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Abstract. Jerison and Kenig in J. Funct. Anal. 130 (1995), no. 1, 161–219,

gave a precise region R in the square [0, 1]2 for the pairs (s, 1
p

) for which every

harmonic function in the Lipschitz domain D, with Dirichlet data in Bsp(∂D),

belongs to B
s+

1
p

p (D). We prove that every temperature u in Ω = D × (0, T )

belongs to Bατ (Ω) with 1
τ

= 1
p

+ α
d

, 0 < α < min
{
d p−1

p
, (s+ 1

p
) d
d−1

}
provided

that the Dirichlet data f belongs to Bsp(∂D) and that the initial condition g

belongs to B
s+

1
p

p (D), whenever (s, 1
p

) ∈ R. The result follows from those by

T. Jakab and M. Mitrea in Math. Res. Lett. 13 (2006), no. 5-6, 825–831 and
from Parabolic Besov regularity for the heat equation by the authors available

in http://www.cimec.org.ar/ojs/index.php/cmm/article/view/3729

1. Introduction

In the spirit of the elliptic results by Dahlke and DeVore in [DD], based in [DJP],
the improvement of the regularity exponent in Besov norms becomes a tool to
measure the rate of convergence of nonlinear approximation methods. A parabolic
Besov regularity improvement for temperatures, i.e., solutions of ∂u

∂t = ∆u, follows
from the results obtained by the authors in [AG]. Nevertheless to apply those
results, a starting Besov regularity for the temperature is required. In the elliptic
case this initial regularity for the harmonic function is proved to be attained if we
solve the Dirichlet problem with Besov boundary data, see the results of Jerison
and Kenig in [JK]. Its parabolic counterpart is due to Jakab and Mitrea, see [JM].

We shall precisely introduce in the next section all the Besov spaces involved in
our main result, the elliptic Besov space Bsp(D) for a bounded Lipschitz domain

in IRd, the boundary elliptic Besov space Bsp(∂D) and the parabolic Besov space
Bsp(Ω) where Ω = D × (0, T ).
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For a given 0 < ε ≤ 1 we shall write Rε to denote the set of those points
(a, b) ∈ [0, 1]2 in the plane satisfying any one of the following three conditions

1− ε
2

< b <
1 + ε

2
and 0 < a < 1;

1 + ε

2
≤ b < 1 and 2b− 1− ε < a < 1;

0 < b ≤ 1− ε
2

and 0 < a < 2b+ ε.

The following figure contains a picture of Rε for ε = 1
4 .

a

b

1

1

ε

ε
2

Figure 1. The region Rε for the parameters (s, 1
p ) of the regula-

rity of data.

In this note we aim to prove the following result.

Theorem 1. Let D be a bounded and Lipschitz domain contained in IRd and let
T > 0 be given. Let Ω = D× (0, T ) be the associated parabolic domain. Then there
exists a positive number ε ≤ 1 depending only on D such that for each p and each
s with (s, 1

p ) ∈ Rε, a solution of the initial-boundary value problem

(P )


∂u
∂t = ∆u, in Ω

u(x, t) = f(x), for (x, t) ∈ ∂D × (0, T )

u(x, 0) = g(x), for x ∈ D

belongs to the parabolic Besov space Bατ (Ω) with 0 < α < min
{
dp−1

p , (s + 1
p ) d
d−1

}
and 1

τ = α
d + 1

p provided that f ∈ Bsp(∂D) and g ∈ B
s+

1
p

p (D).

The result becomes relevant when α can be taken larger than s+ 1
p , see Figure 2.

The arguments given in [DD] regarding the improvement of the regularity parameter
α as a tool to improve the rate of convergence of nonlinear approximation methods
for elliptic problems, extend after Theorem 1 to diffusion problems.

2. Proof of Theorem 1

Let us start this section by giving a brief description of the Besov spaces involved.
Even when several approaches are possible, we prefer, for the sake of simplicity the
interpolation one.

Prep
rin

t



3

α

1
τ

1

1

1
p

s s+ 1
p

L

Figure 2. The black segment in the line L shows the improved
regularity with data associated to (s, 1

p ) ∈ Rε when d = 10.

The complete scale of Besov spaces Bsp,q(IR
d) indexed by the parameters s, p, q

in the space IRd is well known and several equivalent versions can be found in the
classical literature such as Peetre’s book [Pee] and some modern approaches in the
book by Y. Meyer [Mey] just to mention two standard references. We shall only deal
with the case p = q and we shall write Bsp instead of Bsp,p. Given an open subset D

in IRd one can define Bsp(D) as the space of all the restrictions to D of the functions

in Bsp(IR
d). A second way to define Bsp(D) is provided by the real interpolation

between Lebesgue and Sobolev spaces. Precisely, for 0 < s < 1 and 1 ≤ p ≤ ∞,
Bsp(D) = [Lp(D),W 1

p (D)]s,p the s-interpolated between Lp(D) and W 1
p (D). When

D is a bounded Lipschitz domain in IRd, both approaches coincide. The initial

condition g in our problem (P) belongs to B
s+

1
p

p (D) in the above described sense.

The second Besov space is involved in the boundary condition f and has to be
described by using the local parametrization of the boundary ∂D of D. After the
standard localization arguments the problem of defining Bsp(∂D), reduces to define
the corresponding Besov class on the graph G of a Lipschitz function φ with domain
in IRd−1. This is done by saying that f ∈ Bsp(G) when f(x, φ(x)) ∈ Bsp(IRd−1) for
0 < s ≤ 1 and p > 0.

Let us now introduce through interpolation the parabolic Besov spaces involved
in the statement of Theorem 1. We would like to point out that Besov scales have
been considered in very general settings such as spaces of homogeneous type, see
[HS] for example. The approach there is of Littlewood-Paley type. See also [Sch],
[ST] and [BIN] for more literature on the subject. For 1 ≤ p ≤ ∞ the anisotropic
Sobolev space W 2,1

p (Ω) is defined by the norm

‖v‖W 2,1
p (Ω) = ‖v‖Lp(Ω) +

d∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥
Lp(Ω)

+
d∑
i=1

d∑
j=1

∥∥∥∥ ∂2v

∂xi∂xj

∥∥∥∥
Lp(Ω)

+

∥∥∥∥∂v∂t
∥∥∥∥
Lp(Ω)

.

For 0 < α < 2 we define

B
α,
α
2

p (Ω) = [Lp(Ω),W 2,1
p (Ω)]α

2 ,p
,
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the α
2 -real interpolated space between W 0,0

p (Ω) = Lp(Ω) and W 2,1
p (Ω). For simplic-

ity we introduce the notation IBαp (Ω) for the space B
α,
α
2

p (Ω).

Before proving Theorem 1 we shall introduce two known regularity results for
solutions of the heat equation. The first one, due to Jakab and Mitrea [JM], gives
the preservation of Besov regularity from boundary and source data in the solution
of the heat equation with homogeneous initial data. The second, contained in [AG],
provides the improvement of Besov regularity for the case of vanishing source.

Theorem 2. Let D be a bounded Lipschitz domain in IRd (d ≥ 2) and let T > 0
be given. Set Ω = D × (0, T ).

(A) ([JM]) There exists ε > 0 depending only on the Lipschitz character of D such
that for every (s, 1

p ) ∈ Rε the solution of

(P1)


( ∂∂t −∆)v = ϕ, in Ω

v = ψ, in ∂D × (0, T )

v(x, 0) = 0, for x ∈ D

belongs to Lp((0, T );B
s+

1
p

p (D)) provided that ψ ∈ Bsp(∂D) and ϕ ∈ B
s+

1
p−2

p (D).
(B) ([AG]) For 1 < p <∞, λ > 0 and u a solution of

∂u

∂t
= ∆u in Ω

with u ∈ Lp((0, T );Bλp (D)), we have that u ∈ Bατ (Ω) with 1
τ = α

d + 1
p and

0 < α < min{dp−1
p , λ d

d−1}.

Part (A) of Theorem 2 follows from Theorem (1.1) and equation (5) in [JM].
Part (B) is obtained in [AG] which is itself the third part of the parabolic Besov
regularity improvement program started in [AGI2] and [AGI1].

Proof of Theorem 1. Let u be a solution of (P ) then v = u− g is a solution of (P1)

with ϕ = −∆g and ψ = f − g. Now since g ∈ B
s+

1
p

p (D) we have that ϕ = −∆g ∈

B
s+

1
p−2

p (D). On the other hand from Theorem 3.1 in [JK] we know that the trace

of g on ∂D belongs to Bsp(∂D) since g ∈ B
s+

1
p

p (D). Hence ψ ∈ Bsp(∂D). We are in

position to apply part (A) of Theorem 2 to obtain that v ∈ Lp((0, T );B
s+

1
p

p (D)).

Since g belongs toB
s+

1
p

p (D) and T is finite we have that g ∈ Lp((0, T );B
s+

1
p

p (D)).
Next we apply part (B) of Theorem 2 with λ = s + 1

p and we get that u ∈ Bατ (Ω)

with 0 < α < min{dp−1
p , λ d

d−1} and 1
τ = α

d + 1
p as desired. �
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