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1 INTRODUCTION

Integral equations frequently lead to boundary integral equations (BIEs) that are typically nu-
merically solved by the boundary element method (BEM) using collocation or Galerkin weight-
ing techniques (Hackbusch, 1995; Pozrikidis, 1996).

As it is well known, a standard discretization procedure of a BIE consists of three parts (Sten-
roos and Haueisen, 2008): tessellation of the boundary surfaces, approximation of the solution
field with a linear combination of polynomial basis functions, and minimization of the error of
the approximate solution with respect to some weighting functions. A simple tessellation of the
boundary surface can be performed with flat simplex triangles, panels or elements, where their
vertices are also the nodes of the boundary mesh. The basis functions are defined either on the
elements, the nodes or the edges of the boundary mesh. In the first case, the basis functions
are piecewise constant, i.e. each basis function has the value 1 on one panel and 0 elsewhere,
and thus the number of basis functions corresponds to the number of elements in the surface
tessellation. In the second case, the basis functions are piecewise linear, i.e. each basis function
has the value 1 on one node and falls linearly to 0 toward the first-layer of neighboring nodes.
In the third case, the basis functions are also piecewise linear, i.e. each basis function has the
value 1 on one edge and falls linearly to 0 toward the first-layer of neighboring edges, e.g. those
that are used in computational electromagnetism (Stenroos and Haueisen, 2008).

In general, the solution field cannot be accurately represented with a finite set of predefined
basis functions, leading to an error that is minimezed with respect to a set of linearly indepen-
dent weighting functions. The number of weighting functions is generally chosen to be the
same as the number M of basis functions and, therefore, giving a system of M linear equations
with M unknowns. On one side, a point collocation technique minimizes the residual in a dis-
crete set of points defined with the Dirac function δ(x) that, typically, consists of the centroids
of the elements in case of constant basis functions. Then, there are only single surface inte-
grations, although these generate a non-symmetric system of algebraic equations. On the other
side, a Galerkin weighting technique minimizes the residual over the whole surface instead of a
discrete number of points, where the weighting functions are chosen identical to the basis func-
tions. It leads to a symmetric system of algebraic equations, albeit it involves double surface
integrations.

Examples of weighted alternatives in a BIE include the variational boundary element method
(VBEM Alia et al. (2006)), the symmetric boundary element method (SBEM Frangi and Bonnet
(1998); Vodicka et al. (2006)), or the (symmetric) Galerkin boundary element method (SGBEM
or GBEM, respectively (Bonnet et al., 1998; Sutradhar et al., 2008)), as used, for example, in mi-
croflows (Schindler, 2006), elasticity (Mazza et al., 2008), fluid-structure interaction (Paquay,
2002) or acoustics (Schuhmacher, 2000). Fast integration in collocation techniques was used,
for instance, in Fachinotti et al. (2007), where the self–integrals that contain singular kernels
were analytically computed over linear triangles. Analytic expressions for surface potentials
using isoparametric piecewise linear shape functions over flat triangles were developed in Fata
(2009), whereas non-linear transformations for nearly singular integrals over planar triangles
were used in collocation techniques in Scuderi (2008). Closed forms derived from a side local
frame strategy are also commonly employed (Medina and Liggett, 1988; D’Elı́a et al., 2000a,b),
where the surface integral over each panel is replaced by its closed contour integration, and a
side local frame is used for each side contribution.

When either a VBEM, SBEM, SGBEM or a GBEM is used in the three-dimensional (3D)
real space, it leads to compute double surface integrals, i.e. quadruple integrals, that account



for the pairwise interaction among all the panels of the surface mesh, a task that is carried out
through a doubly nested loop p, q = 1, 2, ..., E, where E is the number of elements on the
boundary mesh. The generic pair of interacting triangles is the support of the double surface
integral, and the integral value represents the interaction coefficient between pairs of triangles,
whose multiplicative kernel is obtained as the product of both panel kernels. In the case of
kernels with a weak singularity there are analytical expressions of the double surface integrals
in rather restricted cases, for instance, the “potential integrals” and self–integrals for flat trian-
gles with a constant or linear numerator kernel (Eibert and Hansen, 1995; Sievers et al., 2005),
and self–integrals for flat rectangles with a constant numerator kernel (López-Peña and Mosig,
2009). If two interacting triangles are not contiguous nor coincident, the multiplicative kernel is
regular and a Gauss–Legendre quadrature formula can be used. However, when these triangles
have a common edge or a common vertex, there are edge and vertex singularities, respectively.
In the case of self–integrals, when both facets are coincident, the whole integration domain is
weakly singular. For these reasons, special methods for the numerical integration are proposed
in the literature, e.g. the edge singularity case in collocation techniques (Burghignoli et al.,
2004). D. J. Taylor (2003) developed a systematic way for handling double surface integrals
over flat triangular elements, based on a convenient reordering of the four iterate integrations
that moves the weak singularity to the origin of the four-dimensional Euclidean real space (4D).
Then, the Duffy transformation (Duffy, 1982) systematically was used which regularizes the
integrand by using polar coordinates. Thus, Taylor chose a Gauss–Legendre numerical quadra-
ture on three coordinates and performed an analytic integration in the fourth one. A slightly
modified implementation of the Taylor scheme was presented in D’Elı́a et al. (2009a), where a
full numerical quadrature was employed in the four integration coordinates in order to handle
generic Green functions with a weak singularity.

Many boundary integral equations are of Fredholm type of first or second kind and are ob-
tained through direct and indirect integral formulations (Beer and Watson, 1992). Indirect for-
mulations in the case of creeping (or Stokes) flows (Power and Wrobel, 1995; D’Elı́a et al.,
2009b) are commonly related to hydrodynamic double- and single-layer potentials (Ladyzhen-
skaya, 1969), where the interaction coefficient among points has a tensorial character and can
be either a real or a complex value, corresponding to steady and harmonic Stokes flow, re-
spectively. Examples of creeping flows around bodies are found, among other applications,
in micro-electro-mechanical systems (MEMS) Wang (2002); Méndez et al. (2008); Berli and
Cardona (2009). When a body has geometric discontinuities on its surface, such as corners and
edges, there is a singular behavior of the stress and traction fields in both hydrodynamic and
elasticity problems (Kozlov et al., 2001; Dimitrov et al., 2001). Nevertheless, it has already
been shown that both boundary integral equations (Mustakis and Kim, 1998) and finite element
(Dimitrov, 2004) techniques can be used for solving numerically these special cases.

In the present work, an indirect boundary integral equation of Fredholm type and second
kind is proposed for the exterior steady creeping flow around a body in the three-dimensional
space, and is numerically solved by using collocation and Galerkin weighting procedures. In
the last case, a modified Taylor integration scheme is employed as a “black box” for the weakly
singular double surface integrals among all the elements of the boundary mesh (Taylor, 2003;
D’Elı́a et al., 2009a). Gauss-Legendre quadrature formulas using n1d points in each integration
coordinate, and flat simplex triangles are used in all cases. An isolated rigid body and an in-
compressible viscous fluid of Newtonian type are assumed. Numerical examples include the
steady creeping flow around a unit radius sphere and a unit edge length cube, covering issues
such as convergence of the numerical solution under mesh refinement and numerical stability



under mesh perturbations. In the case of the steady creeping flow around the unit cube, the
traction coefficients close to the edges and corners are plotted for the flow eigenmodes consid-
ered by Mustakis and Kim (1998), in order to check the corresponding traction exponent laws
against their semi-analytical computations. A comparison with a finite element computation is
performed as well.

2 BOUNDARY INTEGRAL EQUATION WITH AN INDIRECT FORMULATION

2.1 Stokes equations for an exterior and steady creeping flow

The fluid velocity vi = vi(x), with i = 1, 2, 3, and pressure p = p(x) fields of a steady
and creeping flow of an incompressible Newtonian viscous fluid, satisfy the Stokes equations
(Power and Wrobel, 1995)

µ
∂2vi
∂xj∂xj

=
∂p

∂xi
∂vi
∂xi

= 0

(1)

for all field points x = (x1, x2, x3) in the exterior flow domain Ωe to a closed surface A of
arbitrary shape, where µ is the dynamic fluid viscosity. The boundary conditions include the
non-slip boundary condition on the surface A given by

vi(x) + ui(x) = 0 for all x ∈ A (2)

where ui = ui(x) is the prescribed velocity on the surface A, and the radiation conditions at
infinity

vi(x) = O(1/R)

p(x) = O(1/R2)
(3)

as R→∞, where R = ‖x‖2 is the Euclidean distance from the origin O(x, y, z).

2.2 Classical hydrodynamic potentials

It is known that the velocity vDL
i (x) and pressure pDL(x) fields due to a hydrodynamic double-

layer (DL) potential generated by a (surface) density layer ψ decrease as

vDL
i (x;ψ) = O(1/R2)

pDL(x;ψ) = O(1/R3)
(4)

as R → ∞, and cannot exert net force nor torque on the surface A. Thus, since a double-layer
potential ψ alone cannot reproduce an arbitrary regular Stokes flow in the exterior domain Ωe,
Odqvist (e.g. Power and Wrobel (1995); Power and Miranda (1987) and references therein)
added an ad hoc combination of six single-layer potentials produced by (surface) density layers
φ to fix this shortcoming. The densities of these single-layer potentials are the eigenfunctions
of the adjoint integral operator of the double-layer potential; although, in general, they are not
explicitly known (Power and Miranda, 1987).

2.3 An extension of the completed double-layer boundary integral equation method

The “completed double-layer boundary integral equation method”, as it is termed in the litera-
ture (e.g. Power and Wrobel (1995), Sec. 6.2, p. 196, or Kim and Karrila (1991)) completes the
deficient range of the double-layer potential without recourse to the eigenfunctions of its adjoint



integral operator. This approach is an extension to the Stokes equation of the Mikhlin results of
the exterior Dirichlet problem for the Laplace equation (e.g. Power and Wrobel (1995); Power
and Miranda (1987) and references therein). It can be written as

vi(x) ≡ vi(x;ψ,α,β) = wDL
i (x;ψ) + vik(x)αk + rik(x)βk for all x ∈ Ωe (5)

where wDL
i (x;ψ) is the perturbation velocity due to a double-layer potential produced by a

(surface) density layer ψ, whereas

vik(x) = − 1

8πµ

[
δik
R

+
xixk
R3

]
(6)

is a Stokeslet, i.e. the Green function of the non-homogeneous Stokes system given by Eq. (1),
when the forcing term is the point force δ(x)δik, located at the origin and with unit value only
in the k-direction, and

rik(x) = − 1

8πµ

εipqδpkxq
R3

(7)

is a rotlet, i.e. the corresponding Green function when the forcing term is given by the point
torque εipq(∂/∂xq)δpkδ(x), located at the origin, δik is the Kronecker delta, which is 1 if i = k
and 0 otherwise, while εijk is the third order permutation symbol whose components are defined
to be +1 if (i, j, k) is an even permutation of (1,2,3), -1 if it is an odd permutation and 0 if
any index is repeated. Thus, this formulation adds to the double-layer potential wDL

i (x;ψ) a
Stokeslet of strength αk and a rotlet of strength βk, both located at the origin. On one side, the
Stokeslet exerts a total force equal to its strength, and zero total torque on any closed surface
enclosing it, whereas the rotlet exerts a total torque equal to its strength, and zero total force on
any closed surface enclosing it. On the other side, the double-layer potential with a well-defined
density layer ψ yields zero total force and torque on the closed surface A. Therefore, the total
force and torque resulting from the flow field defined by Eq. (5) are equal to the strengths α
and β, respectively. This extension was proposed by Power and Miranda (1987), and further
details are given in Power and Wrobel (1995); Kim and Karrila (1991).

A drawback of this scheme is that the velocity field has the typical behaviour of a concen-
trated source, a Stokeslet and a rotlet in this case and, thus, the traction patterns close to the
geometric discontinuities of the closed surface, such as corners and edges, are smeared. For
this reason, in the present work, the velocity field vi(x) is thought of as a linear superposition
between the velocity field produced by a double-layer potential wDL

i (x;ψ) plus a single-layer
(SL) one wSL

i (x;φ), i.e.

vi(x) ≡ vi(x;ψ;φ) = wDL
i (x;ψ) + wSL

i (x;φ) for all x ∈ Ωe (8)

where the single-layer surface density φ(y) is equivalent to a distributed system of point forces
on the surface A that can exert a net torque and, thus, it makes unnecessary to introduce a
surface density of rotlets.

2.4 Velocity potential of a double-layer surface density

The velocity potential due to a double-layer surface density ψ(y) is defined as (Power and
Wrobel, 1995)

wDL
i (x;ψ) =

∫
A

dAy Kij(x,y)ψj(y)

with Kij(x,y) = − 3

4π

rirjrk
r5

nk(y)

(9)



where dAy = dA(y) is the differential area, y = (y1, y2, y3) is the source point, r = (r1, r2, r3)
is the relative position, with r = x−y and r = ‖r‖2, while n(y) is the unit normal at y. As it is
well known in the Green function theory, as well as in solid and fluid mechanics, the j column of
the tensor Kij(x,y) physically represents the perturbation velocity induced by a double surface
layer density of unit value on the j-component only. This kernel has the polarity r−2+λ, where
λ is the Lyapunov exponent of the surface, with λ ∈ R and 0 < λ ≤ 1. If the density ψj(y) is
smooth enough, it is known that the double-layer velocity wDL

i (x;ψ) verifies the jump property
(e.g. Ladyzhenskaya (1969), Sec. 3.2, Eq. 22, p. 57),

wDL(x;ψ)(i) −wDL(x;ψ)(e) = ψ(x) (10)

across the single closed surface A when x ∈ A, where subscripts (i) and (e) denote the limiting
values of wDL(x;ψ) on the surface A, in case this surface is approached from inside or outside,
respectively, and given by

wDL
i (x;ψ)(i) = +

1

2
ψi(x) + wDL

i (x;ψ)

wDL
i (x;ψ)(e) = −1

2
ψi(x) + wDL

i (x;ψ)
(11)

whereas
wDL
i (x;ψ) =

∫
A

dAy Kij(x,y)ψj(y) (12)

denotes the direct value of wDL
i (x;ψ) on the surface A. Moreover, on smooth surfaces (Kim

and Karrila, 1991), ∫
A

dAy Kij(x,y) =
1

2
δij (13)

2.5 Velocity potential of a single-layer surface density

The velocity potential of a single-layer surface density φ(y) is defined as (Power and Wro-
bel, 1995)

wSL
i (x;φ) =

∫
A

dAy S̃ij(x,y)φj(y)

where S̃ij(x,y) = − 1

8πµ

[
δij
r

+
rirj
r3

] (14)

and it represents Stokeslet singularities, i.e. point forces distributed over the surface A. The
kernel S̃ij(x,y) is related to a point force located at the integration point y and oriented in the
i direction, with polarity r−1. The kernel can be obtained from the Kelvin one for elasticity
in the incompressible case (Fachinotti et al., 2007), which means the Poisson ratio is 1/2 . If
the density φ(y) is smooth enough, the single-layer wSL(x;φ) is continuous in the whole real
space R3. Furthermore, when φ is bounded and integrable, then the function wSL(x;φ) is
Hölder-continuous in the entire space, i.e.

wSL(x;φ)(i) = wSL(x;φ)(e) = wSL(x;φ) (15)

2.6 An indirect BIE of Fredholm type and second kind with a combined surface density

In order to exclude the rigid body motions, following an idea introduced in Power and Mi-
randa (1987) and extensively reviewed in Kim and Karrila (1991); Power and Wrobel (1995), it
is convenient to choose the linear dependence

φi(y) = c δijψj(y) with c = ρ1U1 (16)



where ρ1 and U1 and are the unit fluid density and unit speed, respectively. The conversion
factor c is introduced since both layer densities φ and ψ have different physical dimensions,
that is, φ constitutes a force surface density (or pressure), e.g. N/m2, while ψ is a perturbation
velocity, e.g. ms−1. Then,

φj(y) = c ψj(y) (17)

and the perturbation velocity due to a single-layer potential is rewritten as

wSL
i (x;ψ) =

∫
A

dAy Sij(x,y)ψj(y) (18)

where now

Sij(x,y) = − U1

8πν1

[
δij
r

+
rirj
r3

]
(19)

is the “kinematic” Stokeslet kernel, and ν1 = µ1/ρ1 is the unit kinematic fluid viscosity. Then,
the perturbation velocity from the exterior side of the surface A is given by Eq. (8)

vi(x) = wDL
i (x;ψ)(e) + wSL

i (x;ψ)(e) for all x ∈ A (20)

and taking into account the first boundary condition in Eq. (2),

wDL
i (x;ψ)(e) + wSL

i (x;ψ)(e) = −ui(x) for all x ∈ A (21)

Using the exterior limit case of Eq. (11) and replacing by Eq. (19), Eq. (21) gives

−1

2
ψi(x)−

∫
A

dAy [Kij(x,y)− Sij(x,y)]ψj(y) = −ui(x) for all x ∈ A (22)

Taking into account Eq. (13), the first term on the left hand side of Eq. (22) is introduced inside
the integral, and it results in the boundary integral equation∫

A

dAy {[Sij(x,y)−Kij(x,y)]ψj(y) +Kij(x,y)ψj(x)} = −ui(x) for all x ∈ A
(23)

for the combined density ψ, with i, j = 1, 2, 3. Using matrix notation, Eq. (23) is rewritten as

g(x) + u(x) = 0 for all x ∈ A (24)

which is a boundary integral equation of Fredholm type and second kind, with source term
−u(x), whereas

g(x) ≡
∫
A

dAy [H(x,y)ψ(y) + K(x,y)ψ(x)] for all x ∈ A

with H(x,y) = S(x,y)−K(x,y)

(25)

is a boundary integral operator with kernels H(x,y) and K(x,y). These kernels couple the
double-layer surface density ψ at the integration point y and the field point x.

3 NUMERICAL FORMULATIONS

Two numerical formulations are considered for solving the integral boundary equation given by
Eq. (24). First, a collocation technique (Beer and Watson, 1992; Power and Wrobel, 1995) is
employed and, next, a GBEM is used (Hackbusch, 1995). Numerical results were found using
both methods. These techniques use a doubly nested loop over the panels p, q = 1, 2, ..., E,
where the x and y points are related to the p, q panels, respectively, see Fig. 1. Element and
nodal values are denoted with supra and sub indexes, respectively. Finally, a semi-analytic
integration over triangles is summarized.
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Figure 1: Sketch of a closed and piecewise smooth surface A with an exterior flow domain Ωe: the field point
x, the source point y, the relative position r = x − y, the unit normals n(x),n(y), and the differential areas
dAx, dAy.

3.1 Collocation using constant elements

Assuming that the density layerψ(y) on the surface of each panel is constant, it can be extracted
out of the surface integrals in Eq. (24) and using a standard collocation technique, it results in
the system of equations

E∑
q=1

∫
A(q)

dAy

[
H(p,q)ψ(q) + K(p,q)ψ(p)

]
= −u(p) (26)

where the elemental matrices H(p,q) = H(x(p),x(q)) and K(p,q) = K(x(p),x(q)), as well as
the vectors u(p) = u(x(p)) and ψ(p) = ψ(x(p)), are evaluated at the panel centroids x(p) for
p, q = 1, 2, ..., E. Re-ordering

(F + S)Ψ = −U with Ψ,U ∈ R3E×1 and F,S ∈ R3E×3E (27)

where the global matrices are given by F = [F(p,q)] and S = [S(p,q)], while the global vectors
are Ψ = [ψ(p)] and U = [u(p)]. After simple algebra, the F matrix is given by

F(p,q) =


E∑

e=1,e 6=p

K(p,e) when q = p

−K(p,q) otherwise

(28)

and S(p,q) = S(x(p),x(q)). It is known that the matrix system of Eq. (27) obtained with a
collocation technique is regular and well conditioned (Hackbusch, 1995).

3.2 Galerkin weighting using linear elements

The fields ψ(x) and u(x) in Eq. (24) are approximated with ψ̂(x) and û(x) using linear
elements. The standard Galerkin weighting technique chooses the nodal shape functions Ni(x)
to enforce Eq. (24) through the orthogonality conditions∫

A

dAxNT
l (x)ĝ(x) +

∫
A

dAxNT
l (x)û(x) = 0 for l = 1, 2, ..., N (29)

where N is the number of nodes on the boundary mesh, and the supra-index T denotes trans-
position. Taking into account the compact support of the nodal shape functions Nl(x) and after
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Figure 2: Master triangles p and q for the simplex coordinates.

some algebra (see Appendix), Eq. (29) results in the equation system

E∑
q=1

[
I(p,q)Ψ(q) + J(p,q)Ψ(p)

]
= −M(p)U(p) for p = 1, 2, ..., E (30)

with the short notations

I(p,q) =

∫
A(p)

dAx

∫
A(q)

dAy N(p)T (x) H(x,y) N(q)(y) (31)

and
J(p,q) =

∫
A(p)

dAx

∫
A(q)

dAy N(p)T (x) K(x,y) N(p)(x) (32)

for the elements of the matrix system, while the element source vector is given by

M(p) =

∫
A(p)

dAx N(p)T (x)N(p)(x) (33)

The p and q triangles have the global numbered nodes i, j, k and r, s, t, respectively, see Fig. 2.
Then, the element solution vectors in Eq. (30) are given by

Ψ(p) =

Ψi

Ψj

Ψk

 ∈ R9×1 with Ψi =

ψ3i−2

ψ3i−1

ψ3i

 ∈ R3×1 (34)

as well as

Ψ(q) =

Ψr

Ψs

Ψt

 ∈ R9×1 with Ψr =

ψ3r−2

ψ3r−1

ψ3r

 ∈ R3×1 (35)

while the element source vector is

U(p) =

Ui

Uj

Uk

 ∈ R9×1 with Ui =

U3i−2

U3i−1

U3i

 ∈ R3×1 (36)



3.3 Double-surface integrals over flat triangles with a weak singularity

Each of the interaction integrals I(p,q) and J(p,q) given by Eqs. (31) and (32), respectively,
involves the double-surface integral

Z =

∫
A(p)

dAx

∫
A(q)

dAy F(x,y) (37)

that is performed over the p and q panels, so it is a quadruple integral. The integrand contains
the multiplicative kernel F = LG̃, where L = L(x,y) is some multiplicative regular function
and G̃ = G̃(r) is the Green function of the problem with r = ‖x− y‖2 such that it contains a
weak singularity O(1/r). Then, Eq. (37) is transformed by using two simplex coordinate sets,
i.e. (ξ1, ξ2) over the p panel and (η1, η2) over the q one,

(ξ1, ξ2) : 0 ≤ ξ1 ≤ 1 ; 0 ≤ ξ2 ≤ ξ1

(η1, η2) : 0 ≤ η1 ≤ 1 ; 0 ≤ η2 ≤ η1

(38)

see Fig. 2. The generic points on each of these triangles are transformed to the p and q panels
using

x(ξ1, ξ2) = N(p)(ξ1, ξ2)X
(p)

y(η1, η2) = N(q)(η1, η2)X
(q)

(39)

with the element shape functions

N(p)(ξ1, ξ2) =
[
(1− ξ1) (ξ1 − ξ2) ξ2

]
N(q)(η1, η2) =

[
(1− η1) (η1 − η2) η2

] (40)

and the element nodal coordinates at the triangle vertices

X(p) =

Xi

Xj

Xk

 ; X(q) =

Xr

Xs

Xt

 (41)

Then, Eq. (37) is written as

Z =

∫
A(p)

dAx

∫
A(q)

dAy F(x,y) = J (p)J (q) F̃ (42)

where J (p),(q) = 2A(p),(q) are the Jacobians of each panel, and A(p),(q) are their areas, respec-
tively, whereas F̃ is written in simplex coordinates as

F̃ =

∫ 1

0

dξ1

∫ ξ1

0

dξ2

∫ 1

0

dη1

∫ η1

0

dη2 F(ξ,η) (43)

Further details about a systematic strategy for computing Eq. (43) can be found in Taylor
(2003); D’Elı́a et al. (2009a).



Table 1: Number of nodesN and elementsE. Meshes 1-11 are structured on the unit sphere (smooth and perturbed
ones) and on the unit cube (smooth only). Mesh 12 is unstructured on the unit cube.

z 1 2 3 4 5 6 7 8 9 10 11 12
N 218 386 602 866 1178 1538 2402 3458 4706 5402 6938 674
E 432 768 1200 1728 2352 3072 4800 6912 9408 10800 13072 1344

3.4 Surface traction field computation

The body force D = (D1, D2, D3) and torque C = (C1, C2, C3), with respect to the origin
O(x, y, z) of the Cartesian coordinate system, are computed by the surface integrals (Power and
Miranda, 1987)

D =

∫
A

dAy φ(y)

C =

∫
A

dAy [y × φ(y)]

(44)

The traction field ti(x) = σij(x)nj(x) at the field point x, where σij(x) is the stress tensor, is
obtained using (e.g. Ladyzhenskaya (1969), Sec. 3.2, Eq. 24, p. 58),

ti(x)(e) = −1

2
φi(x)− 3

4π

∫
A

dAyKji(y,x)φj(y) for x ∈ A (45)

where Kji(y,x) is the transposed kernel from Eq. (9), and φj(y) is the single-layer surface
density given in Eq. (17). It should be noted that Eq. (45) assumes that the unit normal n(x)
is well defined at the field point x. This restriction precludes the use of this equation for the
computation of the traction field at points with geometric discontinuities, such as nodes, edges
or vertices of the polyhedral surface mesh, at least in a more classical sense. This shortcoming
is avoided by employing the panel centroids as the field points x in the numerical examples.
The drag coefficients are finally obtained as K = D/(µU∞L), Ki = Di/(µU∞L) and K̃ =
C/(µU∞L

2), where U∞ is the (unperturbed) incoming speed, L is a typical length, D = ‖D‖2,
and C = ‖C‖2. The traction coefficients are given by τ(x) = t(x)/(µU∞L

−1) and τi(x) =
ti(x)/(µU∞L

−1). The subindex i = 1, 2, 3 in the drag and traction coefficients indicates the
corresponding xi Cartesian component. In the numerical examples it was verified that the body
force obtained by summing the traction field given by Eq. (45) was close to the one obtained
with Eq. (44), although only the last ones are shown.

4 NUMERICAL EXAMPLES

Numerical simulations are performed with the proposed scheme for the steady creeping flow
of a viscous and incompressible fluid around a single body. Two flow cases are considered, a
sphere of unit radius and a cube of unit edge length, whose centers are placed at the origin of the
Cartesian coordinate system in R3. The numerical examples cover issues on the convergence of
the numerical solution under mesh refinement, and their numerical stability under small mesh
perturbations. In the unit cube example, the traction coefficients are plotted for several flow
eigenmodes in order to check the traction laws close to the edges and vertices, by comparison
with the semi-analytical computations of Mustakis and Kim (1998). The results of the parallel
eigenmode around the unit cube are also compared with a finite element computation. Flat
simplex triangles are used in all cases. The number z of BEM meshes and the corresponding
number of nodes N and elements E are shown in Table 1, where meshes 1-11 are structured



incoming flow unperturbed velocity U force D torque C
uniform (U∞, 0, 0) (6πµU∞R, 0, 0) 0
shear U∞(x2,−x1, 0)/R 0 (0, 0, 8πµU∞R2)
paraboloid U∞(x2

1 + x2
2, 0, 0)/R2 (4πµU∞R, 0, 0) 0

Table 2: Steady creeping flow around a sphere of radiusR. Analytical expressions for the viscous force and torque
for different incoming flows (Guazzelli, 2003; Dhont, 1996).

Figure 3: Colormaps of the τ1 traction coefficient on the unit sphere surface using a Q22 quadrature rule and
smooth BEM meshes 1, 5, 9 and 11 (see Table 1), from left to right and from top to bottom, respectively.

(smooth and perturbed ones), whereas mesh 12 is an unstructured one only used for the unit
cube.

The Gauss-Legendre formula is employed in the modified Taylor “black box” integrator,
with n1d quadrature points along each direction which, in turn, implies a total of n4

1d points by
interaction pair. Since the number of quadrature points may change among the panel layers,
the notation QIJ will be introduced, meaning that there are I Gauss-Legendre points on the
self-integral and the first layer of neighbouring panels and J points for the remaining layers.
The absolute value of the relative error |er| for the force coefficient K is computed as |er| =
|Knum/K(semi)analytical − 1|, and it is plotted as a function of the type of incoming flow, the
QIJ quadrature rule and the numberM of the degrees of freedom, beingM = 3E andM = 3N
in collocation and Galerkin, respectively.



Figure 4: Colormaps of the τ1 traction coefficient on the unit sphere surface using a Q22 quadrature rule and
perturbed BEM meshes 6, 8, 9 and 11 (see Table 1), from left to right and from top to bottom, respectively.

4.1 Sphere
The sphere test case is chosen since there are analytical solutions for several inflow conditions.
In particular, three inflow conditions are considered: uniform, shear, and paraboloid (Power
and Miranda, 1987). Analytical expressions (Guazzelli, 2003; Dhont, 1996) for the unperturbed
velocity, the force, and the torque for each case are summarized in Table 2. The following values
are adopted in the numerical simulations: fluid density ρ = 1 kg/m3, kinematic viscosity ν =
1 m2/s, incoming speedU∞ = 0.01 m/s along the x direction, and sphere radiusR = 1 m, while
the sphere diameter is taken as the typical length, i.e. L = 2R = 2 m. The analytical traction
field on the sphere surface under uniform flow is the constant value t = (3/2)µU∞/R e0

1,
where e0

1 is the unit Cartesian vector in the x1 direction and µ = ρν = 1 kg/m s, which in turn
implies the constant traction coefficient τ = 3. Figure 3 shows the colormaps of the τ1 traction
coefficient with the smooth BEM meshes 1, 5, 9 and 11 using a Q22 quadrature rule, from left
to right and from top to bottom, respectively.

In order to check the numerical stability of the solution, computations have been made over
perturbed meshes obtained by small random displacements of the nodal positions without leav-
ing the surface of the unit sphere. Figure 4 shows the colormaps of the traction coefficient for
the perturbed BEM meshes 6, 8, 9 and 11.

The absolute value of the relative percent error |er%| of the force coefficientKi, as a function
of the number of degrees of freedom M and the QIJ quadrature rule, with the smooth meshes
on the unit sphere, is plotted in Fig. 5 for three incoming flows: uniform flow (left), shear flow
(center) and paraboloid flow (right), respectively, with collocation (top) and Galerkin (bottom)



procedures. Note that the Q11 rule gives monotone convergence with a collocation procedure;
however, when a Galerkin one is used, this monotone convergence behaviour is obtained for
the Q22 rule. Furthermore, the order of magnitude of the error with a Q22 rule and a Galerkin
procedure is smaller than a Q11 rule with a collocation one.

The surface friction line patterns of the velocity field close to the unit sphere surface us-
ing mesh 8 are plotted in Fig. 6 as follows: uniform flow (U∞, 0, 0) m/s (left), shear flow
U∞(x2,−x1, 0)/R (center), and paraboloid flow U∞(x2

1 + x2
2, 0, 0)/R2 (right).

4.2 Steady creeping eigenmodes around the unit cube

As an example of a sharp body, a cube of unit edge length, whose center is placed at the origin
in R3, is considered. The cube test case is selected as a crude simplification of the phenom-
ena appearing with MEMS geometries (Fachinotti et al., 2007; Méndez et al., 2008; Berli and
Cardona, 2009). In the numerical simulations, the following values are adopted: fluid density
ρ = 1 kg/m3, kinematic viscosity ν = 1 m2/s, and edge length L = 1 m. Following Mustakis
and Kim (1998), five flow eigenmodes are next considered.

4.2.1 Parallel and splitting eigenmodes.

The first two flow eigenmodes are sketched in Fig. 7 and they are: (i) the parallel mode
U∞ = (1, 0, 0) m/s, with flow parallel to edges J − J ′′′, see Fig. 7 (left); and (ii) the splitting
mode U∞ = (1, 0, 1) m/s, where the flow is splitted by edges K − K ′ and turns around the
edges L − L′, see Fig. 7 (right). They are quasi two–dimensional (2D) flow eigenmodes in
the sense that a 2D wedge flow approximation can be performed close to the edges J − J ′′′,
K −K ′ and L− L′. The edges K −K ′ have the symmetric flow, while the edges L− L′ have
the antisymmetric one. Mustakis-Kim computed semianalytical asymptotic laws for the total
traction coefficients K, as a function O(sp) of the distance s to the edge singularities (Mustakis
and Kim, 1998). The singularity exponents p found by Mustakis-Kim are: p = −0.4555 close to
the parallel edges J−J ′′′, p = −0.0915 close to the symmetric edgesK−K ′, and p = −0.3333
close to the antisymmetric edges L− L′, see Fig. 7.

4.2.2 Symmetric and antisymmetric I and II eigenmodes.

The third, fourth and fifth flow eigenmodes are a symmetric and two antisymmetric 3D flows,
respectively, not sketched in the figures. In this case, the semianalytical asymptotic laws for the
total traction coefficients K are computed as a function O(sp) of the distance s to a vertex
singularity (Mustakis and Kim, 1998). The flow eigenmodes and their singularity exponents p
close to, for instance, the vertex M and along the diagonal coordinate WI , see Fig. 8 (right),
were also given in Mustakis and Kim (1998) and they are as follows: the symmetric flow with
U∞ = (1, 1, 1) m/s and p = −0.31877, the antisymmetric I flow with U∞ = (1, 0,−1) m/s and
p = −0.62463, and the antisymmetric II flow with U∞ = (1,−2, 1) m/s and p = −0.62463,
respectively, i.e. the antisymmetric flow has a double eigenvalue and two eigenmodes.

4.3 GBEM numerical solution of the steady creeping eigenmodes around the unit cube

Several meshes are used in order to check mesh convergence under refinement along the
(polygonal) coordinates: front-meridian AB, rear-meridian CD, equatorial EF and diagonal
WI , see Fig. 8. Comparisons between Mustakis-Kim asymptotic laws and a GBEM computa-
tion with a Q22 quadrature rule on mesh 11 are shown in Figs. 9 and 10. It should be noted that



Mustakis-Kim give only the traction law as a function of the distance s to the edge or vertex
singularity and, then, only this dependence is plotted in all figures.

In the case of the quasi two–dimensional steady creeping eigenmodes, the total traction co-
efficients K across the middle cube section parallel to the unperturbed flow are plotted in Fig.
9 as a function of the (polygonal) coordinates: (i) front-meridian AB (left), rear-meridian CD
(center), and equatorial EF (right). The total traction coefficients K for the three–dimensional
steady creeping eigenmodes of the 90 degree vertex are plotted in Fig. 10 as a function of the
(polygonal) coordinate along the diagonal WI coordinate on the top plane. In the case of flow
parallel to edges J-J ′′′ (parallel mode U∞ = (1, 0, 0) m/s, Fig. 9), the total traction coefficient
computed in the x1-Cartesian direction is, approximately, K1 ≈ 12.70 using the mesh 11.

The colormaps of the τ1 traction coefficient on the unit cube surface obtained with meshes
12 and 10 are shown in Fig. 11, left and right, respectively.

4.4 Analysis of the convergence under mesh refinement

The absolute value of the relative errors |er| of the force coefficient Ki on the unit sphere,
using the Q22 quadrature rule are plotted, respectively for smooth and noisy meshes, in Figs.
12 and 13, and for incoming flow types: er(K1) uniform flow (left), er(K3) shear flow (middle)
and er(K1) paraboloid flow (right). Galerkin BEM results are displayed with a solid line, while
results obtained with collocation BEM are plotted with a dashed line. Note that with GBEM
the convergence is monotone and almost linear whereas collocation BEM does not show a
monotonic convergence.

Since there is no analytical solution for the unit cube, bounds and semi–numerical values
are taken as a reference. For instance, the drag force is bounded (Mestel, 2004) by Dmin <
D < Dmax, with Dmin = 3πµU∞L and Dmax =

√
3Dmin, where L is the cube edge length,

and U∞ = ||U∞||2. The corresponding drag coefficient interval is Kmin < K < Kmax, with
Kmin = 3π and Kmax = 3

√
3π. The relative errors computed taking as reference the results

from the more refined mesh (mesh 11) are plotted in Fig. 14 with a Galerkin BEM (solid line)
and with a collocation BEM (dashed line) for: uniform flow (left), shear flow (middle) and
paraboloid flow (right).

The drag coefficients obtained with the more refined mesh (mesh 11, Table 1) are: K1 ≈
12.70, K3 ≈ 8.03 and K1 ≈ 3.63 for uniform, shear and paraboloid incoming flows, respec-
tively. It is worth noting that the drag coefficients obtained in the uniform flow case are close to
the geometric mean Kgm = (Kmin Kmax)1/2 given by Kgm = 3π 4

√
3 ≈ 12.404.

4.5 Performance issues between collocation and Galerkin BEM techniques

Comparing performance issues between the present collocation and Galerkin implementa-
tions, it can be observed that: (i) the net forces obtained with a Galerkin BEM are a bit more
accurate than that obtained with collocation BEM; (ii) the Galerkin BEM exhibits monotonic
convergence while a collocation BEM does not have this property; (iii) the system matrix with
a Galerkin BEM is symmetric whereas with collocation BEM does not have this property; (iv)
the size of the solution vector Ψ is 3N with a Galerkin BEM and 3E with a collocation BEM
and, since N � E for 2D BEM meshes immersed in 3D, then the Galerkin BEM is relatively
cheaper than collocation BEM in core-memory resources, especially when dense matrices are
employed. For instance, in the case of mesh 11 in Table 1, there are 20 814 unknowns when
using Galerkin (3N ) and 39 216 ones when using collocation (3E), i.e. approximately a ratio
of 2 to 1, and, therefore, a Galerkin approach allows to use more refined meshes for a given size



of the core memory.
The surface friction line patterns of the velocity field close to the unit cube surface using

mesh 8 are plotted in Fig. 15 as follows. At the top: parallel mode U∞ = (1, 0, 0) m/s
(left), splitting mode U∞ = (1, 0, 1) m/s (center) and symmetric mode U∞ = (1, 1, 1) m/s
(right). At the bottom: antisymmetric I mode U∞ = (1, 0,−1) m/s (left), antisymmetric II
mode U∞ = (1,−2, 1) m/s (center), and shear flow U∞ = (x2,−x1, 0)/L m/s (right).

4.6 FEM numerical solution of the parallel creeping eigenmode around the unit cube

In order to provide another validation, a FEM computation of the parallel mode U∞ = (U∞, 0, 0)
is performed using the open source PETSc-FEM code, which is a parallel multi-physics finite el-
ement library (Storti et al., 2008; Storti and D’Elı́a, 2004; Battaglia et al., 2006, 2010; Garibaldi
et al., 2008; Dalcı́n et al., 2007; Franck et al., 2009) based on the Message Passing Interface
(MPI, http://www.mpi-forum.org) and the Portable Extensible Toolkit for Scientific Computa-
tions (PETSc, http://www-fp.mcs.anl.gov/petsc). This code solves the Navier-Stokes equations
using the SUPG/PSPG algorithm (Tezduyar et al., 1992; Sonzogni et al., 2002), i.e. using equal-
order interpolations with the PSPG stabilization term in order to satisfy the Brezzi-Babuška
condition. The FEM computation includes the inertial terms, so that in order to compare it with
the GBEM results a low Reynolds number is chosen.

The only flow case considered in the FEM computation is the parallel mode U∞ = (U∞, 0, 0)
m/s, with flow parallel to the edges J-J ′′′, see Fig. 7 (left). The Reynolds number is set to 0.001
by choosing the particular combination of parameters: kinematic fluid viscosity ν = 0.1 m2/s,
incoming speed U∞ = 10−4 m/s and cube side lenght L = 1 m. The flow is aligned with the x
axis and, by symmetry considerations, only one fourth of the domain (y, z ≥ 0) is considered.
The finite element mesh is constructed by extrusion of a surface mesh having 50x50 quadrangles
on each side of the cube, i.e. it has 50× 50× 6/4 = 3750 quadrangles on 1/4 of the cube inside
a prismatic domain. The nodal spacing is non-uniform, with a logarithmic refinement towards
the edges of the cube, where the results show large friction values. This refinement is such
that the linear size h of the quadrangles near the center of the face is in a ratio of 5:1 to the
size near the edges. The surface mesh is extruded into 50 layers of hexahedral elements in the
radial direction from the cube surface, up to an external cube of length Lext = 50 m. The width
of layers in the radial direction is also refined towards the internal cube surface in such a way
that the width of the external layer is in a ratio of 40:1 to the layer adjacent to the cube skin.
Boundary conditions are as follows: velocity U = U∞ m/s at inlet (x = −Lext/2), pressure
p = 0 at outlet (x = Lext/2), slip boundary condition at the lateral walls y, z = ±Lext/2, and
non-slip boundary condition U = 0 at the cube.

With this setup the computed value for the drag is K1 = F1/(µU∞L) ≈ 13.76. The numer-
ical experiment is performed with other values of Lext and mesh refinement in order to assess
the sensitivity of this result with respect to those parameters. These series of experiments have
shown that this result is particularly sensitive to the size of the computational domain Lext. This
is so because the slip boundary conditions are equivalent to a lattice of mirrors of the cube with
a spacing of ∆y = ∆z = Lext Then, each cube sees an effective external field given by U∞
plus the velocity induced by the other cubes in the array. This field decays very slowly (as
O(1/Lext)) for Lext →∞, so that very large domains must be used in order to reduce the error.
For instance, the error for Lext = 10 is estimated in 15%. Computations for a sphere, for which
the drag can be computed analytically, show a similar behavior.

The traction map obtained with GBEM is close to the FEM one, whereas the traction coeffi-
cient is approximately 8% lower than the FEM value. This difference deserves some comments.

http://www.cimec.org.ar/petscfem


Both results fall within the interval (Kmin, Kmax) predicted by an analytic computation. In the
computation with GBEM, the result is sensitive to the number of quadrature points, whereas
for FEM the most influential parameter is the size of the computational domain. In both cases,
some residual error may be due to insufficient mesh refinement. This is especially true in the
FEM case, because the strong variation of friction near the edges degrades the convergence with
respect to the mesh refinement. Figure 16 shows the Cartesian K1 component of the traction
coefficient of the parallel mode U∞ = (U∞, 0, 0), as a function of the meridian (polygonal)
coordinate sm (left), and as a function of the equatorial one se (right), obtained with FEM (solid
line) and GBEM (crosses) computation.

5 CONCLUSIONS

An indirect boundary integral equation of Fredholm type and second kind has been devel-
oped for exterior and steady Stokes flow around a three-dimensional rigid body, and it has been
numerically solved using collocation and Galerkin procedures. The boundary integral equation
has been chosen as a combination of double- and single- layer potentials for steady creep-
ing flows with densities defined over the closed surface. It is an extension of the “completed
double-layer boundary integral equation method” (e.g. Power and Wrobel (1995); Kim and
Karrila (1991)). Unlike the original version, in the present strategy a surface single-layer den-
sity, equivalent to a surface density of Stokeslets, has been used and, since a distributed system
of point forces can exert a net torque, it has not been necessary to introduce a surface density of
rotlets. The rigid body motions have been excluded assuming that the single-layer density has a
linear dependence with respect to the double-layer one through the ad hoc Eq. (16), following
an idea introduced in Power and Miranda (1987) and extensively reviewed in Kim and Karrila
(1991). The double surface integrals that express the pairwise interaction among all boundary
elements have been approximated using a modified Taylor integration scheme (Taylor, 2003;
D’Elı́a et al., 2009a), and a QIJ strategy, with I Gauss-Legendre points on the self-integral and
first layer of neighbouring panels, those that have a common edge or vertex, and J ones for the
remaining layers, on each integration coordinate. The numerical examples included the steady
creeping flow around the unit radius sphere and the unit edge length cube, covering issues on
the convergence under mesh refinement and numerical stability under small mesh perturbations.
Gauss–Legendre quadrature points n1d = {1, 2} along each direction have been used which, in
turn, imply a total of n4

1d points by pair interaction. From the numerical tests with the sphere,
it was noted that the Q11 rule gives monotone convergence with a collocation BEM. However,
when a Galerkin BEM was used, this monotone convergence behaviour was obtained for the
Q22 rule. Furthermore, the order of magnitude of the error with a Q22 rule and a Galerkin pro-
cedure is smaller than a Q11 rule with a collocation one. When the boundary mesh was refined
enough, a Q12 quadrature rule has been found to give a reasonable approximation and, then, it
can be a compromise solution for highly refined meshes. In any case, the system matrix ob-
tained with a Galerkin technique remains fully populated, as in most standard BEM schemes;
however, it is symmetric and positive defined which enables a better coupling of BEM and FEM
matrices. The singular behavior of the surface traction on edges and corners in the unit cube
test for steady creeping eigenmodes has been close to the singularity exponents obtained with a
semi- analytical computation of Mustakis and Kim (1998). The parallel eigenmode, with paral-
lel flow along the cube edges, has been also compared with a finite element computation. The
colormaps of the surface traction and the friction line pattern of the velocity field near edges and
corners have not shown numerical instabilities nor severe precision loss; although, the traction
field has been somewhat smoothed.



A APPENDIX. GALERKIN APPROXIMATION THROUGH PIECEWISE SHAPE FUNC-
TIONS

Linear approximations ψ̂
(p)

and û(p) for the density ψ(x)(p) ∈ R3×1 and velocity u(x)(p) ∈
R3×1 fields are assumed, respectively, on the surface of the p and q simplex triangles, with
nodes i, j, k and r, s, t, respectively, see Fig. 2, that is,

ψ(p)(x) ≈ ψ̂
(p)

= N(p)(x)Ψ(p)

ψ(q)(x) ≈ ψ̂
(q)

= N(q)(x)Ψ(q)
(A1)

where the element shape functions N(p,q)(x) ∈ R3×9 are given by

N(p)(x) =
[
N

(p)
i (x) N

(p)
j (x) N

(p)
k (x)

]
N(q)(x) =

[
N

(q)
r (x) N

(q)
s (x) N

(q)
t (x)

] (A2)

respectively, which are the restrictions of the nodal shape functions Ni(x), Nj(x) and Nk(x)
on the p element, and Nr(x), Ns(x) and Nt(x) on the q element, respectively (Fig. 2), while
Ψ(p) and Ψ(q) are given by Eqs. (34) and (35), respectively. The nodal shape functions on Eq.
(29) are arranged as

NT (x) =


NT

1 (x)
...

NT
l (x)
...

NT
N(x)

 ∈ R3N×3 with NT
l (x) =

Nl(x) 0 0
0 Nl(x) 0
0 0 Nl(x)

 (A3)

for nodes 1 ≤ l ≤ N , with
Nl(x) =

∑
e∈patch(l)

N
(e)
l (x) (A4)

where patch(l) is the patch of adjacent elements around the l node. Then, the functions
ĝ(x), û(x) ∈ R3×1 in Eq. (29) are given by

g(x) ≈ ĝ(x) =
E∑
q=1

ĝ(q)(x) (A5)

and

u(x) ≈ û(x) =
E∑
q=1

û(q)(x) =
E∑
q=1

N(q)(x)U(q) (A6)

respectively, where

ĝ(q)(x) =

∫
A(q)

dAy

[
H(x,y)ψ̂

(q)
(y) + K(x,y)ψ̂

(q)
(x)
]

(A7)

and U(q) is given by

U(q) =

Ur

Us

Ut

 ∈ R9×1 with Ur =

U3r−2

U3r−1

U3r

 ∈ R3×1 (A8)



Replacing Eqs. (A5) and (A6) into Eq. (29) results

Ĝ(p) + B̂(p) = 0 for p = 1, 2, ...E (A9)

The first term of Eq. (A6) gives the left hand side of the Galerkin system and it is given by

Ĝ(p) =

∫
A(p)

dAx N(p)T (x)
E∑
q=1

ĝ(q)(x)

=

∫
A(p)

dAx N(p)T (x)
E∑
q=1

∫
A(q)

dAy

[
H(x,y)ψ̂

(q)
(y) + K(x,y)ψ̂

(q)
(x)
]

= Ĝ
(p)
1 + Ĝ

(p)
2

(A10)

where

Ĝ
(p)
1 =

E∑
q=1

∫
A(p)

dAx

∫
A(q)

dAy N(p)T (x) H(x,y) N(q)(y) Ψ(q)

=
E∑
q=1

I(p,q) Ψ(q)

(A11)

and

Ĝ
(p)
2 =

E∑
q=1

∫
A(p)

dAx

∫
A(q)

dAy N(p)T (x) K(x,y) N(p)(x) Ψ(p)

=
E∑
q=1

J(p,q) Ψ(p)

(A12)

where I(p,q) and J(p,q) are given by Eqs. (31) and(32), respectively. Finally, the second term of
Eq. (A6) gives the right hand side of the Galerkin system and it is given by

B̂(p) =

∫
A(p)

dAx N(p)T (x)
E∑
q=1

û(q)(x)

=

∫
A(p)

dAx N(p)T (x)
E∑
q=1

N(q)(x) U(q)

=
E∑
q=1

∫
A(p)

dAx N(p)T (x) N(q)(x) U(q)

=

∫
A(p)

dAx N(p)T (x) N(p)(x) U(p)

= M(p) U(p)

(A13)

where M(p) is given by Eq. (33).
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Figure 5: Absolute value of the relative percent error |er%| of the force coefficient Ki as function of the number
of degrees of freedom M and the QIJ quadrature rule with smooth meshes on the unit sphere: K1 uniform flow
(left), K3 shear flow (center) and K1 paraboloid flow (right). Collocation (top) and GBEM (bottom).



Figure 6: Surface friction line patterns of the velocity field close to the unit sphere surface using a Q22 quadrature
rule and mesh 8: uniform flow (left), shear flow (center) and paraboloid flow (right).
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Figure 7: Sketch of the quasi 2D steady creeping eigenmodes across the unit cube: (i) parallel mode U∞ =
(1, 0, 0) m/s with parallel flow along edges J − J ′′′; (ii) splitting mode U∞ = (1, 0, 1) m/s, with symmetric flow
along edges K,K ′ and antisymmetric on edges L,L′, as defined in Mustakis and Kim (1998).
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Figure 8: Meridian, equatorial and diagonal (polygonal) coordinates on the unit cube. The Cartesian coordinate
system O(x, y, z) = O(x1, x2, x3) is centered.



s
−0.0915

s
−0.4555

s
−0.3333

A B C D

GBEM

GBEM

GBEM

E F

0

1

2

3

4

5

6

0 0.2 0.4
front meridian coordinate

antisymmetric splitting edge

0

1

2

3

4

5

6

1.6 1.8 2

tr
ac

ti
o

n
 c

o
ef

fi
ci

en
t 

K

rear meridian coordinate

symmetric splitting edge

0

1

2

3

4

5

6

0 0.2 0.4

tr
ac

ti
o

n
 c

o
ef

fi
ci

en
t 

K

equatorial coordinate 

parallel mode
tr

ac
ti

o
n

 c
o

ef
fi

ci
en

t 
K

Figure 9: Quasi 2D steady creeping eigenmodes across the middle section of the unit cube: total traction coeffi-
cients K as a function of the coordinate: front meridian AB (left), rear meridian CD (center), and equatorial EF
(right). GBEM computation (mesh 8, Table 1) and semi-analytical laws O(sp) (Mustakis and Kim, 1998), as a
function of the distance s to the edge singularity.
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Figure 10: 3D steady creeping eingenmodes of the 90 degree vertex of the unit cube. Total traction coefficients
K as a function of the coordinate along the diagonal WI on the top plane. GBEM computation (mesh 8, Table 1)
and semi-analytical laws O(sp) (Mustakis and Kim, 1998), as a function of the distance s to the vertex singularity.



Figure 11: Colormaps of the τ1 traction coefficient on the unit cube surface using aQ22 quadrature rule and meshes
12 and 10 (see Table 1) on left and right, respectively.
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Figure 12: Absolute value of the relative error |er| of the force coefficient Ki as function of the number of degrees
of freedoms M on the unit sphere with smooth meshes and the Q22 quadrature rule. Galerkin (solid line) and
collocation (dashed line): er(K1) uniform flow (left), er(K3) shear flow (middle) and er(K1) paraboloid flow
(right).
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Figure 13: Idem Figure 12 with noisy meshes.
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Figure 14: Absolute value of the relative error |er| of the force coefficient Ki as function of the number of degrees
of freedom M on the unit cube and the Q22 quadrature rule. Galerkin (solid line) and collocation (dashed line):
K1 uniform flow (left), K3 shear flow (middle) and K1 paraboloid flow (right).



Figure 15: Surface friction line patterns of the velocity field close to the unit cube surface using a Q22 quadrature
rule and mesh 8. At the top: parallel mode U∞ = (1, 0, 0) (left), splitting mode U∞ = (1, 0, 1) (center), sym-
metric mode U∞ = (1, 1, 1) (right). At the bottom: antisymmetric I mode U∞ = (1, 0,−1) (left), antisymmetric
II mode U∞ = (1,−2, 1) (center), and shear flow U∞ = (x2,−x1, 0)/L(right).
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Figure 16: Cartesian K1 component of the traction coefficient for the parallel mode U = (U, 0, 0) m/s, as a
function of the meridional and equatorial (polygonal) coordinates sm (left) and se (right), with FEM (solid line)
and GBEM (crosses). See Fig. 8, left and center, for the position of the points A− I .
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