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END-POINT ESTIMATES FOR ITERATED COMMUTATORS OF
MULTILINEAR SINGULAR INTEGRALS

CARLOS PEREZ, GLADIS PRADOLINI, RODOLFO H. TORRES,
AND RODRIGO TRUJILLO-GONZALEZ

ABSTRACT. Iterated commutators of multilinear Calderén-Zygmund operators and
pointwise multiplication with functions in BM O are studied in products of Lebesgue
spaces. Both strong type and weak end-point estimates are obtained, including
weighted results involving the vectors weights of the multilinear Calderén-Zygmund
theory recently introduced in the literature. Some better than expected estimates for
certain multilinear operators are presented too.

1. INTRODUCTION AND MAIN RESULTS

The commutator of a linear Calderén-Zygmund operator 7" and a BM O function b,
T,(f) = b, TI(f) = bT(f) = T(bf),
was first studied by Coifman, Rochberg, and Weiss [2] who proved that
T, : LP(R") — LP(R")
for all 1 < p < oco. This can be seen as a bilinear result,
BMO(R") x LP(R") — LP(R"),
since actually

(1.1) ITo(N)lze < [0l saso 1| ze-

Using duality, the above estimate has as an immediate consequence for 1 < p < oo the
bilinear estimate

(1.2) lgT(f) = ST () S Mgl o [1f 1] e,
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where p’ is the dual exponent of p, H' is the Hardy space, and T is the transpose of 7T'.
Note that (1.2) is a better than expected estimate, since trivially by Holder’s inequality
and the boundedness of T,

lgT'(f) = ST (e < gl 11 o

Both (1.1) and (1.2) put in evidence that some subtle cancellations are taking place.
These estimates have found many important applications in other areas of operator
theory and partial differential equations.

Another interesting feature of the commutators 7T}, is the fact that they fail to satisfy
the typical weak end-point L! estimate of the Calderén-Zygmund theory. As a remedial
feature though, they do satisfy an alternative L(log L) end-point estimate, as proved
by Pérez in [9] (see [10] for a different proof) .

Much of the analysis of linear commutators has been extended to other context
such as weighted spaces, spaces of homogeneous type, multiparameter and multilinear
settings. Higher order and iterated commutators have been consider too. The literature
is by now quite vast. We will only recount here the multilinear situation which is the
focus of this article. The purpose of the present work is to prove the optimal results for
the iterated commutators and an associated multi(sub)linear operator. In this sense,
this article complements and completes the theory developed by Lerner et al in [8],
where the reader will find further bibliography in the subject.

Let T' be an m-linear Calderén-Zygmund operator as defined by Grafakos and Tor-
res in [5] and [7] (see the next section for complete definitions). In particular, such
operators satisfy

(1.3) T:LP*(R") x --- x LP»(R") — LP(R")
whenever 1 < pq,...,p, < oo and

1 1 1
(1.4) —=— 4t —,

p b1 Pm

and also the end-point result
(1.5) T:LYR") x --- x LYR"™) — LY™>(R™).

Let b = (by,...,by) bein BMO™. The commutator of b and the m-linear Calderén-
Zygmund operator T, denoted here by Ty ', was introduced by Pérez and Torres in
[11] and is defined via

m

(1.6) TEb(flv---ufm):ZTbi(flv---ufm)u

J=1

'The notation T was used instead in [11] and [8]. We use the new notation to better differentiate
this commutator from the iterated ones we want to study in this article. The notation for both types
of commutators is also motivated by the estimates they satisfy.
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where each term is the commutator of b; and 7" in the j-th entry of 7', that is,
T30 = T3 (o f) = I Tl )

EbjT(fla"'afja"'afm) _T(fla"‘abjfja"'>fm)-
It was shown in [11] that Tk}, satisfies the bounds (1.3) for all indices satisfying (1.4)

with p > 1. The result was extended in [8] to all p > 1/m. The estimates are of the
form

(1.7) [Tsb(0)[[r S <Z ||bj||BMo> TT 0l
j=1 j=1

Moreover, weighted-LP versions of the bounds (1.3) were obtained in [8] for weights
in the classes Ap (see again the next section for definitions). These classes of weights
introduced in [8] are the largest classes of weights for which all m-linear Calderén-
Zygmund operators are bounded.

As it may be expected from the situation in the linear case, the end-point estimate
(1.5) does not hold for Txp. Instead the following estimate was also obtained in [§]

(1.8) [{z € R" : [Tep(f)(z)| > t"}] < C(b) ﬁ (/ P (M) dx) 1/m,

J=1

where ®(t) =t (1+1log* t). The result is still true if the Lebesgue measured is changed
by an A; weight (2.9). Note that for m = 1 this is the end-point result in [9]. The
estimate (1.8) is sharp in an appropriate sense. It is also the right one from the point
of view interpolation as recently shown by Grafakos et al [4].

The results for Ty were obtained in [8] via corresponding ones for the maximal
function

MZ L(logL) = Z MiL(logL)’

where

M og 1) () () = sup || fill Laog ). H L / fjdx.
Q>z i ‘Q| Q
Independently, Tang [13] has also looked at Ty, iterations of it, and vector valued
versions, but only for weights in the classical A, classes (whose product is still smaller
than Az). He obtained some end-point estimates but with the right-hand side term in
(1.8) replaced by a more complicated expression with an extra factor, and without the
homogeneity of (1.8), which is crucial to obtain optimality.

We will establish in this article strong bounds for iterated commutators for p > 1/m
allowing the full Az classes and again sharp end-point results when p = 1/m

For a Calderén-Zygmund operator 7" and b = (by,...,b,) in BMO™, we define the
iterated commutators Ty to be

(1.9) Trb (frs--os fm) = [b1, [b2y - < [br—1, [bms Tlin)m—1 - - - |2]1(£).
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To clarify the notation, if 7" is associated in the usual way with a Calderén-Zygmund
kernel K, then at a formal level
(1.10)

T (f)(7) = / . H(bj(x) — b)) K@, 91, Ym) 1 (1) - fon(Ym) dyr - - Ay

(See also (1.14) below for another explicit formula in the bilinear case.)

We will prove the following strong type bound for Tiy,.

Theorem 1.1. Let T' be an m-linear Calderdn-Zygmund operator; w € Az with

1 1 1

p Y4 Pm
and 1 <p; <oo,j=1,...,m; and b € BMO™. Then, there exists a constant C such
that

(1.11) [T ()| oy < C HHijBMo LTl oy)-
=1

j=1
At the end-point we obtain the followmg estimate.
Theorem 1.2. Let T be an m-linear Calderon-Zygmund operator; W € Ay, and b €

BMO™. Then, there exists a constant C depending on b such that
(1.12)

v ({z €RY - [Ty (£)(a)| > m}) < C ﬁ ([ o () ) o

m

—
where ®(t) =t (14 logtt) and &™) =do ... 0P,
Moreover, the estimate is sharp in the sense that ®™ can not be replaced by ®*)
for k < m.

To prove the sharpness of theorem above we adapt some ideas from [8]. For simplicity,
we consider m = 2, n = 1, T one of the bilinear operators for n=1 obtained from the
(linear) Riesz transforms in n=2, as it is done for example in [8], and the functions
bi(x) = by(x) = log|1 4 x| and f1 = fo = x(0,1)- Thus we can prove that the estimate

{z e R" : |Tp(f)(z)| > £} < C (/}Rn@(@))m </n®(2) (@))m

is false. In fact, if the inequality above were to hold, by the homogeneity we would
have that

{z e R« [Tru(B)(@)| > £} < C /R @ ('f—‘) / 24 (fa),
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and hence, since ® is a Young function

sup ——— [{z € R" : |Tyu(f)(2)| > )\}}2 < 00.

A>0 ‘b(l/ A)
However, using the fact that ®~1(z) = z/(logx) for z > e, it is easy to check that

7 e SR 00> A > swprite e L g
- i‘i%@(ll/w'{”e B A
= i‘i%cb(ll/v Ho>e: <I>?< > Al
> ¢ s Cahm
> 1, e
> Y qp log(C/n) =

4 0cr<C/2e

As in the linear case and the particular multilinear case studied in [8], the proofs of
the two main theorems will be based on corresponding estimates on a maximal function
that controls the commutator, the operator Mo 1) given by

(1.13) Miog 1) () (z) = ngH 1£ill0g 2.0+
v

where the supremum is taken over all cubes @) containing x. Strong bounds for this
operator were already obtained in [8] but not weak-type ones. We present in this article
the right end-point distributional estimate it satisfies (see Theorem 4.1). This operator
and the estimates it satisfies are crucial in this paper.

Our analysis will show that in fact one can also study commutators where only & < m
factors appear in (1.10), and which are controlled by an appropriate modification of
the maximal function Mo ). We will concentrate only in the case where there are
m functions in BMO, which is the most difficult one, and leave other generalizations
to the interested reader.

The next section contains some basic definitions and further background related to
the classes A of vector weights and several multilinear maximal functions from [§].
Nevertheless, the reader already familiar with the subject can skip Section 2 and move
directly to Section 3, where a key pointwise estimate involving the maximal function
M rog ), Theorem 3.1, is combined with the classical Fefferman-Stein inequality to
prove the strong bounds in Theorem 1.1. Likewise, the proof of Theorem 1.2 is obtained
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using a new weak type estimate for the maximal function Mo 1), Theorem 4.1, which
is presented in Section 4.

Before we conclude this introduction, we would like to consider analogs of (1.2) in the
multilinear setting in view of (1.11) and put in evidence again some better than expected
estimates, which are implied by the commutator results and which also motivate in part
our study of commutators. For simplicity we consider the following particular case. For
a bilinear Calderén-Zygmund operator T', we can write

(1.14) Ty (f1, fo) = biboT(f1, f2) — T (b f1, f2) — i T(f1, b2 f2) + T'(by f1, bafo).

We can use duality to obtain the surprising quad-linear estimate

|RDoT (fr, f2)=FT™ (hba, f2) = KT (f1,ba fo) + FLT* (B, bafo)||
(1.15) S 2l sao |l o | Full ol fol 2
for 1/¢g+1/r =1/p, 1 < p,q,r < oo, and where T*! is the transpose of T in the first

variable. Notice that this is again an improvement (now both in the target and the
range) over the trivial estimate

S : L®(R") x LP(R") x LY(R™) x L"(R") — L*(R"),
where

S(b,h, fi, f2) = WT(f1, f2) — LT (b, f2) — KT (f1,bf2) + AT (h, bf2),

and which follows by Holder’s inequality and the boundedness of T'. The better estimate
obtained reflects again the presence of certain hidden cancellations. Though we will
not carry their study here any further, it would be interested to see if estimates like
(1.15) are amenable to some analysis similar to the one generated in the linear case as
consequence of (1.2).

2. SOME BACKGROUND DEFINITIONS AND ESTIMATES

2.1. Calderén-Zygmund operators. Following [5] we will assume here that 7" is a
bounded m-linear Calderén-Zygmund operator. That is, 7" satifies the bounds (1.3)

and (1.5) and its Schwartz kernel K satisfies away from the diagonal z = y; = -+ - =y,
in (Rn)m—l—l’
A

(21) |K(y0>yla--'>ym)| S m mn

(3l —wl)

k,l=0
and also

Aly; — yjl°

(22) |K(y0>-"ayja"'>ym)_K(y0>-"ay;'a"'>ym)|S ! J

m mn—+e’
( > |k — yz|>

k,1=0
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for some ¢ > 0 and all 0 < j < m, whenever |y; — yj| < %maXOSkSm ly; — ykl- In
particular for = ¢ Nsupp f;,

T(fi,.... f)(@) = / K1,y r(5) - Fonin) s .- g

2.2. Orlicz norms. For ®(t) =t (1 +log™ t) and a cube Q in R" we will consider the
average || f||s,o of a function f given by the Luxemburg norm

. e )
1 llzos e = mf{A> 0 ‘Q|/ ( dr < 1).

We will need the several basic estimates from the theory of Orlicz spaces. We first
recall that

(2.3) |flloo >1 if and only if |712|/Q<I>(|f(:17)|)ala: > 1.

Next, we note that the generalized Holder inequality in Orlicz spaces together with
the J ohn—Nirenberg inequality implies that

(2.4) ol / 1by) — bol F(y) dy < Cllbllsarollfll e 0

an estimate that we shall use in several occasions without further comment.
We will also use the maximal function

Mpgogr) f(7) = Sup | £l 2gog 2).@;
Sx

where the supremum is taken over all the cubes containing x. This operator satisfies
the pointwise equivalence

(25) ML(logL).f(x) ~ M2f(l’),

where M is the Hardy-Littlewood maximal function, and we will also employ several
times the Kolmogorov inequality

(2.6) 1Pty < €1t
for 0 < p < ¢ < o00. See, e.g. [14] and the reference in [8].

2.3. Sharp maximal functions. For § > 0, M; is the maximal function

1/5
M) = (7)) = (s o [ 1)
In addition, M# is the sharp maximal function of Fefferman and Stein [3],

1
# x) = supinf — /A su .
MH(f)(x) = 5 pnfm/Q\f( (dy ~s pm/u ~ foldy

Q>x ¢
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and
M f(a) = MP(|f°)° ()
We will also use from [3], the inequality

(2.7) / n(M(; f(@)Pw(z)de < C / (M7 f(z))P w(x)dz,

for all function f for which the left-hand side is finite, and where 0 < p,d < oo and w
is a weight in A,. Moreover, if ¢ : (0,00) — (0,00) is doubling, then there exists a
constant ¢ (depending on the A, constant of w and the doubling condition of ¢) such
that
28) supelN) wl{y € R Msf(y) < A}) < e supolh) wi{y € R" < M f(y) < A},

>

A>0
again for every function f such that the left hand side is finite.

2.4. Multiple weights. Following the notation in [8], for m exponents pi, ..., Py, we
will often write p for the number given by % = pil + ot ﬁ, and P for the vector
P=pi,--Pm)-
Let 1 < pi,...,pm < 00, a multiple weight @/ = (wy, ..., w,,), is said to satisfy the
multilinear Ay condition if for
Vg = H wi-)/ B
j=1

it holds that

(2.9) sgp (ﬁ/@yﬁ) 1/pH (TCIN/QUJ;_I};)UP} < 0.

=1
When p = 1, (2 [0 )" is understood as (inf w,)~!
enp; =1, (5 fQ w; is understood as (13 w;) "

One can check that A ;) is contained in Az for each ]3, however the classes Az
are not increasing with the natural partial order. As mentioned in the introduction,
these are the largest classes of weights for which the multilinear Calderén-Zygmund
operators are bounded on Lebesgue spaces, as proved in [8]) improving on the results
in [6] and [12]. In fact, one has

ﬁ Ay, C Ap,
j=1

with strict containment. Moreover, in general @ € Ap does not imply w; € L
any 7, but instead

1
loc

for
1—p3-

(2.10) WeEA; = {“’j
Vg € Amp,

GAmp;, j=1,....m

.. 1-p’; . .
where the condition w, P e Amp3 in the case p; = 1 is understood as wjl-/ e Al
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Observe that in the linear case (m = 1) both conditions included in (2.10) represent
the same A, condition. However, when m > 2 neither of the conditions in (2.10) implies
the other. We refer the reader to [8] for more details on this multilinear weights.

3. PROOF OF THEOREM 1.1

The technique of comparing commutators with sharp maximal operators has by now
a long history of successful applications (see the comments in [8] p.15 and the references
therein). In our case the pointwise estimate needed is the following.

Theorem 3.1. Let Ty be a multilinear commutator with Ze BMO™ and let 0 < § <
e, with 0 < 6 < 1/m. Then, there exists a constant C > 0, depending on ¢ and ¢, such
that

(31)  MI(Tuw (0)(@) < C T 105l mro (Mugog sy (B)(x) + MA(T(£))(2))

j=1
for all m-tuples £ = (f1, .., fm) of bounded measurable functions with compact support.
Proof. For simplicity in the exposition we only present the case m = 2. No different

computations are needed for the general case, which is only notationally more compli-
cated. Fix then by,by € BMO and write for any constants A; and Ag,

Tap (F)(z) = (bi(z) — A)(ba(w) — M) T(f1, fo) () — (br(w) — A)T(f1, (b — X2) f2)
—(ba(w) = A)T((br — M) f1, f2) + T ((br — A1) fr, (b2 — A2) f2) ().

Also, if we fix x € R", a cube (Q centered at x and any constants ¢, cs and c3, then
since 0 < 0 < 1/2, we can estimate
1/5
1
<
[Ql Jq

(& o1

1/6

< (i [ 10 = aoeute) - 27 o) )"
#(ig [0 = 2T - Mt -z
+<|%|/Q\<bg( )= AT (b = M), o) (2) = o] dz)l/é

# (g7 LT = 20102 = 2212 dz)l/a

=1+ 1T +1IT+1V.
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We analyze each term separately selecting appropriate constants. Let * = 3(Q) and
let A\; = (b;)g- be the average of b on Q*, j = 1,2. For any 1 < ¢, ¢, q3 < oo with
1=1/¢1+1/q2 +1/g3 and g3 < £/ we have by Holder’s and Jensen’s inequalities,

1/0q1 1/0g2
Sq1 5q2
(\@|/ 01(2) = Al dz) (\@|/ b2(2) = Aol dz)
1/6q3
x (@ /Q T(fus £2)(2)% dz)

< b1l amollb2]l Brro Msgs (T(f1, f2))(2)
< ClbllBmolb2ll o M(T(f1, f2))(x),

which is an appropriate estimate for what we want to obtain.
Since IT and I1T are symmetric we only study I1. We split each f; as f; = f2+ f
where [ = fxg- and f° = f; — f?. Let

I

IN

A

3
- >\1) E C1,55
Jj=1

where

11 = T(f7, (by — Xo) f5°) (),
1o = T(f1°, (by — Xo) f3) (),

cg =T(f%, (b — A2) f3°) ().
We choose now 1 < p < 1/(260) and use Hélder’s inequality to get

1/6
o= (|@\/|bl VT(fr, (by — )\Q)fg)(z)—cl|5dz)
pé 1/pd
< Clbllsmo (g T(f1, (b2 = A2) f2)(2 chy Z)
1/pd
< Clbillsao <<%/Q T(H. (b2 = 22) £)(2) dz)

1/pd

(|Q\ / [T (b2 = 22)f57)(z )—cll\de)
1/pd

+ (@ /Q ‘T(floo, (by — )\2)f20)(z) _ 012‘p5d2)

+ (g [ G =217 et i) />

= CHblHBMO (I[1+[IQ+113—|—I]4)
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Using now that pd < 1/2, we can estimate the I1; using the fact that 7" is a Calderén-
Zygmund operator,

B 05 1/po
I, = <‘Q|/‘T f17 >\2 f2 )‘ dZ)

C|IT(f), (by — )‘2)f2>HL1/2°°(Q o)

|@|/‘fl ‘dz|c2|/‘(62( —N)f (2] dz

Clfilollballzaro 1 f2llLaog )@
C||b2|| Bao ML(logL)(fla f2)(z).

Again, since 1, and I3 are symmetric, we just estimate the first one;

IN

IN

IAINA

. (‘@|/ T Cn = M) F57)(E) - T(ffa(bz—A2)f§°)($)\p6dz)l/p6

|Q|/ ‘T JL (b2 = X2) f5°)(2) = T(f7, (by — A2) f5°) }dz

< |z — 27|b(y2) — Ao||f2|dy>
<t , (L nonnan) | [ SRR

(R"\3Q)

ZOO Q"
C 1\Y1 d 1 b 2 _)\2 2d 2
</3Q | f1(y1)|dy ) £ ((3k|QD1/n)2n+a(3k+/lQ) [b(y2) ||.f2ldy

& |Q|a/n
© 2 @R (Lo 1t ) ([ ) = llstmlin )

< Cllb2|lBmo Z %‘fl‘3’““@Hf2HL(logL),3k+1Q
k=1

< C||ba|l Baro Mrgog ) (f1, f2) ().

For the last term 1, we have

IN

| /\

L o] _ 00 () — ) _ oo . sp B 1/dp
<|Q\ /Q|T(fl (b2 = X) f5°)(2) = T(f7°, (b — A2) f5°) () |Pd )

C A () T (b ) £ s
< @/Q|T(f1 y (by — M) f5°)(2) — T(f1°, (ba — o) f5°)(x)|d
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|.f1 yl)(b2(y2) )‘2)f2(y2)||l' _ Z|€
|Q| / / (|Z_y1|+|2—y2|)2"+€ dyldy2 dz

(R™M\3Q)?

|Q\ / | f1(y1) (b2 (y2) — A2) fo(ya)| | — Z|Edy1dy2 d

(12 = ] + [z = yaf )2+
“lErQ)2\(3hQ)?

s |Q|€/n )
Z (3F|Q[V/n)2n e /(3 . )z\fl(yl)\\(bz(ya) ) f2(y2) |dy1dys

< Cllb2|lBmo Z %‘fl‘3’““@Hf2HL(logL),3k+1Q
k=1

< C||b2 || Bro Mrgog 1) (f1, f2) ().

This part conclude the estimation of /1, and thus also I11.
It only remain to study the last term V. As before, we first split any function

IV = <|Q|/|T M) f1, (b — )\g)fg)(z)—03|6dz>l/5

1/68
<|Q‘/\T — A2, (by — X)) f)( \ dz)

(‘Q| / [T (b1 = A (b = 22) ) () - 031‘5dz) )

('Q| / 1= A f7 (02 = 2 f2)(2) —c32}5dz)1/5

<|¢2I/ T = A)f% (B >\2)f§°)(z)—033|6dz)1/6

= IVi+IVo+1V54+1V)
The first one follows as 17,

1/6
v = (\Q|/‘T = M) ST (b2 = Xa) £2)( ‘dz)

< OIT((br = A)FL (b = 22) f2) | 2o, 2

< |Q|/}bl — M) (2 \dz|Q|/}(b2( — M) f3(2)| dz

IN
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< C|lbil|Bamo 1 f1ll aog £).@102l| Baro || f2ll Laog £).0

< Ol Bmollb2ll Bmo Mrgog 1y ( f1, f2) ().
For IVy and I'V3 we consider for example V5,

[T((by = M) f7s (b — X2) f5°)(2) = T((by — M) f7, (ba — Xo) f5°) ()|
[z — 2] (ba(y2) — A2) fa(y2)|dys
</ 10130) = A0 )l | =

o=l +1z - o
R"\3Q

e/n
/ 1b1(y1) — A1) fi(yr) |dylz 3k|é§|2|1/n St / |(b2(y2) — A2) fa(y2)|dy2

(35H1Q)

C; ((3¥1Q)) 1/” 2n+e /(3’““@) 1b1(y1) — M) fi(ya)] dyr ) %

X ( 1b2(y2) — A2) fa(y2)| dyz)
3k+1Q

1
< CZ @Hbl||BMOHb2||BMOHfl||L(logL),3k+1QHf2HL(logL),3k+1Q
=1

< C||b1|| Barol| bzl Baro Mo ) (f1, f2) ().

Fiinally, the term IV} is estimated in similar way and we deduce
T ((br = M) ST (b2 = A2) f5°)(2) = T((br = M) f7, (b2 — A2) f5°) ()] <

< C||b1|| Bmol|bal| Baro MLog £y (f15 f2)(2).
The proof is complete. O

This pointwise estimate just proved is the key for the strong and weak estimates with
multiple weights. In particular this pointwise estimate yields an appropriate version of
the Coifman-Fefferman type inequalities ([1]).

Theorem 3.2. Let p > 0 and let w be a weight in A.,. Suppose that b € BMO™.
Then, there exists a constant Cy, (independent of b) and a constant c,(b) such that

(3.2) [T () (2) [Pw(z)de < C HHb HBMo/ M og 1) (F) ()" w(2)d,

and

1
Su
a0 o (1)

(3.3) < c(b) sup

w({y € R":|Tis (£)(y)| > t™})

w({y € R" : Mpuogr)(£)(y) > t™}),
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for all £ = (f1,.., fm) bounded with compact support.

Proof. The proof of these type of estimates is by now standard. We refer the reader to
[12, Theorem 1.6] and [8, Corollary 3.8 and Theorem 3.19]. The arguments there can
be followed step by step in this new case. We only observe that to use the Fefferman-
Stein inequality (2.7) as argued in [8, pp.32-33], one needs to verify that ||Tip (f)||Lr(w)
is finite whenever ||Mogr)(f)||r(w) is. However, if one assumes b in (L>)™ this is
clear because of the boundedness properties of 1. The passage to b in BMO™ is
also standard and combining it with Fatou’s lemma, one gets the desire result. The
proof of (3.3) also follows the pattern for the corresponding estimate relating 7T, and
My Laog ) in [8, pp. 33-35]. We omit the rest of the details.

O

We can now finish the proof of Theorem 1.1. Since for @ in Ap, the weight v is in
Ao, we can use one more result from [8] on strong bounds for Mo ) and conclude
from (3.2) that

[ Tiw (£)(2)[Pra(e)de < Cuy [T 110511200 / (Mog 1y (F) (2))Fva(2) de

R” ]:1 R

<C,. H 1651l Baro H 1511 225 () -
j=1 J=1

4. PROOF OF THEOREM 1.2

We start with a new weak type end-point estimate for Mpog1) -

Theorem 4.1. Let w € Ay. Then there exists a constant C' such that
(4.1)

vy ({2 €R" : Mpgogr)(f)(2)] >17}) < C 1:_11 </Rn M <|fji93)|) wj(x)d$> 1/”1.

Morever, this estimate is sharp in the sense that ®™ can not be replaced by ®*) for
k< m.

Proof. Our goal is to estimate [Q| = [{M_ruogr)(f1, f2, .-, fm) > 1}|. The set €2 is open
and we may assume it to be not empty. It is enough then to control the size of every
compact set F' contained in (2.

For x € F there exists a cube () with x € () such that

(4.2) [Tlflleq>1.
i=1
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Thus, by a covering argument, we can extract a finite family of disjoint cubes {Q;}
whose dilations cover F' for which

(4.3) Fl<c) 1l
and {Q;} satisfies
[T fillec. > 1.
i=1

We use the same notation of [12] and let C}* denote the family of all subset o =
(o(1),...,0(h)) from the index {1,...,m} with 1 < h < m different elements. Given
o € O} and a cube Q;, we say that ¢ € B, if || fow)llog, > 1 for k = 1,...,h and
||f0(k)||‘1’7Qi S lfork=nh + 1, .., m.

Let us consider o € C}" and i € B,,. Denote

k
I = [ [ 1ot llec:
j=1

and IIp = 1. Then it is easy to check that I, > 1 for every 1 < k < m. It follows that

L <l = | fowlle.@; k-1 = | fou Te-1lle.0,
or, equivalently (by (2.3))
1

4.4
(44 @l o,

@ (fou Me-1) > 1.
In particular,

(4.5) 1<

@ (fo(m) Mm—1) © (formy) © (1)

1 < b

Now, by taking into account the following equivalence

: Il
~ inf — )
1 flle.Q LILI;O{MJr al ([f/m)},
if1<j<m-—h-—1,by (4.4) we get
S (Mpj) = (|| fomiTm—j-1llo.q.)

- 1
< C¥ (1 + P (fo(m—j) Hm—j—l))

1 . _
/ O (fomoy) O (I ya).
From (4.5), by iterating the inequality above, we obtain

: R 2
@il Qiq}(fg(m)) Qi /Qi(I> (fotm-1)) * (n—2)

C

1 < C
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m—h—1 1 -

m—h—1 1 - h
= C( 11 Qi Q_(I)Hl (fa(m—j))> <Hq’m_h(||fa(j>||c1>7czz—)>-

j=0 j=1

since ® is submultiplicative.
Thus, since i € By, we have || fo(;)|la.q, > 1 for j =1,...h, and it follows

| , o
4.6 1< C YA (i pm—h+1 » .

Now, since for 1 <h <m and 0 < j < m —h—1 we have that ®I+1(t) < dmh(¢) <
d™(t) and ™ FL(t) < d™(t), we deduce

vl ], )

or equivalently

Q] <C’H </ d"(f;) )l/m.

Thus, going back to (4.3) it follows that

Vg (F)m ~ (Z V@(QJ)

< Z Z Z vis(Qi)
h=1 0€CI" i€ By
ym\
<ol y ZHmfw”m@P/’“Q 1 [ o)

h= 1066’ i€Bs j=1

< CH(/ O (£,(y >j<y>dy)

which concludes the proof of (4.1)
We now prove that the estimate (4.1) is sharp in the sense stated in theorem.
We claim that the following estimate is false

m 1/m
@) o Migog () > X"} < € (H ||<I>m—1<@>||u>

Jj=1
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We let A = 1 and then the estimate to be studied is

(4.8) {z s Migogry(£) > 1™ < C [T 1™ (1f5D]12s

Jj=1

for any f with all the components positives. Hence by the same homogeneity we
replacing f; by /\f—;

00 s M0 >3 < o (ST ety
R Pl
Now, let f; = x(0,1). If (4.9) holds, since ® is a Young function, we conclude

1
4.10 sup ———
( ) )\>]t:)) (I)m—l()\—m)
However, observe that, by definition of Mg r)(f) and of |.||Laog1),0, it follows for

any subset A that ||xalle.q = m. Hence, if 2 > e we have
n

{r € R : Mo (£)(@)| > A"} ™ < C.

1
(I)—l(x)m
Thus, taking into account that ¢*(t) = ¢(1 + log™ t)* , the left-hand side of (4.10) is
bigger than

ML(logL)(f)(l") > ||X(0,1)||T(1ogL),(o,x) =

! ! (@) - 9"
sup————{z >e: ——— > A}H™ > sup
A>0 (I)m_l()\_m) |{ (I)_l(x) }| 0<A<1/e (I)m_l(;n)
1 (1"
> om  Sup ( Ei\))l
2™ gene - Pm (A_m)

vV
)
=
o}
=)
0Q
|

Given (3.3) and (4.1) the proof of Theorem 1.2 is almost routine. The reader can
see [8, pp.38-39] and easily adapt the arguments.
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