
A FFT PRECONDITIONING TECHNIQUE FOR THE SOLUTION OF
INCOMPRESSIBLE FLOW ON GPU’S

Mario A. Stortia, Rodrigo R. Paza, Lisandro D. Dalcína, Santiago D. Costarellia and
Sergio R. Idelsohna,b,c

aCentro Internacional de Métodos Computacionales en Ingeniería (CIMEC), INTEC(CONICET-UNL),
Santa Fe, Argentina {mario.storti,dalcinl,rodrigo.r.paz}@gmail.com, sergio@cimne.upc.edu,

http://www.cimec.org.ar/mstorti
bInstitució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

cInternational Center for Numerical Methods in Engineering (CIMNE), Technical University of
Catalonia (UPC), Gran Capitán s/n, 08034 Barcelona, Spain

Keywords: Graphics Processing Units; Incompressible Navier-Stokes; Poisson equation

Abstract. Graphic Processing Units have received much attention in last years. Compute-intensive
algorithms operating on multidimensional arrays that have nearest neighbor dependency and/or exploit
data locality can achieve massive speedups. Simulation of problems modeled by time-dependent Partial
Differential Equations by using explicit time-stepping methods on structured grids is an instance of such
GPU-friendly algorithms. Solvers for transient incompressible fluid flow cannot be developed in a fully
explicit manner due to the incompressibility constraint. Segregated algorithms like the fractional step
method require the solution of a Poisson problem for the pressure field at each time level. This stage is
usually the most time-consuming one. This work discuss a solver for the pressure problem in applications
using immersed boundary techniques in order to account for moving solid bodies. This solver is based
on standard Conjugate Gradients iterations and depends on the availability of a fast Poisson solver on
the whole domain to define a preconditioner. We provide a theoretical and numerical evidence on the
advantages of our approach versus classical techniques based on fixed point iterations such as the Iterated
Orthogonal Projection method.

http://www.cimec.org.ar/mstorti

CONTENTS

1 Introduction 2

2 The Iterated Orthogonal Projection (IOP) solver 3
2.1 The predictor step. QUICK advection scheme 4
2.2 The projection step in FSM . 6
2.3 Rate of convergence of IOP . 7
2.4 Convergence in the discrete case . 10
2.5 Convergence and aspect ratio . 11

3 The Accelerated Global Preconditioning 11
3.1 Convergence of AGP . 13
3.2 High aspect ratio limit . 15
3.3 Spectrum of AGP operator and IOP convergence 15

4 Comparison of IOP and AGP 15
4.1 Solving the Poisson equation with the FFT . 16

5 Numerical experiments 17
5.1 Convergence of IOP and AGP. Condition number of AGP 17

5.1.1 Convergence of IOP iteration . 17
5.1.2 Condition number for AGP does not degrade with refinement 17
5.1.3 Bodies with large aspect ratio . 18
5.1.4 Convergence histories for IOP and AGP compared 19

5.2 Computational efficiency on GPU hardware 20
5.2.1 Computing times of FFT on GPU and CPU hardware 20
5.2.2 Computing rates . 22

5.3 Real time computing . 22
5.4 Flow simulations . 23

5.4.1 Square moving in curved trajectory 24
5.4.2 Moving rectangular obstacle . 25
5.4.3 Square moving vertically with mean horizontal flow 25
5.4.4 Moving cube . 28
5.4.5 Falling block . 29

6 Conclusions 29

1 INTRODUCTION

Graphics Processing Units (GPU) are computer co-processors used in desktop computers and
workstations to off-load the renderization of complex graphics from the main processor (CPU).
They have evolved to complex systems containing many processing units, a large amount of on-
board memory and a computing power in the order of teraflops. They are instances of massively
parallel architectures and Single Instruction Multiple Data (SIMD) paradigms.

Recently, GPU’s are becoming increasingly popular among scientists and engineers for High
Performance Computing (HPC) applications (Molemaker et al., 2008; Ryoo et al., 2008; Mullen
et al., 2009; Elsen et al., 2008; Goddeke et al., 2008; Lastra et al., 2009; Corrigan et al., 2011;
Thibault and Senocak, 2009; Adams et al., 2007; Bell and Garland, 2009; Mossaiby et al.,

2

2012; Klöckner et al., 2009). This tendency motivated GPU manufacturers to develop General
Purpose Graphics Processing Units (GPGPU) targeting the HPC market.

In the pursuit of more realistic visualization algorithms for video games and special effects,
solving Partial Differential Equations (PDE) has become a necessary ingredient (Elcott et al.,
2008; Irving et al., 2006; Crane et al., 2007; Rinaldi et al., 2008; Wu et al., 2004). Numerical
schemes employed in these applications usually sacrifice accuracy for speed, resulting in very
fast implementations when comparing to engineering codes.

The resolution of Computational Fluid Dynamics (CFD) problems on GPU’s requires spe-
cialized algorithms due to the particular hardware architecture of these devices. Algorithms
that fall in the category of Cellular Automata (CA) are the best fitted for GPU’s. For in-
stance, explicit Finite Volume or Finite Element methods, jointly with immersed boundary
techniques (Wang et al., 2012) to represent solid bodies, can be used on structured cartesian
meshes. In the case of incompressible flows, it is not possible to develop a purely explicit
algorithm, due to the essentially non-local nature of the incompressibility condition.

Segregated algorithms solve an implicit Poisson equation for the pressure field, being this
stage the most time-consuming in the solution procedure. Using fast Poisson solvers like Multi-
grid (MG) or Fast Fourier Transform (FFT) is tempting but treating moving solid bodies be-
comes cumbersome in the case of MG or unsuitable for FFT. To surpass these difficulties,
Molemaker et.al proposed in Molemaker et al. (2008) the Iterated Orthogonal Projection (IOP)
method which requires a series of projections on the complete grid (fluid and solid) to enforce
the incompressibility and boundary conditions.

In this work we propose an alternative to IOP, that we call Accelerated Global Precondition-
ing (AGP). The solver is based on using a Preconditioned Conjugate Gradients (PCG) algo-
rithm, so that, it is an accelerated iterative method in contrast to the stationary scheme used in
IOP. In addition, AGP method iterates only on pressure, whereas IOP iterates on both pressure
and velocity.

The remainder of this article is organized as follows. Section §2 describes the IOP solver
and the QUICK scheme for advection terms. Also, the rate of convergence of IOP is studied.
Section §3 introduces the Accelerated Global Preconditioning solver providing a theoretical
evidence on the advantages of our approach versus classical techniques based on fixed point
iterations such as the IOP method. The numerical performance of the method is studied in
Section §5. Concluding remarks are given in section §6

2 THE ITERATED ORTHOGONAL PROJECTION (IOP) SOLVER

The Navier-Stokes governing equations for an incompressible, laminar, constant viscosity
fluid are (see Figure 1)

∂ui
∂t

+
∂(ujui)

∂xj
= −1

ρ

∂p

∂xi
+ ν∆ui + fi, in Ωfluid,

∂uj
∂xj

= 0, in Ωfluid,

u = ubdy, at Γbdy,

periodic B.C’s, at Γ∞,

p = 0, at x0,

(1)

where ui are the components of velocity, ρ density, p is pressure, ∆ is the Laplace operator, xj
are the spatial coordinates, fi a gravity field, and t is time. Einstein’s summation convention on

3

Figure 1: Geometrical description of problem

repeated indices is assumed. Periodic boundary conditions are imposed on the far boundary

Γ∞ = Γ+
x ∪ Γ−x ∪ Γ+

y ∪ Γ−y ∪ Γ+
z ∪ Γ−z , (2)

i.e.
uΓ+

x
= uΓ−

x
,

pΓ+
x

= pΓ−
x
,

(3)

(and similar expressions for y and z). Also, pressure is defined up to a constant.
The numerical scheme is based on a Fractional Step-like solver, using the Quadratic Up-

stream Interpolation for Convection Kinematics (QUICK, see Leonard (1979)) on a staggered
grid. QUICK is an advection scheme with very low numerical dissipation and is well suited for
structured finite difference schemes.

The rectangular box Ω = {0 ≤ x/Lx, y/Ly, z/Lz ≤ 1} is discretized with Nx × Ny × Nz

continuity cells. The mesh size h = Lj/Nj is assumed to be the same for all the spatial direc-
tions (see figure 2). The mesh is staggered, so that cells for the discrete balance of continuity
and each of the momentum equations do not coincide. The continuity cells are centered around
x = (i+ 1/2, j + 1/2, k + 1/2)h positions, and pressure values are assumed to be positioned at the
center of these cells. The cells for x-momentum are shifted h/2 in the x direction, i.e. they are
centered at x = (i, j + 1/2, k + 1/2)h, and similarly, mutatis mutandis, for the other directions.
Internal solid bodies will be treated as embedded and the details will be discussed later. The
QUICK scheme can acommodate general boundary conditions, but in this article slip or non-
slip will be represented in terms of thin solid bodies covering the boundary of the domain, due
to the use of the FFT solver.

2.1 The predictor step. QUICK advection scheme

In the first stage, the velocity field un is advanced to an intermediate state un+1,p

un+1,p
i − uni

∆t
=

∂

∂xj
(unj u

n
i) + fi, (4)

4

j

j+1

j+2

i+1 i+2

(ih,jh)

CVu

CVv

Vij

PijUij

CVp

x

y

i

Figure 2: Staggered scheme (2D). Continuity cells (CVp, in red) are centered at the pressure nodes x = (i, j, k)h.
x-momentum cells (CVu, in green) are centered at the u nodes x = (i, j + 1/2, k + 1/2)h, and y-momentum cells
(CVv, in blue) are centered at the v nodes x = (i+ 1/2, j, k + 1/2)h

where the superindex p stands for predictor. This predicted field may be not divergence free, so
that it is corrected via a Poisson stage (or IOP, which is equivalent) to be explained later. The
QUICK implementation of the predictor stage is discussed in this section.

Let’s consider the x component of the balance equation. For the discretization of the x-
momentum balance the corresponding x-momentum cell is used, which is shifted h/2 in the x
direction, as described before. The discrete equation is obtained by a Finite Volume Method
(FVM) approach, i.e. by performing a momentum balance on the cell as

Ωc

(
un+1,p
x (x)− unx(x)

∆t

)
(i,j+1/2,k+1/2)

= Mn
x,(i,j+1/2,k+1/2)

+ Ωc fx,(i,j+1/2,k+1/2). (5)

where Ωc is the cell volume. Note that all terms are evaluated at the center of the x-momentum
cells. Discretization of temporal and external force field terms are straightforward. The nonlin-
ear convection term is evaluated as

Mx,(i,j+1/2,k+1/2) = Sx

[
(ucuQ)i+1/2,j+1/2,k+1/2

− (ucuQ)i−1/2,j+1/2,k+1/2

]
+ Sy

[
(vcuQ)i,j+1,k+1/2

− (vcuQ)i,j,k+1/2

]
+ Sz

[
(wcuQ)i,j+1/2,k+1 − (wcuQ)i,j+1/2,k

]
,

(6)

where Sx is the area of the cell faces perpendicular to the x-axis, and so on. The superscripts
c and Q stand for centered and QUICK respectively, and the superindex n has been dropped
since all quantities are evaluated in tn. Each term represents the flux of momentum through a
cell face. Each contribution involves the product of the velocity normal to the surface (which is
approximated with a centered expression) and the velocity component which is being advected
(which is approximated with a QUICK-upwinded expression). In Eq. (6) the advected compo-
nent is always u (since the x-momentum is considered) whereas the normal velocity may be u,
v, or w, depending on the face of the cell to be considered. Note that in the first term, different
approximations (centered or QUICK) are used for the same component u depending on whether
it is used as a normal velocity or an advected component.

5

The centered approximations are

uc
i+1/2,j+

1/2,k+1/2
= 1/2(ui,j+1/2,k+1/2

+ ui+1,j+1/2,k+1/2
),

vc
i,j,k+1/2

= 1/2(vi−1/2,j,k+1/2
+ vi+1/2,j,k+1/2

),

wc
i,j+1/2,k

= 1/2(wi−1/2,j+1/2,k
+ wi+1/2,j+1/2,k

).

(7)

Note that the right hand sides involve u values in the center of the corresponding x-momentum
cells whereas the QUICK-upwinded approximations are

uQ
i−1/2,j+1/2,k+1/2

=

{
(c0ui + c1ui−1 + c2ui−2)j+1/2,k+1/2

, if uc
i−1/2,j+1/2,k+1/2

> 0,

(c0ui−1 + c1ui + c2ui+1)j+1/2,k+1/2
, if uc

i−1/2,j+1/2,k+1/2
< 0,

uQ
i,j,k+1/2

=


(
c0uj+1/2

+ c1uj−1/2
+ c2uj−3/2

)
i,k+1/2

, if vc
i,j,k+1/2

> 0,(
c0uj−1/2

+ c1uj+1/2
+ c2uj+3/2

)
i,k+1/2

, if vc
i,j,k+1/2

< 0,

uQ
i,j+1/2,k

=


(
c0uk+1/2

+ c1uk−1/2
+ c2uk−3/2

)
i,j+1/2

, if wc
i,j+1/2,k

> 0,(
c0uk−1/2

+ c1uk+1/2
+ c2uk+3/2

)
i,j+1/2

, if wc
i,j+1/2,k

< 0.

(8)

The coefficients cj are c0 = 3/8, c1 = 6/8, c1 = −1/8. They are the basis of QUICK and guarantee
that the upwinded approximations are precise to third order.

The advection step is applied to the whole domain Ω = Ωbdy ∪ Ωfluid, independently of the
position of the cell (inside the body, boundary, or fluid). If some of the involved cell values
fall outside the fluid domain, they are obtained from interior values via the periodic boundary
conditions, i.e. all indices i, j, k are assumed to be cyclic modulo Nx, Ny, Nz.

2.2 The projection step in FSM

Once the predicted field un+1,p(x) is computed, it may not satisfy the divergence condition
(second line in Eq. (1)), neither the boundary conditions

un+1,p = ubdy, at Γbdy, (9)

where ubdy is the velocity of the body. In the standard Fractional Step method these conditions
are enforced by computing a Poisson stage

un+1 = un+1,p −∇P, (10)

where P = (∆t/ρ)p and p is pressure. P is computed through the following Poisson equation

∆P = ∇ · un+1,p, in Ωfluid,

∂p

∂n

∣∣∣∣
Γbdy

= (ubdy − un+1,p) · n̂. (11)

where n̂ is the unit vector normal to Γbdy pointing towards the fluid. An alternative form to
enforce these conditions is the Iterated Orthogonal Projection (IOP) method (see Molemaker
et al. (2008)). The idea behind IOP is that as the mesh is structured and cartesian, there are
fast solvers (as Multigrid (MG) or Fast Fourier Transform (FFT)) that may solve the Poisson

6

Figure 3: Geometric interpretation of the convergence of IOP. Starting at a velocity field u the Πdiv operator
projects it to u′ int the space of solenoidal velocity fields, but perhaps violating the boundary condition. Then the
Πbdy projects u′ on u′′ in the space of velocity fields that satisfy the boundary conditions. It can be shown that
the generated sequence is convergent, provided that both projection operators are orthogonal in the same norm.

equation very efficiently, provided there are no holes (i.e. bodies) in the domain. Given a
non-solenoidal vector field u, the orthogonal projection operator Πdiv defined by

u′ = Πdiv(u) =⇒

{
u′ = u−∇P,

∆P = ∇ · u,
in Ω. (12)

projects orthogonally with respect to the L2 norm, onto the subspace of solenoidal fields Sdiv.
Note that the Poisson equation is solved in the whole domain, so that the projected velocity u′

may be non zero in Ωbdy. u′ is then projected onto the subspace Sbdy of velocity fields that
satisfy the solid boundary condition

u′′ = Πbdy(u′) =⇒

{
u′′ = ubdy, in Ωbdy,

u′′ = u′, in Ωfluid.
(13)

In the case that the solid body is moving then ubdy 6= 0 and then Sbdy is an affine subspace. It is
easy to see that Πbdy is also an orthogonal projection operator with respect to L2. Of course, if
the u′′ velocity field satisfies also the continuity condition (i.e. u′′ ∈ Sdiv) then u′′ ∈ Sdiv∩Sbdy,
and the algorithm stops, i.e. u′′ = un+1. In the general case a sequence wk with w0 = un+1,p

and w∞ = un+1 is generated via the successive application of the projection operators Πdiv

and Πbdy,
wk+1 = ΠbdyΠdivw

k. (14)

It can be shown that the sequence converges (Molemaker et al., 2008), provided that the projec-
tion operators are orthogonal in the same norm, as it is the case here. The geometric interpre-
tation of the algorithm is shown in figure 3.

2.3 Rate of convergence of IOP

The convergence of IOP is related to the eigenvalue spectrum of the combined operator
G = ΠbdyΠdiv. If an eigenfunction of that operator can be found, i.e.

Gv̄ = γv̄, (15)

7

then the IOP sequence for that velocity field will be

v̄, γv̄, γ2v̄, . . . , γkv̄, . . . (16)

Such an eigenfunction can be found in a particular geometry and sheds light on the conver-
gence of IOP and the behavior of the rate of convergence with respect to refinement and the
geometrical characteristics of the domain, as for instance aspect ratio of the immersed bodies.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1-1

-0.5

0

0.5

1

x
y

Figure 4: Eigenmode with slowest convergence rate for IOP

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

Figure 5: Eigenmode with slowest convergence rate for IOP. Cut at y = 0.25

Consider a 2D problem in Ω = [0, L] × [0, L], and a solid body which is a vertical strip of
width b centered at x = L/2, i.e.

Ωbdy = {|x− L/2| < b/2}. (17)

8

Consider now the following function

φ(x) =



sinh(kx)

sinh(kLf)
sin(ky), for x < x−,

−sinh(k(x− L/2))

sinh(kb/2)
sin(ky), for x− < x < x+,

−sinh(k(L− x))

sinh(kLf)
sin(ky), for x > x+.

(18)

where x± = (L ± b)/2 are the vertical boundaries of the solid domain, Lf = (L − b)/2 is
the half length of fluid domain, and k = 2π/L is the wave number. This function is shown at
figures 4 and 5. By construction, ∆φ = 0 except at the boundary Γbdy = {|x− L/2| = b/2}.

Let’s start with the following velocity field

u =

{
∇φ, in Ωfluid,

0, in Ωbdy.
(19)

By construction∇·u = 0 in Ωfluid, Ωbdy. At the interface Γbdy, the divergence can be computed
in the sense of distributions and

∇ · u = (u|(x−)+ − u|(x−)−)δ(x− x−) + (u|(x+)+ − u|(x+)−)δ(x− x−),

= − ∂φ

∂x

∣∣∣∣
(x−)−

δ(x− x−) +
∂φ

∂x

∣∣∣∣
(x+)+

δ(x− x+),

= k coth(kLf) sin(ky) [−δ(x− x−) + δ(x− x+)] ,

(20)

where δ is Dirac’s δ distribution.
Next, the second equation of (12) must be solved for P . The result is that P is a scalar

multiple of φ, i.e. P = cφ. It results that

∆P = c

(
∂φ

∂x

∣∣∣∣
(x−)+

− ∂φ

∂x

∣∣∣∣
(x−)−

)
δ(x− x−)

+ c

(
∂φ

∂x

∣∣∣∣
(x+)+

− ∂φ

∂x

∣∣∣∣
(x+)−

)
δ(x− x+),

= ck [coth(kb/2) + coth(kLf)] sin(ky) [−δ(x− x−) + δ(x− x+)] ,

(21)

and then,

c =
coth(kLf)

coth(kb/2) + coth(kLf)
. (22)

Applying the correction −∇P to u (the first line in Eq. (12),

u′ = u−∇P

=

{
(1− c)∇φ, in Ωfluid,

c∇φ, in Ωbdy.

(23)

9

Finally, the application of the Πbdy consists in simply setting to zero the velocity field in Ωbdy,
so that

u′′ = Πbdyu
′,

=

{
(1− c)∇φ, in Ωfluid,

0, in Ωbdy.

(24)

Comparing (24) with (19) shows that u is an eigenvalue of G = ΠbdyΠdiv with eigenvalue

γ = 1− c

= 1− tanh(kb/2)

tanh(kb/2) + tanh(kLf)
.

(25)

As expected, the amplification factor γ results to be 0 < γ < 1, otherwise the scheme would be
non-convergent.

A family of eigenfuctions can be constructed in the same way, simply replacing the wave
number k by higher frequency ones, with the restriction that an integer number of wavelengths
must be present in the y direction, i.e.

km =
2πm

L
, m = 1, 2, . . . (26)

and the corresponding amplification factors are

γas,m =
tanh(kmLf)

tanh(kmb/2) + tanh(kmLf)
. (27)

Of course, they fall all in the range 0 < γm < 1. It can be shown also that for b < L/2 the γm
is a decreasing sequence γm+1 < γm, so the mode with slowest rate of convergence (highest γ)
is that one corresponding to k1, i.e. Eq. (25).

Note that the modes given by (18) are antisymmetric (hence the “as” superscript) with respect
to the center of the strip, i.e. φ(x−L/2) = −φ(L/2−x). There is another branch of eigenvalues
corresponding to symmetric modes, in that case the amplification factors are

γs,m =
tanh(kmb/2)

tanh(kmb/2) + tanh(kmLf)
. (28)

where the “s” subindex stands for symmetric. For b < L/2 it can be shown that for this branch
of amplification factors 0 < γs,m < 1/2, so the slowest rate of convergence is still the first
antisymmetric mode.

Also, it can be shown that the set of symmetric and antisymmetric modes together represent
a complete set of eigenfunctions for the Stekhlov operators (Paz et al., 2006; Paz and Storti,
2005; Storti et al., 2006), and then the convergence rate given by (25) is not an upper bound but
rather the spectral radius of the amplification matrix G and hence the best estimate for the rate
of convergence of the algorithm.

2.4 Convergence in the discrete case

The rate of convergence given in (25) corresponds to the continuum case. However, dis-
cretization affects mostly the high frequency (large km) modes, but as it has been shown the
global rate of convergence is governed by the slowest mode, which is slightly affected by re-
finement. In fact, as the mesh is refined (h → 0) the convergence rate approaches the value
of the continuum (25). This means that the rate of convergence for IOP does not degrade with
refinement.

10

2.5 Convergence and aspect ratio

Note that for high aspect ratio (i.e. L/b → ∞) the amplification factor γ → 1, i.e. conver-
gence degrades. In fact for b� L the amplification factor is

γ ≈ 1− πb/L

tanh(2π)
,

≈ 1− 3.14
b

L
,

(29)

i.e., the rate of convergence r (as number of iterations per order of magnitude) is

γr = 1/10,

r = − log 10

log γ
≈ 0.37

L

b
[iter/OM].

(30)

which is proportional to the aspect ratio and iter/OM means “iterations per order of magni-
tude”.

This result has been confirmed with numerical experiments for other geometries as well. The
physical explanation is that IOP has good convergence when Πdiv is close to the solution of the
Poisson problem on the fluid domain only (recall that Πdiv solves the Poisson problem in the
whole domain Ωfluid + Ωbdy). Conversely, convergence is poor when the inclusion of the solid
body domain Ωbdy distorts too much the solution and this is just what happens when the aspect
ratio is large for a mode like (18). Note that the sources on opposite sides of the strip have
different sign and then a large (spurious) flow is generated inside the body.

3 THE ACCELERATED GLOBAL PRECONDITIONING

The algorithm proposed in this paper is based in the IOP, in the sense of using a fast solver on
the whole mesh, but the main difference is that this global solution is used as a preconditioner
for the Preconditioned Conjugate Gradient (PCG) method. Recall that the PCG method is an
accelerated convergence method, i.e. the rate of convergence increases during iteration, hence
the name Accelerated Global Preconditioning (AGP) (see Kelley (1995)).

Consider a situation like that in figure 6, with a solid body described by the boundary Γbdy.
This is embedded in a structured grid of constant mesh size h. In the traditional Fractional Step
Method a Poisson problem is solved outside the body. Recall that pressure nodes are at the
center of the continuity cells (marked with dashed lines in the figure). In order to construct an
approximation to the Poisson equation a Finite Element (FEM) mesh is considered where the
pressure nodes are at the corner of the finite elements (marked as solid lines in the figure). Note
that the cell mesh is dual to the continuity cell mesh, i.e. the center of the continuity cells (which
are the pressure nodes) are at semi-integer positions (i + 1/2, j + 1/2, k + 1/2)h coincident with
the corner of the finite elements and, vice versa, the center of the finite elements are then at full
integer positions (ih, jh, kh). The center of the finite elements are computed and it is checked
whether the element falls inside or outside the body. In this way the body is approximated by
a staircase geometry as is shown in gray in the figure. (This degrades de convergence to O(h)
instead of O(h2) and can be fixed by more sofisticated techniques as the Immersed Boundary
Method (Peskin, 2002), but this will be not discussed here.) As it is usual in FEM discretizations
the imposition of the homogeneous Neumann condition is done by simply assembling only
those elements that are in the fluid part. The other elements that are not in gray are ghost
elements and are not assembled for the solution of the Poisson problem. Only the pressure in

11

the nodes connected to some element that is assembled are relevant, i.e. those that are marked
in blue and red. Those that are marked in green are ghost and are not computed. From those
that are computed, the set that are surrounded completely by computed elements (and then are
not connected to ghost elements) are classified as interior to the fluid, (subindex F) and the rest
are classified as boundary (subindex B, filled in red in the figure). So the Poisson problem is

Ax = b, (31)

and the splitting of nodes induces a matrix splitting like this[
AFF AFB

ABF ABB

] [
xF

xB

]
=

[
bF

bB

]
(32)

assembled elements

fluid node
boundary node

ghost node

solid body

fluid a

b
Pressure nodes:

finite element boundary
continuity cell boundary

Figure 6: Description of nodes and elements used in the AGP

In the following, the preconditioning operator P will be described. First consider the whole
matrix for the Laplace operator P̃, i.e. assembling over fluid and ghost cells for F , B, and G
nodes. Note that a symbol different from A is used for this matrix since it is assembled on a
different set of element/cells. The preconditioning is then defined formally as yFB = PxFB,
where xFB is the solution of P̃FF P̃FB P̃FG

P̃BF P̃BB P̃BG

P̃GF P̃GB P̃GG

[xFB

xG

]
=

[
yFB

0G

]
. (33)

However it can be seen that

• P̃FF = AFF since the F nodes are those for which all neighbor elements are assembled
in the Poisson problem.
• P̃FB = AFB, and P̃BF = ABF since for instance, such a coefficient would link nodes

as a and b in the figure. This coefficient comes from the assembly of all the elements that
are connected to a and b, but since a is an F node, it means that all elements connected
to a are assembled.
• P̃FG = P̃GF = 0 since F nodes are only connected to fluid elements and G are only

connected to ghost elements, so that they can not share an element.

12

So  AFF AFB 0

ABF P̃BB P̃BG

0 P̃GB P̃GG

[xFB

xG

]
=

[
yFB

0G

]
. (34)

xG can be eliminated from the bottom line, and then the following equations is obtained[
AFF AFB

ABF P̃BB − P̃BGP̃−1
GGP̃GB

]
xFB = yFB. (35)

This allows to obtain an explicit expression for the preconditioning matrix

P =

[
AFF AFB

ABF P̃BB − P̃BGP̃−1
GGP̃GB

]
. (36)

A first consequence of this expression is that most eigenvalues of the preconditioned matrix
will be 1. Consider the subspace of all vectors x such that the boundary component B is null,
i.e. the non null entries are only on F nodes, then

Ax = Px,

P−1Ax = x,
(37)

so that x is an eigenvector with eigenvalue 1.
The proposed technique is named Accelerated Global Preconditioning (AGP) because the

solution of (33) is done on an infinite mesh with periodic boundary conditions so that it can be
solved via FFT transform, which is very efficient, but the whole analysis does not depend on
how the solution of this system is done; i.e. it may be obtained by Multigrid iteration as well.

3.1 Convergence of AGP

Note that in the IOP method after the first application of u′ = Πdivu the velocity field u′ is
solenoidal everywhere. After the u′′ = Πbdyu

′ step, the field u′′ is solenoidal at both Ωfluid and
Ωbdy (it is zero if the body is stationary, and a rigid motion if it is in movement) but not at the
interface. In the second application of Πdiv the right hand side in Eq. (12) is zero everywhere,
except for a possible concentrated source term at the interface, i.e. a Dirac’s δ.

Something similar happens for AGP, after the first iteration of the PCG the right hand side
for the preconditioning step (33) is zero everywhere, except at the boundary nodes. In §3 the
AGP was introduced in the discrete version; the continuum counterpart will be used now for
assessing its convergence properties. Both the Poisson problem (31) and the preconditioner are
written as mappings between surface values at Γbdy and solenoidal pressure fields that satisfy
the Laplace equation everywhere, except at the interface.

First, the Poisson equation in the fluid domain Ωfluid is written in abstract form as

A(ψ) = g, (38)

where g is a source term in Γbdy and ψ a function defined on Ωfluid that satisfies{
∆ψ = 0, in Ωfluid,

∇ψ · n̂ = −g, at Γbdy,
(39)

where n̂ is the normal to Γbdy pointing into the fluid.

13

Next, the preconditioner is written in abstract form as

P(ψ) = g, (40)

where g is also a source term on Γbdy and ψ is defined on Ωfluid and is obtained from the
following problem. Let ψ′ defined in Ω = Ωfluid ∪ Ωbdy, satisfying{

∆ψ′ = 0, in Ωfluid and Ωbdy,

[(∇ψ′)+ − (∇ψ′)−] · n̂ = −g, at Γbdy,
(41)

where (∇ψ′)+ is evaluated on the side of the fluid region and (∇ψ′)− from the body region.
Now, the AGP algorithm can be put in the continuum case as solving (38) with PCG, using (40)
as a preconditioner. Then, rates of convergence for the AGP an be estimated in terms of the
condition number of the preconditioned operator

κ = cond(P−1A). (42)

The condition number κ will be computed for the strip problem used before (see §2.3) for
assessing the convergence of IOP.

The eigenfuctions of the preconditioned problem should satisfy

P−1Aψ = λψ. (43)

If we define g = Aψ, then it is equivalent to

Pψ = (1/λ)g,

Aψ = g.
(44)

and it can be rewritten as

∆ψ′ = 0, in Ωfluid,Ωbdy,

∂ψ′

∂n
= −g, at Γbdy,(

∂ψ′

∂n

)+

−
(
∂ψ′

∂n

)−
= −(1/λ)g, at Γbdy,

(45)

and set ψ to the restriction of ψ′ to Ωfluid. It can be shown that the function φ defined in (18)
satisfies this set of equations. Effectively φ by construction satisfies the first line of (45) and the
second and third lines give

g = km coth(kmLf) sin(kmy),

1

λ
g = km[coth(kmLf) + coth(kmb/2)] sin(kmy),

(46)

so it gives,
g = km coth(kmLf) sin(kmy),

λas,m =
coth(kmLf)

coth(kmLf) + coth(kmb/2)
.

(47)

14

Again, it can be shown that for b < L/2 λm is a monotonically increasing sequence, and in
addition λ∞ = 1/2. The subindex “as” stands for antisymmetric. Now for the symmetric modes
it can be shown that

λs,m =
tanh(kmLf)

tanh(kmLf) + tanh(kmb/2)
, (48)

and that λs,m is monotonically decreasing and 1 = λs,1 > λs,m > λs,∞ = 1/2. Then, the highest
eigenvalue is λs,1 = 1, and the lowest is λas,m. Then, the condition number is

κ =
λs,1

λas,1

,

=
tanh(πb/L) + tanh(2πLf/L)

tanh(πb/L)
.

(49)

Again, this approximation holds also in the discrete case, since both the maximum and mini-
mum eigenvalues have low frequency. Following the same arguments in §2.4, it can be shown
that the condition number of the preconditioned AGP operator and hence the rate of conver-
gence for PCG (with AGP) does not degrade under refinement.

3.2 High aspect ratio limit

For a high aspect ratio strip (L/b� 1) the limit is

κ ≈ tanh(2π)

π

L

b
,

≈ 0.32
L

b
,

(50)

3.3 Spectrum of AGP operator and IOP convergence

It can be shown that the amplification factors for IOP (see equations (27) and (28)) are related
to the eigenvalues of the AGP method by the simple relation

γm = 1− λm, (51)

so that the slowest rate of convergence (the γm closer to 1) corresponds to m = 1, i.e.

γ = 1− λmin,

r ≈ log 10
1

λmin

, for λmin � 1
(52)

4 COMPARISON OF IOP AND AGP

The differences and similitudes of both methods are summarized here:

• Both solvers are based on the fact that the Poisson equation on the fluid domain can be
approximated by solving on the global domain (fluid+solid). Of course, this represents
more computational work than solving the problem only in the fluid, but this can be faster
in a structured mesh using some fast solvers such as Multigrid or FFT.
• Both solvers have their convergence governed by the spectrum of the AGP preconditioned

operator P−1A, more precisely on its lowest eigenvalue λmin.

15

• It has been shown that for a fixed geometry λmin = O(1), i.e. it does not degrade with
refinement, so that IOP has a linear convergence with limit rate O(1), i.e. it does not
degrade with refinement.
• By the same reason, the condition number for AGP does not degrade with refinement.
• IOP is a stationary method and its limit rate of convergence is given by

‖rn+1‖ ≤ γ‖rn‖
γ = 1− λmin,

λmin =
tanh(kb/2) + tanh(kLf)

tanh(kLf)
, (strip of aspect ratio L/b),

γ ≈ 1− 3.14
b

L
, (L/b� 1).

(53)

• AGP is an accelerated method (PCG) and the convergence for AGP can be assessed from
the condition number of the preconditioned operator, which is

κ(P−1A) =
1

λmin

,

=
tanh(kLf)

tanh(kb/2) + tanh(kLf)
, (strip of aspect ratio L/b),

≈ 0.32
L

b
(L/b� 1).

(54)

• In fact, it can be shown that the iterates for both IOP and AGP can be put as polynomials
on the preconditioned operatorP−1A, and due to the minimization property characteristic
of Krylov space methods like CG (see Kelley (1995)) the convergence of AGP is always
better than that of IOP.
• IOP iterates over both the velocity and pressure fields, whereas AGP iterates only on the

pressure vector (which is better for implementation on GPU’s architectures, since reduces
memory access).
• As the minimum eigenvalue is proportional to the reciprocal of the aspect ratio (i.e.
λmin ∝ b/L) the convergence of both algorithms degrade for high aspect ratio bodies.
In the case of IOP, the rate of convergence is proportional to L/b. In the case of AGP the
condition number of the preconditioned operator κ(P−1A) is proportional to L/b. Due
to the estimates of rate of convergence for CG as compared to stationary methods, it is
expected that the convergence rates of AGP will be comparatively much better than that
for IOP for geometries with high aspect ratio bodies.

4.1 Solving the Poisson equation with the FFT

Both IOP and AGP are based on the fact that a fast solver in the whole domain (solid+fluid)
exists. There are at least two possibilities: MG and FFT. The second has been chosen in this
work, and the basis of this component of the algorithm will be given here.

The linear system to be solved is denoted as

Ax = b. (55)

Let x̃ = Ox denote the application of the Discrete Fourier Transform (DFT) to a vector x. It
can be shown that O is an orthogonal matrix (i.e. OTO = I), where (·)T denotes transpose.

16

By applying the transformation to (55) the transformed equation is obtained

(OAOT)(Ox) = (Ob). (56)

It can be shown that the transformed system is diagonal (i.e. OAOT = D, with D a diagonal
matrix) provided that the matrix A is invariant under translations, i.e. the stencil of the operator
is the same for all the cells of the mesh. Also, the boundary conditions must be periodic (but
this restriction will be removed below, see Section §5.1.3).

Now consider the following algorithm that computes the solution of the linear system

• Compute the transform of the right hand side: b̃ = Ob
• Solve the diagonal system in the transformed basis x̃ = D−1b̃,
• Obtain the antitransformed solution vector by applying the inverse DFT: x = OT x̃.

The total operation count for this algorithm is two DFT’s, plus one element-by-element vec-
tor multiply (the reciprocals of the values of the diagonal of D are precomputed), ForN a power
of 2 (i.e. N = 2p) the Fast Fourier Transform (FFT) is an algorithm that computes the DFT
(and its inverse) in O(N log(N)) operations, then the cost of the algorithm is O(N log(N)).

Another possibility is Multigrid (MG), which is a stationary iterative method with costO(N)
for a given tolerance, i.e. its cost is O(N log(ε)), where ε is the tolerance used as stopping cri-
terion. On the other hand the FFT solver is a direct method with operation count O(N log(N))
to solve the linear system to machine precision.

5 NUMERICAL EXPERIMENTS

5.1 Convergence of IOP and AGP. Condition number of AGP

5.1.1 Convergence of IOP iteration

Figures 7 and 8 show the convergence of IOP iteration for a 16× 16× 16 and 64× 64× 64
meshes on a computational domain which is a cube of unit side L = 1. The body domain
is a sphere of radius 0.3, i.e. Ωbdy = {||x|| ≤ R = 0.3}. As can be seen the IOP iteration
curves exhibit the typical linear rate of convergence of stationary methods. The convergence
for both meshes start at a high convergence rate of less than 3 iter/OM (iterations per order of
magnitude), and then they switch to a slower convergence of 13.7 iter/OM for the 163 mesh and
12.3 iter/OM for the fine 643 mesh. However note that the rates of convergence are independent
of mesh refinement.

5.1.2 Condition number for AGP does not degrade with refinement

The condition number of matrices for the Poisson problem have been computed with and
without preconditioning (see figure 9).

• In the experiments the number of cells Nx along x ranges from 8 to 64.
• The Poisson problem is computed selecting the quadrangles whose center fall outside the

body problem.
• In all cases the domain is the unit square with periodic boundary conditions.
• The bodies considered are: cylinder of radius 0.2, a vertical strip of width 0.5, and a

square of side 0.5.
• The condition numbers are computed with Octave cond() function.

Note that in all cases the non preconditioned matrix condition number grows asO(N2
x), whereas

with the preconditioning it remains constant.

17

0 5 10 15 20 25 30

13.7 iter/OM

2.41 iter/OM

10-7

10-6

10-5

10-4

10-3

10-2

re
si

d
u

al
 n

o
rm

iteration

fluid

solid

R

L

Figure 7: Convergence of IOP loop for a sphere of R = 0.3 in a cube of L = 1, with a coarse mesh of 16×16×16

5.1.3 Bodies with large aspect ratio

Note that both IOP and AGP preconditioning are based on the inclusion of the solid domain
in the computation of the pressure Poisson equation. As it have been shown, this causes con-
vergence to degrade when objects with large aspect ratio are present in the domain. Consider
the case where the fluid occupies the interior of a square

Ωfluid = {(x, y) / max(|x− L/2|, |y − L/2|) < L/2− b} (57)

where b is the width of the wall (see figure 10).
Two cases are considered, a fixed wall width of thickness b = 0.05L, and the case b = h,

i.e. the width of the wall is of just one element. So as the mesh is refined, the aspect ratio of
the wall increases. The condition number for the problem with and without preconditioning are
shown.

In the case of a fixed value b = 0.05 the condition number of the preconditioned case is
bounded, whereas for the case of b = h the condition number increases with aspect ratio. If no
preconditioning is used the condition number increases as O(N2

x).
This case is of practical interest because it is a workaround to solve problems with solid

boundary conditions. In its simplest form the FFT solver requires periodic boundary conditions
in order to be applied. Other common boundary conditions like homogeneous Dirichlet and

18

0 5 10 15 20 25 30

2.25 iter/OM

12.3 iter/OM

re
si

d
u

al
 n

o
rm

iteration

10-6

10-5

10-4

10-3

10-2

10-1

10-0

Figure 8: Convergence of IOP loop for a sphere of R = 0.3 in a cube of L = 1, with a fine mesh of 64× 64× 64

Neumann boundary conditions can be also implemented using different flavors of the FFT, but
if all combinations are to be considered (i.e. Dirichlet on some sides of the box, and Neumann
on the others) it requires a tedious programming of all the cases and dispatch to the appropriate
FFT routine.

But a solid boundary condition can be represent also by simply putting a thin layer of solid
at the boundary. However, this can be inefficient if the additional work represented by the layer
is significant. This numerical example shows that a layer as thin as a 5% of the side length
of the box can be used, with very little degradation of the condition number. In such a case
the increase in the computational time is not significant, approximately 30%, because the layer
covers all the 6 sides of the box, but it can be shown that smaller widths b can be used for finer
meshes. In the numerical results shown in following sections with closed cavities the width of
the solid layer is 2.5% of the domain length. In such a case the computation overhead due to
the wall layer is only 15%.

5.1.4 Convergence histories for IOP and AGP compared

In figure 11 the convergence histories for AGP and IOP in a 2D problem, with a circular
body of radius R = 0.3, and several degrees of refinement Nx = 8, 16, 32, 64, where Nx is the
number of cells per side are shown.

19

10 102

10 3

10 2

10 1

10 0

square

w/preco

cylinder

strip

fluid

solid

fluid

solid

fl
u
id

so
lid

w/o preco

w/preco
w/o preco

w/preco
w/o preco

Figure 9: Condition number of Poisson problem with and without the AGP preconditioning

It is observed that the convergence histories tend to a fixed rate of convergence as the mesh is
refined, in fact the convergence histories are almost the same for Nx = 32 and 64. This verifies
the estimates discussed in §2.4 and §3.1.

The rate of convergence is much higher for AGP. Note that if higher (weaker) tolerances (for
instance 10−3) are used then the convergence of both methods is similar. This is acceptable for
non-critical applications like video-game and special effects, but usually not for engineering
computations. If lower (stronger) tolerances (let’s say 10−6) are enforced then the difference is
substantial.

5.2 Computational efficiency on GPU hardware

5.2.1 Computing times of FFT on GPU and CPU hardware

As it has been discussed, for large problems the most consuming time component of the
algorithm are the two FFT applications per AGP iteration (same for IOP), so the efficiency of
the available libraries will be assessed.

The GPU implementation was coded using the Compute Unified Device Architecture (CUDA)
from Nvidia (Nickolls et al., 2008; Farber, 2011) (release 4.2, V0.2.1221). CUDA comes with
an efficient FFT implementation called the CUFFT library. On the other hand, for CPU the
Fastest Fourier Transform in the West (FFTW) (Frigo and Johnson, 1998, 2012) (release 3.1-2)

20

0 10 20 30 40 50 60 70

w=b (no preco)

w=0.05 (no preco)

w=h, with AGP preco

w=0.05, with AGP preco

Nx

10 4

10 3

10 2

10 1

10 0

L

b

Figure 10: Condition number for Poisson problem on a square, with and without AGP preconditioning.

library was used. The computing rates for this two libraries on the Nvidia GTX-580 GPU’s,
and processors Intel i7-3820@3.60GHz, and Intel W3690@3.47Ghz are shown in figure 12,
13, and 14. The computing rate in Gflops is computed as

rate[Gflops] = 10−9 × 2Nv log2(Nv)

elapsed time [s]
(58)

where Nv = Nx · Ny · Nz/2 is the total size of the complex vector to be transformed. Note
that this is half the number of cells, since using the R2C (for Real to Complex) flavor of the
FFT the number of operations can be reduced by a half. The computing rate for the GTX-580
is near 240 Gflops in simple precision for meshes of 256× 128× 128 (8 million cells, 4 million
elements in the complex vector). For double precision the rate drops by almost a factor of 4.
Note that previous boards not in the Tesla family had a typical speed relation of 8:1 from simple
to double precision, so this ratio 4:1 signifies an improvement for the GTX-580. Typical boards
on the Tesla family have a speed ratio of 2:1.

On the other hand the fastest CPU processor tested is the Sandy Bridge i7-3820 which (multi-
threaded in its 6 cores) peaks at 20 Gflops for vectors of sizeO(105). However this performance
drops at almost 8 Gflops for large vectors, when the vector does not fit in the processor’s cache.
So, in double precision for large vectors there is a speedup of a factor 8 between the FFT on the
GPU board and the CPU.

21

10-15

10-10

10-5

100

105

0 20 40 60 80 100iter

||R||

IOP, Nx=8

AGP, Nx=8

IOP, Nx=16

AGP, Nx=16

IOP, Nx=32

AGP, Nx=32

IOP, Nx=64

AGP, Nx=64

Figure 11: Convergence histories for a 2D problem with a circular body of radius R = 0.3. Convergence is shown
for both AGP and IOP, and several refinements. (Nx is the number of elements per side).

Note also that, in contrast with the deterioration in performance of the CPU’s, the computing
rate of the CUFFT in simple precision seams to steadily increase as the vector length increases,
whereas the double precision shows a small increase in performance. This means that it is
likely that the performance will be kept for boards with a larger device memory (the GTX-580
has 3 GB RAM) allowing for larger computations in a single device.

5.2.2 Computing rates

In figure 15 the computing rates in Mcell/sec for the code presented in this article on an
Nvidia GTX-580 GPU, and a Nvidia Tesla C2050, with single (SP) and double precision (DP),
are shown. In DP for large meshes it reaches a rate of 60 Mcell/sec. As a reference, the
same algorithm was implemented in CPU using the GNU g++ compiler (with optimization
flags -O3 -funroll-loops), obtaining a rate on one core of the Intel i7-3820@3.47 GHz
(Sandy Bridge) of 1.7 Mcell/sec. Assuming perfect scalability a maximum of 6.8 Mcell/sec at
most would be reached using the four cores of the i7-3820, which translates in a speedup of at
least 7:1 for the GPU over this CPU.

5.3 Real time computing

Many applications in engineering need Real Time Computing (RTC), i.e. to have a code
fast enough such that Tcomp ≤ Tsim, where Tcomp is the computing time needed for simulating
Tsim seconds of the physical problem. For instance this is the case in applications where the

22

0

50

100

150

200

250

105 106 107

F
F

T
 p

ro
c.

 r
at

e
[G

fl
o

p
s/

se
c]

Ncell

64x64x64

128x64x64

128x128x64

128x128x128

256x128x128 256x256x128

double precision

simple precision

Figure 12: Computing rates for the CUFFT implementation on the Nvidia GTX-580 GPU

computations are needed for take some action back on the physical process, as in control or
disaster management.

The approach presented here allows to do RTC in moderately large meshes. Consider for in-
stance a mesh of 1283 cells (≈ 2 Mcell). The computing time on the GTX-580 in SP is (see fig-
ure 15) 140 Mcell/sec, so each time step takes approximately 2 Mcell/(140 Mcell/sec) =
0.014 secs per time step, i.e. 70 steps per second can be computed.

A von Neumann stability analysis shows that the QUICK stabilization scheme is incondi-
tionally unstable if advanced in time with Forward Euler. With a second order Adams-Bashfort
scheme the critical Courant-Friedrichs-Lewy (CFL) number is CFL<0.588 for an scalar ad-
vection problem, and for Navier-Stokes (at high Reynolds numbers) it is somewhat lower,
CFL<0.5. If L = 1[m], and maximum velocity u = 1[m/s], mesh step is h = 1/128[m],
then the critical time step is ∆t = 0.5h/u = 0.004[s], so that Tsim = 70∆t = 0.28[s] can be
computed in Tcomp =1[s] of computing time. It means that for such a mesh the computations
go 1:4 slower than the physical process. Other approach to RTC is to circumvent the restriction
of CFL < 1 characteristic of explicit methods (Idelsohn et al., 2012).

5.4 Flow simulations

Numerical simulations of several flows involving moving bodies are shown in figures 16-
20. In all cases (except for the case of the example in section §5.4.3) the flows represent a
body moving inside a square or cubic cavity of length side 1[m]. In order to circumvent the
restriction of periodic boundaries intrinsic to the FFT solver, a thin layer (2.5% of the square

23

0

5000

10000

15000

20000

25000

103 104 105 106 107 108 109

F
F

T
 p

ro
c.

 r
at

e
[M

fl
o

p
s]

nthreads=1

nthreads=2

nthreads=4

nthreads=8

Ncell

Figure 13: Computing rates for the FFTW (SMP) implementation on the Intel i7-3820 (Sandy Bridge) CPU (double
precision)

or cubic domain side length) is defined as a fixed body. In all cases the color corresponds to
log10(|ω|), i.e. the absolute magnitude of the vorticity vector ω = ∇ × u in logarithmic scale.
This quantity helps in the visualization of boundary layers, since the magnitude of vorticity has
variations of several orders of magnitude there at high Reynolds numbers. In 2D cases the mesh
was 128× 128 and in 3D cases 128× 128× 128. In all cases the side of the domain (square in
2D, cube in 3D) was L = 1[m] and kinematic viscosity was ν = 6.33×10−5[m2/s].

5.4.1 Square moving in curved trajectory

The body is a square of side Ls = 0.4[m], and the center of the body (xc, yc) describes an
8-shaped Lissajous curve, described by

xc =
L

2
+ A cos(2ωt), yc =

L

2
+ A cos(

π

2
+ ωt),

ω = 1[s−1], A = 0.2[m]
(59)

As the body displaces fluid high levels of vorticity can be observed at the vertices. As the
simulation progresses large vortices remain rotating in the fluid with long filamentary vorticity
layers that are a characteristic 2D feature (they are unstable in 3D).

24

0

2000

4000

6000

8000

10000

12000

14000

103 104 105 106 107 108 109

F
F

T
 p

ro
c.

 r
at

e
[M

fl
o

p
s]

Ncell

1
2
3
4
5
6

nthreads

nthreads=1
nthreads=2

nthreads=3
nthreads=4
nthreads=5
nthreads=6

Figure 14: Computing rates for the FFTW (SMP) implementation on the Intel W3690 (Nehalem) CPU (double
precision)

5.4.2 Moving rectangular obstacle

The body is a rectangle of height H = 0.5[m] and width W = 0.2[m]. An harmonic
horizontal displacement as follows

xc = (L/2) + A cos(ωt),

ω = 1[s−1], A = 0.3[m],
(60)

is imposed. As the body displaces fluid a large concentration of vorticity is observed in the
upper corner of the body, with characteristic trailing filamentary vortex layers that detach from
the corners.

5.4.3 Square moving vertically with mean horizontal flow

In this example the exterior boundary of the computational domain is not at rest, but rather it
is intended to generate a mean flow that impinges on the body. This freestream flow is obtained
with a layer of width 0.025[m] at the left and right sides were a positive x velocity of u = 1[m/s]
is imposed. Periodic boundary conditions are imposed in the vertical y direction. The body is
a square of side Ls = 0.4[m], the center of the body (xc, yc) is centered in the x direction and
experiences an harmonic vertical movement

yc = (L/2) + A cos(ωt),

ω = 0.5[s−1], A = 0.2[m].
(61)

25

20

40

60

80

100

120

140

160

10-1 100 101 102# of cells [Mcell]

ra
te

 [
M

ce
ll/

se
c]

GTX-580 SP

GTX-580 DP

C2050-SP

C2050-DP

64
x6

4x
64

12
8x

64
x6

4

12
8x

12
8x

64

12
8x

12
8x

12
8

25
6x

12
8x

12
8

25
6x

25
6x

12
8

25
6x

25
6x

25
6

Figure 15: Computing rates in Mcell/sec for the algorithm presented in this paper in an Nvidia GTX-580 GPU,
and a Nvidia Tesla C2050, with single (SP) and double precision (DP)

solid layer

Figure 16: Colormap of log10(|ω|) for a square of side Ls = 0.4[m] moving in a square domain of side L = 1[m].
The square moves forming a Lissajous 8-shaped curve.

26

solid layer

Figure 17: Colormap of log10(|ω|) for a rectangle sliding on the bottom of the domain.

b
lo

w
in

g
 layer

periodic

periodic

Figure 18: Colormap of log10(|ω|) for a square body performing harmonic motion in the vertical direction with a
cross flow in the horizontal direction.

An accelerating boundary layer is formed at the left side facing the fluid stream. The boundary
layer accelerate towards the corners and detach there. If the vertical movement were at a con-
stant velocity then the flow would be equivalent to a fixed body with an impinging stream at an
angle of attack. A notable feature of the flow is that when the body reaches the extreme posi-
tions in the y direction the vortex layers become unstable and start shedding vortices, whereas
when the body is moving the vortex layer stabilizes.

27

solid layer

Figure 19: Colormap of log10(|ω|) for a cube moving in a Lissajous 8-shaped curve.

solid layer

Figure 20: Colormap of log10(|ω|) for a falling block.

5.4.4 Moving cube

This is a 3D case. The center (xc, yc, zc) of a cube of side Ls = 0.4[m] is describing a
Lissajous 8-shaped figure in the z = 0.66[m] plane, as follows

xc = L/2 + A cos(ωt),

yc = L/2 + A cos(
π

2
+ 2ωt),

zc = 0.66[m],

ω = 2[s−1], A = 0.4[m]

(62)

28

This is similar to the case §5.4.1 but 3D. The large filamentary vortex layers are no more present,
but instead there is a large amount of small eddies characteristic of a 3D flow.

5.4.5 Falling block

The body is a parallelepiped block of dimensions Lx = Lz = 0.6[m], Ly = 0.2[m]. The
center of the body is initially at (xc, yc, zc) = (0.4125, 0.95, 0.5)[m] and starts falling vertically
with a velocity of 1[m/s]. As the body falls it displaces a large quantity of fluid that forms a
turbulent region expanding from both sides of the block.

6 CONCLUSIONS

We presented a new method called Accelerated Global Preconditioning for solving the in-
compressible Navier-Stokes equations with moving bodies. The algorithm is based on a pres-
sure segregated, staggered grid, Finite Volume formulation and uses a FFT solver for precondi-
tioning the CG solution of the Poisson problem. Theoretical estimates of the condition number
of the preconditioned Poisson problem are given, and several numerical examples are presented
validating these estimates. The algorithm is specially suited for implementation on GPU hard-
ware. The condition number of the preconditioned Poisson equation does not degrade with
refinement. The algorithm allows computing 3D problems in real time on moderately large
meshes for many problems of practical interest in the area of Computational Fluid Dynamics.

ACKNOWLEDGMENT

This work has received financial support from

• Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina, PIP
5271/05),
• Universidad Nacional del Litoral (UNL, Argentina, grant CAI+D 2009-65/334),
• Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina, grants

PICT-1506/2006, PICT-1141/2007, PICT-0270/2008), and
• European Research Council (ERC) Advanced Grant, Real Time Computational Mechan-

ics Techniques for Multi-Fluid Problems (REALTIME, Reference: ERC-2009-AdG).

The authors made extensive use of Free Software as GNU/Linux OS, GCC/G++ compilers,
Octave, and Open Source software as VTK among many others. In addition, many ideas from
these packages have been inspiring to them.

REFERENCES

Adams S., Payne J., and Boppana R. Finite difference time domain (FDTD) simulations using
graphics processors. HPCMP Users Group Conference, 0:334–338, 2007. doi:10.1109/
HPCMP-UGC.2007.34.

Bell N. and Garland M. Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In SC ’09: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, pages 1–11. ACM, New York, NY, USA, 2009.
ISBN 978-1-60558-744-8. doi:10.1145/1654059.1654078.

Corrigan A., Camelli F., Löhner R., and Wallin J. Running unstructured grid-based CFD
solvers on modern graphics hardware. International Journal for Numerical Methods in Flu-
ids, 66(2):221–229, 2011.

29

http://www.conicet.gov.ar
http://www.unl.edu.ar
http://www.agencia.gov.ar
http://erc.europa.eu
http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=518
http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=518

Crane K., Llamas I., and Tariq S. Real-time simulation and rendering of 3D fluids. GPU Gems,
3:633–675, 2007.

Elcott S., Tong Y., Kanso E., Schröder P., and Desbrun M. Stable, circulation-preserving,
simplicial fluids. In SIGGRAPH Asia ’08: ACM SIGGRAPH ASIA 2008 courses, pages
1–11. ACM, New York, NY, USA, 2008. doi:10.1145/1508044.1508061.

Elsen E., LeGresley P., and Darve E. Large calculation of the flow over a hypersonic vehicle
using a GPU. J. Comput. Phys., 227(24):10148–10161, 2008. ISSN 0021-9991. doi:10.
1016/j.jcp.2008.08.023.

Farber R. CUDA application design and development. Morgan Kaufmann, 2011.
Frigo M. and Johnson S. FFTW: an adaptive software architecture for the FFT. In Acoustics,

Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference
on, volume 3, pages 1381–1384. IEEE, 1998.

Frigo M. and Johnson S. FFTW: fastest fourier transform in the west. In Astrophysics Source
Code Library, record ascl: 1201.015, volume 1, page 01015. 2012.

Goddeke D., Strzodka R., Mohd-Yusof J., McCormick P., Wobker H., Becker C., and Turek S.
Using GPU’s to improve multigrid solver performance on a cluster. Int. J. Comput. Sci. Eng.,
4(1):36–55, 2008. ISSN 1742-7185. doi:10.1504/IJCSE.2008.021111.

Idelsohn S., Nigro N., Limache A., and Oñate E. Large time-step explicit integration method
for solving problems with dominant convection. Computer Methods in Applied Mechanics
and Engineering, 217-220:168–185, 2012.

Irving G., Guendelman E., Losasso F., and Fedkiw R. Efficient simulation of large bodies of
water by coupling two and three dimensional techniques. ACM Trans. Graph., 25(3):805–
811, 2006. ISSN 0730-0301. doi:10.1145/1141911.1141959.

Kelley C. Iterative methods for linear and nonlinear equations. Society for Industrial Mathe-
matics, 1995.

Klöckner A., Warburton T., Bridge J., and Hesthaven J. Nodal discontinuous Galerkin methods
on graphics processors. Journal of Computational Physics, 228(21):7863–7882, 2009.

Lastra M., Mantas J.M., Urena C., Castro M.J., and García-Rodríguez J.A. Simulation of
shallow-water systems using graphics processing units. Math. Comput. Simul., 80(3):598–
618, 2009. ISSN 0378-4754. doi:10.1016/j.matcom.2009.09.012.

Leonard B. A stable and accurate convective modelling procedure based on quadratic upstream
interpolation. Comput. Methods Appl. Mech. Eng., 19(1):59–98, 1979.

Molemaker J., Cohen J.M., Patel S., and Noh J. Low viscosity flow simulations for animation. In
SCA ’08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 9–18. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
2008. ISBN 978-3-905674-10-1.

Mossaiby F., Rossi R., Dadvand P., and Idelsohn S. OpenCL-based implementation of an
unstructured edge-based finite element convection-diffusion solver on graphics hardware.
International Journal for Numerical Methods in Engineering, 89:1635 1651, 2012. doi:
10.1002/nme.3302.

Mullen P., Crane K., Pavlov D., Tong Y., and Desbrun M. Energy-preserving integrators for
fluid animation. In SIGGRAPH ’09: ACM SIGGRAPH 2009 papers, pages 1–8. ACM, New
York, NY, USA, 2009. ISBN 978-1-60558-726-4. doi:10.1145/1576246.1531344.

Nickolls J., Buck I., Garland M., and Skadron K. Scalable parallel programming with cuda.
ACM Queue, 6(2):40–53, 2008.

Paz R., Nigro N., and Storti M. On the efficiency and quality of numerical solutions in CFD
problems using the Interface Strip Preconditioner for domain decomposition. International

30

Journal for Numerical Methods in Fluids, 52:89–118, 2006.
Paz R. and Storti M. An Interface Strip Preconditioner for Domain Decomposition Methods

Application to Hydrology. International Journal for Numerical Methods in Engineering,
62(13):1873–1894, 2005.

Peskin C. The immersed boundary method. Acta numerica, 11(0):479–517, 2002.
Rinaldi P., García Bauza C., Vénere M., and Clausse A. Paralelización de autómatas celulares

de aguas superficiales sobre placas gráficas. In A. Cardona, M. Storti, and C. Zuppa, editors,
Mecánica Computacional Vol. XXVII, volume XXVII, pages 2943–2957. 2008.

Ryoo S., Rodrigues C., Baghsorkhi S., Stone S., Kirk D., and Hwu W. Optimization prin-
ciples and application performance evaluation of a multithreaded GPU using CUDA. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, pages 73–82. ACM, 2008.

Storti M., Dalcín L., Paz R., Yommi A., Sonzogni V., and Nigro N. A Preconditioner for the
Schur Complement Matrix. Advances in Engineering Software, 37:754–762, 2006.

Thibault J.C. and Senocak I. CUDA implementation of a Navier-Stokes solver on multi-GPU
desktop platforms for incompressible flows. In AIAA, editor, 47th AIAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition (Disc 1), pages 1–15.
2009.

Wang X., Wang C., and Zhang L. Semi-implicit formulation of the immersed finite element
method. Computational Mechanics, 49:421–430, 2012. ISSN 0178-7675.

Wu E., Liu Y., and Liu X. An improved study of real-time fluid simulation on GPU: Research
articles. Comput. Animat. Virtual Worlds, 15(3-4):139–146, 2004. ISSN 1546-4261. doi:
10.1002/cav.v15:3/4.

mstorti@kinky/texstuff-1.2.0-196-g06851b8/Fri Feb 1 15:59:01 2013 -0300

31

	Introduction
	The Iterated Orthogonal Projection (IOP) solver
	The predictor step. QUICK advection scheme
	The projection step in FSM
	Rate of convergence of IOP
	Convergence in the discrete case
	Convergence and aspect ratio

	The Accelerated Global Preconditioning
	Convergence of AGP
	High aspect ratio limit
	Spectrum of AGP operator and IOP convergence

	Comparison of IOP and AGP
	Solving the Poisson equation with the FFT

	Numerical experiments
	Convergence of IOP and AGP. Condition number of AGP
	Convergence of IOP iteration
	Condition number for AGP does not degrade with refinement
	Bodies with large aspect ratio
	Convergence histories for IOP and AGP compared

	Computational efficiency on GPU hardware
	Computing times of FFT on GPU and CPU hardware
	Computing rates

	Real time computing
	Flow simulations
	Square moving in curved trajectory
	Moving rectangular obstacle
	Square moving vertically with mean horizontal flow
	Moving cube
	Falling block

	Conclusions

