〈en∗ , b〉 = 0 and

〈en, b〉 6= 0 for all n < n∗. Let Fn
.
= span{f1, . . . , fn} and En

.
= span{e1, . . . , en}. Since

{fn}∞n=1 is a linearly independent set by the Gram-Schmidt procces, it turns out that

Fn = En for all n ∈ IN (see [5]). Let now PFn and PEn denote the orthogonal projections

of X onto Fn and En, respectively. Since 〈en∗ , b〉 = 0, it follows that

PFn∗b = PEn∗b = PEn∗−1
b = PFn∗−1

b,

and therefore 〈fn∗ , b〉 = 0. But this contradicts the fact that 〈fn∗ , b〉 = 〈b, b〉+ 〈gn∗ , b〉 =

‖b‖2 6= 0. Thus, such an n∗ does not exist and 〈en, b〉 6= 0 for every n ∈ IN. We therefore

conclude that b is strongly non-degenerate with respect to the basis B of X.

The following lemma is based upon the ideas presented in Example 3.1 in [1].

Lemma 3.3. Let X be an infinite-dimensional separable Hilbert space, B
.
= {en}∞n=1 an

orthonormal basis of X and let {αn}∞n=1, {βn}∞n=1 be two sequences in `2 satisfying

αn 6= 0 ∀ n ∈ IN, β1 = 0, βn 6= 0 ∀ n ≥ 2. (4)

Then, given x =
∑∞

n=1 ξnen ∈ X, the linear operator A : X → X defined by

Ax
.
=

∞∑
n=1

(αnξn + βnξ1) en (5)

is compact, injective and its range is dense in X.

Proof. We will first show that this operator is compact. For each N ∈ IN, let

ÃN : X → XN be the operator defined by ÃNx
.
=

∑N
i=1(αiξi + βiξ1) ei, where

x =
∑∞

i=1 ξiei ∈ X. For each N ∈ IN, ÃN is compact since it is clearly a finite rank

operator. Moreover,

∥∥∥Ax− ÃNx
∥∥∥

2

=

∥∥∥∥∥
∞∑

i=N+1

(αiξi + βiξ1) ei

∥∥∥∥∥

2

=
∞∑

i=N+1

(αiξi + βiξ1)
2

≤ ‖x‖2

( ∞∑
i=N+1

α2
i + 2

∞∑
i=N+1

αiβi +
∞∑

i=N+1

β2
i

)
(since ξ2

i ≤ ‖x‖2 ∀ i ∈ IN)

≤ ‖x‖2




∞∑
i=N+1

α2
i + 2

( ∞∑
i=N+1

α2
i

) 1
2
( ∞∑

i=N+1

β2
i

) 1
2

+
∞∑

i=N+1

β2
i




(by

Cauchy-

Schwartz).

Since the sequences {αn}∞n=1, {βn}∞n=1 are both in `2, it then follows that
∥∥∥A− ÃN

∥∥∥ → 0

as N →∞. Hence, A, being uniform limit of compact operators, is itself compact.

We will now check that the operator A is injective. Let x =
∑∞

i=1 ξiei ∈ X and

suppose Ax = 0, then
∑∞

i=1 αiξiei = −∑∞
i=1 βiξ1ei. Equating coefficients of e1 we have

that α1ξ1 = −β1ξ1. Since β1 = 0 and α1 6= 0 it follows that ξ1 = 0. Similarly for all
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i ≥ 2, αiξi = −βiξ1 = 0 which implies ξi = 0 since ξ1 = 0 and αi 6= 0. Hence x = 0 and

the operator A is injective.

Next, we will show that R(A) is dense in X. Let x =
∑∞

i=1 ξiei ∈ X. For each

N ∈ IN, there are scalars c1, c2, . . . , cN such that zN
.
=

∑N
i=1 ciei ∈ XN satisfies

AzN =
N∑

i=1

(αici + βic1)ei =
N∑

i=1

ξiei.

In fact, equating the coefficients of ei, i = 1, . . . , N, in this expression and recalling that

β1 = 0 and αi 6= 0 for all i ∈ IN, we immediately obtain c1 = ξ1
α1

and ci = α−1
i

(
ξi − βiξ1

α1

)

for 2 ≤ i ≤ N . Moreover

‖x− AzN‖2 =

∥∥∥∥∥
∞∑

i=N+1

ξiei

∥∥∥∥∥

2

=
∞∑

i=N+1

ξ2
i ,

and since {ξi}∞i=1 is a sequence in `2 we conclude that ‖x− AzN‖ → 0 as N → ∞.

Hence R(A) is dense in X. This finishes the proof of the lemma.

In the following result, we show that for any arbitrary infinite-dimensional separable

Hilbert space X and for any non zero element b ∈ X, there exists a linear operator A

such that the least squares solutions of the problem Ax = b in XN diverge from the exact

solution with arbitrarily large speed. More precisely we have the following Theorem.

Theorem 3.4. Let X be an infinite-dimensional separable Hilbert space and s : IN →
IR+ an arbitrary nonnegative increasing function. Then for each b ∈ X, b 6= 0 there

exist an increasing sequence of subspaces XN whose union is dense in X and a linear,

compact, injective operator A = A(b, s) : X → X, whose range is dense in X, such that

b = Ax∗ for some x∗ ∈ X and, if xN denotes the least squares solution of Ax = b in

XN , then ‖xN − x∗‖ ≥ s(N) for every N ∈ IN.

Proof. Let b ∈ X, b 6= 0. From Lemma 3.2 there exists an orthonormal basis

B
.
= {en}∞n=1 of X such that b is strongly non-degenerate with respect to B. Define

XN
.
= span{e1, ..., eN}, let {αn}∞n=1, {βn}∞n=1 be any two sequences in `2 satisfying (4)

and let A be the linear operator defined in (5). By virtue of Lemma 3.3 A is compact,

injective and its range is dense in X.

Next we will show that given any element b ∈ X, strongly non-degenerate with

respect to B, i.e. such that bn
.
= 〈b, en〉 6= 0 for every n ∈ IN, it is possible to choose

the sequences {αn}∞n=1, {βn}∞n=1 ∈ `2 in such a way that, besides satisfying (4), one

has b ∈ R(A) and, if xN denotes the least squares solution of Ax = b in XN , then

‖xN − A−1b‖ ≥ s(N) for every N ∈ IN.

The sequences {αn}∞n=1 and {βn}∞n=1 shall be constructed recursively, as follows:

Step 1: Choose α1 arbitrary, α1 6= 0 and β1
.
= 0.
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Step 2: α2
.
= 1

2
,

β2
.
=





α1b2
2b1

, if b2 = α2

2
2
2+1

= 1
8
,

α1

b1

(
b2 − α2

2
2
2+1

)
= α1

b1

(
b2 − 1

8

)
, in other case.

It suffices to choose β2 6= 0 such that b1β2

α1
∈

(
b2 − α2

2
2
2
, b2

)
.

Step 3: α4
.
= 1

4
,

β4
.
=





α1b4
2b1

, if b4 = α4

2
4
2+1

= 1
32

,

α1

b1

(
b4 − α4

2
4
2+1

)
= α1

b1

(
b4 − 1

32

)
, in other case.

Also here, it suffices to choose β4 6= 0 such that b1β4

α1
∈

(
b4 − α4

2
4
2
, b4

)
.

Step 4: α6
.
= 1

6
,

β6
.
=





α1b6
2b1

, if b6 = α6

2
6
2+1

= 1
96

,

α1

b1

(
b6 − α6

2
6
2+1

)
= α1

b1

(
b6 − 1

96

)
, in other case.

As before, it suffices to choose β6 6= 0 such that b1β6

α1
∈

(
b6 − α6

2
6
2
, b6

)
. For simplicity let

us denote K
.
= α2

1

[
1 + b−2

1

(
5
4
‖b‖2 +

√
2 ‖b‖+ 2

)]
.

Step 5: α3 is chosen according to the sign of b3 as follows:

• If b3 < 0, then

α3
.
= min

{
1

3
;

∣∣∣∣
α1b3β6

b1

∣∣∣∣
(

b6 − β6b1

α1

)
[Ks(4)]−1

}
> 0. (6)

Note that α3 > 0 since K > 0 and by the election of β6 made in step 4, we have

that b6 − β6b1
α1

> 0.

• If b3 > 0, then we define

α3
.
= min





1

3
; 2

3
2 b3; b3


 Ks(4)∣∣∣α1β6

b1

∣∣∣
(
b6 − β6b1

α1

) + 2−
3
2



−1

 > 0. (7)

In (6) and (7), it actually suffices to pick α3 as any positive number less or equal than

the respective minimum.

Step 6:

β3
.
=





α1b3
2b1

, if b3 = α3

2
3
2+1

,

α1

b1

(
b3 − α3

2
3
2+1

)
, in other case.

Here again it suffices to choose β3 6= 0 such that b1β3

α1
∈

(
b3 − α3

2
3
2
, b3

)
.

Steps similar to 4, 5 and 6 are followed to construct α2j, β2j and α2j−3, β2j−3 for

j ≥ 4. More precisely:
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Step 7: for all j ≥ 4 define

α2j
.
= 1

2j
,

β2j
.
=

{
α1b2j

2b1
, if b2j =

α2j

2j+1 ,
α1

b1

(
b2j − α2j

2j+1

)
, in other case.

Here, it suffices to choose β2j 6= 0 such that
b1β2j

α1
∈ (

b2j − α2j

2j , b2j

)
.

Step 8: For all j ≥ 4, α2j−3 is chosen according to the sign of b2j−3 as follows:

• If b2j−3 < 0, define

α2j−3
.
= min

{
1

2j − 3
;

∣∣∣∣
α1b2j−3β2j

b1

∣∣∣∣
(

b2j − β2jb1

α1

)
[Ks(2j − 2)]−1

}
> 0. (8)

Note that α2j−3 > 0 since, by the choice of β2j in step 7, we have that b2j− β2jb1
α1

> 0.

• If b2j−3 > 0, define

α2j−3
.
= min





1

2j − 3
; 2

2j−3
2 b2j−3; b2j−3


 Ks(2j − 2)∣∣∣α1β2j

b1

∣∣∣
(
b2j − β2jb1

α1

) + 2−
2j−3

2



−1

 > 0.(9)

In (8) and (9) it suffices to choose α2j−3 to be any positive number less or equal than

the respective minimum.

Finally, define

β2j−3
.
=





α1b2j−3

2b1
, if b2j−3 =

α2j−3

2
2j−3

2 +1
,

α1

b1

(
b2j−3 − α2j−3

2
2j−3

2 +1

)
, in other case.

(10)

It suffices to choose β2j−3 6= 0 such that
b1β2j−3

α1
∈

(
b2j−3 − α2j−3

2
2j−3

2

, b2j−3

)
.

Figure 1 depicts the recursion order used for the construction of the sequences

{αn}∞n=1 and {βn}∞n=1. It is easy to check that these sequences satisfy the conditions

(4) and are both in `2. In fact,
∑∞

n=1 α2
n ≤

∑∞
n=1

1
n2 < ∞, since 0 < αn ≤ 1

n
for every

n ∈ IN due to the choice of the αn’s. On the other hand, by our choice of the sequence

{βn}∞n=1 it follows that
∞∑

n=1

β2
n ≤

∞∑
n=1

(
α1bn

2b1

)2

+
∞∑

n=1

(
α1

b1

)2 (
bn − αn

2
n
2
+1

)2

=
α2

1

b2
1

[
1

4

∞∑
n=1

b2
n +

∞∑
n=1

(
b2
n −

bnαn

2
n
2

+
α2

n

2n+2

)]

≤ α2
1

b2
1


5

4
‖b‖2 +

( ∞∑
n=1

b2
n

) 1
2
( ∞∑

n=1

α2
n

2n

) 1
2

+
∞∑

n=1

α2
n


 (by Cauchy-Schwartz and

since 2n+1 > 1 ∀ n ∈ IN)

≤ α2
1

b2
1


5

4
‖b‖2 + ‖b‖

( ∞∑
n=1

1

n2

) 1
2

+
∞∑

n=1

1

n2


 (since αn ≤ 1

n
and 2n > 1 ∀ n ∈ IN)
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?

?

?

?

?

?

?

?

-

-

-

-

-

-

-

-.

?

α2
.
= 1

2

β2

β4

α4
.
= 1

4

α6
.
= 1

6

β6

α3

β3

...

β2j

α2j

α2j−3

β2j−3

α1 6= 0

β1
.
= 0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Figure 1. Recursion order used for the construction of the sequences {αn} and {βn}.

≤ α2
1

b2
1

(
5

4
‖b‖2 +

√
2 ‖b‖+ 2

)
(since

∞∑
n=1

1

n2
=

π2

6
< 2)

= K − α2
1 < ∞. (11)

We will check now that b ∈ R(A), i.e., that there exists x∗ =
∑∞

n=1 ξ∗nen ∈ X

such that Ax∗ = b. In order to do that, we will show that the system of equations

derived from the equality
∑∞

n=1(αnξ
∗
n + βnξ∗1) en =

∑∞
n=1 bnen, has a unique solution
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{ξ∗n} ∈ `2. Equating first the coefficients of e1 we have α1ξ
∗
1 + β1ξ

∗
1 = b1. Since β1 = 0 it

follows that ξ∗1 = b1
α1

. Similarly, equating the coefficients of en for n ≥ 2 it follows that

αnξ∗n + βnξ
∗
1 = bn, which implies

ξ∗n =

(
bn − b1βn

α1

)
α−1

n . (12)

Hence,
∞∑

n=1

ξ∗n
2 =

(
b1

α1

)2

+
∞∑

n=2

(
bn − b1βn

α1

)2

α−2
n

=

(
b1

α1

)2

+
∞∑

n=2
bn= αn

2
n
2 +1

(
bn − b1βn

α1

)2

α−2
n +

∞∑
n=2

bn 6= αn

2
n
2 +1

(
bn − b1βn

α1

)2

α−2
n

=

(
b1

α1

)2

+
∞∑

n=2
bn= αn

2
n
2 +1

(
bn − bn

2

)2

α−2
n +

∞∑
n=2

bn 6= αn

2
n
2 +1

( αn

2
n
2
+1

)2

α−2
n

(by our choice of

the βn’s)

≤
(

b1

α1

)2

+
∞∑

n=2

1

2n+4
+

∞∑
n=2

1

2n+2
< ∞.

Thus {ξ∗n}∞n=1 ∈ `2, x∗ =
∑∞

n=1 ξ∗nen ∈ X and b = Ax∗ ∈ R(A).

Let now xN be the least squares solution of Ax = b in XN , and write xN =∑N
n=1 ξnen. We will show that ‖xN − x∗‖ ≥ s(N) for every N ∈ IN. Defining the

functional J (xN)
.
= 1

2
‖AxN − Ax∗‖2, and equating to zero each one of its partial

derivatives with respect to ξi, i = 1, . . . , N (for the sake of brevity we skip the details

here) it follows immediately that

ξ1 = ξ∗1 +

∑∞
n=N+1 αnβnξ∗n

α2
1 +

∑∞
n=N+1 β2

n

,

ξn = ξ∗n −
βn

αn

(ξ1 − ξ∗1), for 2 ≤ n ≤ N.

Therefore,

‖xN − x∗‖2 =

(∑∞
n=N+1 αnβnξ

∗
n

)2

(
α2

1 +
∑∞

n=N+1 β2
n

)2

(
1 +

N∑
n=2

β2
n

α2
n

)
+

∞∑
n=N+1

ξ∗n
2

≥
(∑∞

n=N+1 αnβnξ
∗
n

)2

(
α2

1 +
∑∞

n=N+1 β2
n

)2

N∑
n=2

β2
n

α2
n

. (13)

Hence,

(a) For N even,

‖xN − x∗‖2 ≥
(
αN+2βN+2ξ

∗
N+2

)2

(
α2

1 +
∑∞

n=N+1 β2
n

)2

β2
N−1

α2
N−1
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=
β2

N+2

(
bN+2 − b1βN+2

α1

)2

(
α2

1 +
∑∞

n=N+1 β2
n

)2

β2
N−1

α2
N−1

(by replacing

ξ∗N+2 by (12)).
(14)

(a.1) If bN−1 < 0, then by the election of the βn’s we have b1βN−1

α1
< bN−1 < 0 and

therefore β2
N−1 >

(
α1bN−1

b1

)2

, which, together with our choice of αN−1 (see (8) in step 8)

implies that

‖xN − x∗‖2 ≥ [s(N)]2 K2

(
α2

1 +
∑∞

n=N+1 β2
n

)2

≥ [s(N)]2 (α2
1 +

∑∞
n=1 β2

n)
2

(
α2

1 +
∑∞

n=N+1 β2
n

)2 (from (11))

≥ [s(N)]2 .

(a.2) If bN−1 > 0, since αN−1 was chosen so that αN−1 ≤ 2
N−1

2 bN−1 (see (9) in step

8) and recalling our choice of βN−1 (see (10)), it follows that 0 ≤ bN−1− αN−1

2
N−1

2
< b1βN−1

α1
.

Then, β2
N−1 >

α2
1

b21

(
bN−1 − αN−1

2
N−1

2

)2

. Substituting with this into (14) we finally obtain

that

‖xN − x∗‖2 ≥

[
βN+2

(
bN+2 − b1βN+2

α1

)]2

(
α2

1 +
∑∞

n=N+1 β2
n

)2

α2
1

b2
1

(
bN−1 − αN−1

2
N−1

2

)2
1

α2
N−1

=

[
βN+2

(
bN+2 − b1βN+2

α1

)]2

(
α2

1 +
∑∞

n=N+1 β2
n

)2

α2
1

b2
1

(
bN−1

αN−1

− 1

2
N−1

2

)2

≥ [s(N)]2 K2

(
α2

1 +
∑∞

n=N+1 β2
n

)2 (from (9))

≥ [s(N)]2(
α2

1 +
∑∞

n=N+1 β2
n

)2

(
α2

1 +
∞∑

n=1

β2
n

)2

(from (11))

≥ [s(N)]2 .

(b) For N odd, it follows from (13) that

‖xN − x∗‖2 ≥
(
αN+3βN+3ξ

∗
N+3

)2

(
α2

1 +
∑∞

n=N+1 β2
n

)2

β2
N

α2
N

.

Following similar steps as in the previous case (N even) it follows easily that now

‖xN − x∗‖2 ≥ [s(N + 1)]2 ≥ [s(N)]2, where the last inequality follows from the fact

that s is an increasing function. This completes the proof of the Theorem.

Later on, in Corollary 3.7, we will see that under certain general additional

assumptions on b, the operator A in the previous Theorem can be constructed to further

be self-adjoint.

For our next Corollary, the following Lemma will be needed.



Arbitrary Divergence Speed of the Least-Squares Method 12

Lemma 3.5. Let X be a Hilbert space, H a closed subspace of X, A : X → X a bounded

linear operator, M a closed subspace of X such that M and M⊥ are invariant under A

and b ∈ M . If x∗ is the least squares solution of Ax = b in H, then the least squares

solution of Ax = b in H ∩M is PMx∗, where PM is the orthogonal projection of X onto

M .

Proof. Let us suppose that PMx∗ is not the least squares solution of Ax = b in H ∩M .

Then, there exists z ∈ H ∩M , z 6= PMx∗, such that

‖Az − b‖ < ‖APMx∗ − b‖ . (15)

Let x̃∗ .
= z + PM⊥x∗ ∈ H. Since z 6= PMx∗, it turns out that x̃∗ 6= x∗. Then, since

b ∈ M , z ∈ M and M , M⊥ are both invariant under A, we have that
∥∥Ax̃∗ − b

∥∥2
= ‖Az + APM⊥x∗ − b‖2

= ‖Az − b‖2 + ‖APM⊥x∗‖2

< ‖APMx∗ − b‖2 + ‖APM⊥x∗‖2 (from (15))

= ‖Ax∗ − b‖2 ,

which is a contradiction since x̃∗ ∈ H and x∗ is the least squares solution of Ax = b in

H. Hence, PMx∗ is the least squares solution of Ax = b in H ∩M .

In actual applications of the least squares method, the basis B = {en}∞n=1 of X is

usually given and XN is chosen as span{e1, . . . , eN}. In the next Corollary, we shown

that in this case, for any b ∈ X weakly non-degenerate with respect to that basis and

for any function s : IN → IR+ as before, it is also possible to construct an operator

A = A(b, s) such that the least squares solutions in XN of Ax = b diverge from the

exact solution with speed greater or equal than s.

Corollary 3.6. Let X be an infinite-dimensional separable Hilbert space, s : IN → IR+

an arbitrary nonnegative increasing function, B
.
= {en}∞n=1 an orthonormal basis of X,

b ∈ X weakly non-degenerate with respect to B and XN
.
= span{e1, . . . , eN}. Then there

exists a linear, compact, injective operator A = A(b, s) : X → X, whose range is dense

in X, such that b = Ax̂ for some x̂ ∈ X and, if xN is the least squares solution of

Ax = b in XN , then ‖xN − x̂‖ ≥ s(N) for every N ∈ IN.

Proof. Let us define

∆
.
= {n ∈ IN : 〈b, en〉 6= 0}, Γ

.
= IN \∆,

B∆ .
= {enj

: nj ∈ ∆}, BΓ .
= {emj

: mj ∈ Γ}, (16)

and let Xb
.
= spanB∆. Clearly,

spanBΓ = X⊥
b (17)

and b is strongly non-degenerate with respect to the basis B∆ of Xb. Since Xb is an

infinite-dimensional separable Hilbert space, Theorem 3.4 implies that there exists a
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compact, injective, linear operator A∆ : Xb → Xb whose range is dense in Xb such that

b = A∆x̂ for some x̂ ∈ Xb and if x∆
M is the least squares solution of A∆x = b in

X∆
M

.
= span {enj

}M
j=1 ⊂ Xb, (18)

then
∥∥x∆

M − x̂
∥∥ ≥ s̃(M) ∀ M ∈ IN, (19)

where s̃ : IN → IR+ is defined by s̃(j)
.
= s(nj+1).

Next, the operator A will be constructed by appropriately extending A∆ to the

whole space X. The way in which this extension is made depends upon the cardinality

of the set Γ defined in (16).

Case I: The set Γ is not finite. In this case X⊥
b is an infinite-dimensional separable

Hilbert space. Let {γn}∞n=1 be any sequence in `2 such that γn 6= 0 ∀ n ∈ IN and

define b̃
.
=

∑
n∈Γ γnen. Clearly b̃ is strongly non-degenerate with respect to the

basis BΓ of X⊥
b . By virtue of Theorem 3.4, there exists a compact, injective linear

operator AΓ : X⊥
b → X⊥

b whose range is dense in X⊥
b such that b̃ = AΓx̃ for some

x̃ ∈ X⊥
b . We then define A as follows:

Ax
.
= A∆x1 + AΓx2, (20)

where x = x1 + x2 with x1 ∈ Xb and x2 ∈ X⊥
b .

Case II: The set Γ is finite. In this case we simply define A as:

Ax
.
= A∆x1 + x2, (21)

where as before x = x1 + x2, with x1 ∈ Xb and x2 ∈ X⊥
b .

It is clear that in both cases the operator A so defined is linear. Let us prove now

that this operator is also injective, compact and that its range is dense in X.

Let us first consider case I (see (20)). If Ax = 0, then A∆x1 = −AΓx2. Since

A∆x1 ∈ Xb and −AΓx2 ∈ X⊥
b we have that A∆x1 = −AΓx2 = 0 and therefore

x1 = x2 = 0 since A∆ and AΓ are both injective operators. Thus, x = x1 + x2 = 0 and

therefore A is injective.

Let us show now that R(A) is dense in X. By definition of A and due to the fact

that R(A∆) ⊂ Xb and R(AΓ) ⊂ X⊥
b , it follows that R(A∆) and R(AΓ) are subspaces

of X which are orthogonal to each other. Therefore R(A) = R(A∆)⊕R(AΓ). Then,

R(A) = R(A∆)⊕R(AΓ)

=
(
Xb ∩R(A∆)

)
⊕

(
X⊥

b ∩R(AΓ)
)

(since R(A∆) ⊂ Xb and R(AΓ) ⊂ X⊥
b )

= R(A∆)
Xb ⊕R(AΓ)

X⊥
b

= Xb ⊕X⊥
b (since R(A∆) and R(AΓ) are dense in Xb and X⊥

b , respectively)

= X.

Therefore R(A) is dense in X.
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To show that A is compact, we note that A can be written in the form

A = A∆PXb
+ AΓPX⊥

b
,

where PXb
and PX⊥

b
are the orthogonal projections of X onto the subspaces Xb and X⊥

b ,

respectively. Since A∆ and AΓ are both compact and PXb
and PX⊥

b
are both bounded,

it follows that A, being the sum of two compact operators, is compact.

Consider now case II, that is, when A is defined by (21). The operator A is injective.

In fact, if Ax = 0 then A∆x1 = −x2 and since A∆x1 ∈ Xb and −x2 ∈ X⊥
b we have that

A∆x1 = −x2 = 0. Due to the fact that A∆ is injective it follows that x1 = 0, and

therefore x = x1 + x2 = 0.

Let us check now that R(A) is dense in X. By definition of A, and since

R(A∆) ⊂ Xb, if follows that R(A∆) and X⊥
b are subspaces of X orthogonal to each

other. Then

R(A) = R(A∆)⊕X⊥
b

=
(
Xb ∩R(A∆)

)
⊕X⊥

b (since R(A∆) ⊂ Xb and X⊥
b is closed)

= R(A∆)
Xb ⊕X⊥

b

= Xb ⊕X⊥
b (since R(A∆) is dense in Xb)

= X.

We will now show that also in this case the operator A is compact. For that we

write A = A∆PXb
+ PX⊥

b
. Since in this case Γ is finite, if follows from (16) and (17)

that PX⊥
b

is a finite rank operator and therefore, compact. Then, A is compact since it

is the sum of two compact operators.

Let us check now that in both cases (I and II) b ∈ R(A). Since x̂ ∈ Xb and A∆x̂ = b,

it follows from (20) and (21) that Ax̂ = A∆x̂+AΓ0 = b in case I, and Ax̂ = A∆x̂+0 = b

in case II.

Finally, let xN denote the least squares solution of Ax = b in XN
.
=

span{e1, . . . , eN}, xN =
∑N

j=1 ξj ej. We will show that ‖xN − x̂‖ ≥ s(N) for every

N ∈ IN.

‖xN − x̂‖2 =

∥∥∥∥∥
N∑

j=1

ξj ej − x̂

∥∥∥∥∥

2

=

∥∥∥∥∥
N∑

j=1, j∈∆

ξj ej +
N∑

j=1, j∈Γ

ξj ej − x̂

∥∥∥∥∥

2

=

∥∥∥∥∥
N∑

j=1, j∈∆

ξj ej − x̂

∥∥∥∥∥

2

+

∥∥∥∥∥
N∑

j=1, j∈Γ

ξj ej

∥∥∥∥∥

2
(since

∑N
j=1, j∈∆ ξj ej − x̂ ∈ Xb

and
∑N

j=1, j∈Γ ξj ej ∈ X⊥
b )

≥
∥∥∥∥∥

N∑
j=1, j∈∆

ξj ej − x̂

∥∥∥∥∥

2

. (22)
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For every N ∈ IN define kN
.
= max{j : nj ≤ N} or equivalently, kN

.
= #{ej :

j ≤ N, ej ∈ B∆} = #
(
BN ∩B∆

)
, where BN

.
= {e1, . . . , eN}. It follows from (18) that

X∆
kN

= span{enj
}kN

j=1. Since Xb is a closed subspace of X such that Xb and X⊥
b are

invariant under A and b ∈ Xb, if follows from Lemma 3.5 that the least squares solution

of Ax = b in Xb ∩XN = X∆
kN

is

PXb
xN = PX∆

kN

xN =
N∑

j=1, j∈∆

ξj ej,

where xN =
∑N

j=1 ξj ej is the least squares solution of Ax = b in XN .

Now, since A|Xb
= A∆ and X∆

kN
⊂ Xb, it follows that Aη = A∆η ∀ η ∈ X∆

kN

and therefore
∑N

j=1

j∈∆
ξj ej is also the least squares solution of A∆x = b in X∆

kN
, that is,

x∆
kN

=
∑N

j=1

j∈∆
ξj ej (see (18)). Then, substituting with this into (22) and using (19) it

follows that

‖xN − x̂‖2 ≥
∥∥x∆

kN
− x̂

∥∥2 ≥ [s̃(kN)]2 = [s(nkN+1)]
2. (23)

Now, by definition of kN , if j0 ∈ IN and nj0 ≤ N then kN ≥ j0. Therefore, the inequality

nkN+1 ≤ N would imply that kN ≥ kN + 1, which is a contradiction. Hence nkN+1 > N

or, equivalently nkN+1 ≥ N + 1.

Since s is increasing and nonnegative it follows that

[s(nkN+1)]
2 ≥ [s(N + 1)]2 ≥ [s(N)]2. (24)

¿From (23) and (24) we finally conclude that ‖xN − x̂‖ ≥ s(N) ∀N ∈ IN.

Next we show that the operator A both in Theorem 3.4 and Corollary 3.6 can be

chosen to further be self-adjoint.

Corollary 3.7. Let X be an infinite-dimensional separable Hilbert space, B
.
= {en}∞n=1

an orthonormal basis of X, b ∈ X non-degenerate with respect to B, XN
.
=

span{e1, . . . , eN} and s : IN → IR+ an arbitrary nonnegative increasing function. Then,

there exists a compact, self-adjoint, injective, linear operator A = A(b, s) : X → X,

whose range is dense in X and a unitary operator V : X → X such that b∗ .
= V b ∈ R(A)

and, if xN is the least squares solution of Ax = b∗ in XN , then ‖xN − A−1b∗‖ ≥ s(N)

for every N ∈ IN.

Proof. Since b ∈ X is non-degenerate with respect to B, it follows from Corollary 3.6

that there exists a compact, injective, linear operator Ã = Ã(b, s) whose range is dense

in X such that b ∈ R(Ã) and, if xN denotes the least squares solution of Ãx = b in XN ,

then
∥∥∥xN − Ã−1b

∥∥∥ ≥ s(N) for every N ∈ IN. Let {(σn; vn, un)} be the singular system

associated to the compact operator Ã and V : X → X the linear unitary operator

defined by V un = vn. Then, it can be easily proved that the linear operator A
.
= V Ã,

besides being compact, injective and having range dense in X, is self-adjoint. This

follows immediately from the fact that V Ãvn = Ã∗V ∗vn for all n ∈ IN.
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Since b ∈ R(Ã), we have that b∗ .
= V b ∈ R(A). Now, since ‖Ax− b∗‖ =

∥∥∥Ãx− b
∥∥∥,

it follows that xN is also the least squares solution of Ax = b∗ in XN . Therefore,

s(N) ≤
∥∥∥xN − Ã−1b

∥∥∥ = ‖xN − A−1b∗‖ for every N ∈ IN.

One may think that the result of Corollary 3.6 has little relevance from a

practical point of view since it could happen that in a neighborhood of b, the only

element η ∈ R(A) for which the least squares solutions in XN of Ax = η satisfying

‖xN − A−1η‖ ≥ s(N) for every N ∈ IN is precisely η = b. However, this is not the

case. In fact, it can be easily proved that in every reduced neighborhood of b of

radius δ there exists a sequence {bδ
k}∞k=1 ⊂ R(A) such that bδ

k → b as k → ∞ and∥∥xk
N − A−1bδ

k

∥∥ ≥ s(N) for every N ∈ IN, where xk
N is the least squares solution of

Ax = bδ
k in XN . That is, for each element of the sequence {bδ

k}∞k=1 (i.e. for each fixed

k), the approximating least squares solutions {xk
N}∞N=1, also diverges from the exact

solution with speed arbitrarily large, in the same way that the least squares solutions

obtained with data equal b do.

Up to now we have only considered problems with exact data, that is, equations of

the form Ax = b∗, where b∗ .
= Ax∗ and x∗ is the exact solution. As it is to be expected,

the non-convergence in Corollary 3.6 can also occur with noisy data. Seidman ([1])

showed that if the operator A : X → X is compact (besides being linear, injective,

positive, self-adjoint and with dense range), then for each increasing sequence of finite-

dimensional subspaces {XN} whose union is dense in X and for each b∗ ∈ R(A), there

exists a sequence bN → b∗ for which the least squares solutions xN of Ax = bN in

XN satisfy ‖xN − x∗‖ → ∞, where Ax∗ = b∗. In a certain sense the next Corollary

generalizes this result. More precisely, it is shown that also for the case of noisy data the

careless application of the least squares method can lead to arbitrary rates of divergence.

Corollary 3.8. (Arbitrary divergence rate with noisy data) Let X be an infinite-

dimensional separable Hilbert space, B
.
= {en}∞n=1 an orthonormal basis of X, b ∈ X

non-degenerate with respect to B, XN
.
= span{e1, . . . , eN}, s : IN → IR+ an arbitrary

nonnegative increasing function and A = A(b, s) the operator whose existence was proved

in Corollary 3.6. Then ∀α ∈ (0, 1) there exists a sequence {bN}∞N=1 ⊂ R(A) such that

bN → b as N → ∞ and the least squares solution xN of Ax = bN in XN satisfies

‖xN − A−1b‖ ≥ αs(N) for every N ∈ IN.

Proof. Let {αN} ⊂ IR be a sequence such that αN 6= 0 and

|1− αN | ≤ min

{
1

‖x∗N‖
,
(1− α)s(N)

‖x∗N‖
}

, (25)

where x∗N is the least squares solution of Ax = b in XN . By Corollary 3.6,
∥∥x∗N − A−1b

∥∥ ≥ s(N) ∀ N ∈ IN, (26)

then ‖x∗N‖ → ∞, which implies that |1− αN | → 0 and therefore, αN → 1 as N → ∞.

Let us define bN
.
= αNb for each N ∈ IN. Then, bN → b and since R(A) is a subspace
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of X, {bN}∞N=1 ⊂ R(A). Since the least squares solution xN of Ax = bN = αNb in XN

is αNx∗N , it follows that
∥∥xN − A−1b

∥∥ ≥
∥∥x∗N − A−1b

∥∥− ‖x∗N − xN‖
=

∥∥x∗N − A−1b
∥∥− |1− αN | ‖x∗N‖

≥ s(N)− (1− α)s(N) (from (25) and (26))

= αs(N).

Remark 3.9. During the proof above we made use of the following result: if xN is

the least squares solution of Ax = b in XN , then σxN with σ 6= 0, is the least squares

solution of Ax = σb in XN .

For simplicity we have only considered the case in which X and Y are real Hilbert

spaces. However all results in this article carry over to the case of complex Hilbert

spaces with the obvious modifications. Also, a procedure similar to the one employed in

Corollary 3.6 can be used to show that the hypothesis of separability can be neglected.

4. Conclusions

In this article we have considered the application of the least squares method to inverse

ill-posed problems of the form Ax = y where A is a compact linear invertible operator

on a separable Hilbert space X. It was shown that under no additional assumptions on

the finite-dimensional subspaces there is no guarantee that the corresponding sequence

of approximating least squares solutions will converge to the true solution. Moreover, it

was shown that it is possible for the approximating solutions to diverge from the exact

solution at any arbitrary speed, both for the case of exact and noisy data. In particular,

Theorem 3.4 and Corollary 3.6 extend the original result of Seidman ([1], Example 3.1).

The main difficulty that arises in these extensions resides in the construction, starting

from the element b ∈ X and the function s(·), of the sequences {αn}∞n=1 and {βn}∞n=1 in

such a way that they satisfy the constraints (4) and such that the operator A defined

from them by (5), satisfies b ∈ R(A) and ‖xN − A−1b‖ ≥ s(N) for all N ∈ IN.

The use of general residual minimization procedures, such as the least squares

method, is very common in practice and it constitutes a widely used standard approach.

Although the operators A constructed in Theorem 3.4 and Corollary 3.6 are somewhat

artificial they do serve to prove that in the case of ill-posed problems, the convergence

of the finite-dimensional approximating solutions obtained by direct application of the

least squares method is far from being automatically guaranteed, and that without any

rigorous mathematical justification of this convergence, it is a completely unacceptable

procedure. It is important emphasize here that the lack of convergence of the sequence

of least squares solutions is not a consequence of the least squares method, but rather

the result of a very poor choice of the approximating spaces XN , without taking into
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account the operator A which defines the ill-posed problem. Therefore, if the infinite-

dimensional problem is ill-posed, extreme care must be taken during discretization and

finite-dimensional approximation of the solutions in order to guarantee convergence.

If the operator A : X → X is given, as it happens most of the times in practice, then

Seidman [1] showed that for almost any b ∈ R(A) there exists a sequence of subspaces

XN such that the corresponding sequence of least squares solutions of Ax = b, {xN}, is

unbounded.

Although we strongly believe that the results in this article can also be extended

to this case, i.e., that arbitrary rates of divergence can be obtained by the application

of the least squares method when the operator A is given, we are not able to provide a

rigorous proof of this conjecture at this time. Efforts in this direction are underway.
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