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Abstract. We estimate the packing measure of Cantor sets associated to non-

increasing sequences through their decay. This result, dual to one obtained

by Besicovitch and Taylor, allows us to characterize the dimension functions
recently found by Cabrelli et al for these sets.

1. Introduction

A Cantor set is a compact perfect and totally disconnected subset of the real line.
In this article we consider Cantor sets of Lebesgue measure zero. Different kinds
of these sets appear in many areas of mathematics, such as number theory and
dynamical systems. They are also interesting in themselves as theoretical examples
and counterexamples. A classical way to understand them quantitatively is through
the Hausdorff measure and dimension.

A function h : (0, λh] → (0,∞], where λh > 0, is said to be a dimension function
if it is continuous, non-decreasing and h(x) → 0 as x → 0. We denote by D the set
of dimension functions.

Given E ⊂ IR and h ∈ D , we set h(E) = h(|E|), where |E| is the el diameter of
the set E.

Recall that a δ-covering of a given set E is a countable family of subsets of
IR covering E whose diameters are less than δ. The h-Hausdorff measure of E is
defined as

(1.1) Hh(E) = lim
δ→0

{ ∞∑
i=1

h(Ui) : {Ui} is a δ covering of E

}
.

We say that E is a h-set if 0 < Hh(E) < +∞.
When the dimension function is gs(x) = xs, for s ≥ 0, we set Hs := Hgs (H0 is

the counting measure). The Hausdorff dimension of the set E, denoted by dim E,
is the unique value t for which Hs(E) = 0 if s > t and Hs(E) = +∞ if s < t (see
Proposition 2.2). This property allows us to obtain an intuitive classification of
how thin a subset of IR of Lebesgue measure zero is.

A set E is said dimensional if there is at least one h ∈ D which makes E an h-set.
Not all sets are dimensional (cf. [Bes39]), in fact, there are open problems about
the dimensionality of certain sets, for instance, the set of Liouville numbers, which
has Hausdorff dimension zero (see for example [Ols03]). Nevertheless, Cabrelli et al
[CMMS04] showed that every Cantor set associated to a non-increasing sequence
a is dimensional, that is, they constructed a function ha ∈ D for which Ca is an
ha-set. Moreover, they show that if the sequence a behaves like n−1/s, then ha ≡ gs
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(see definition below) and therefore Ca is an s-set. But in other cases the behavior
of these functions is not so clear. For example, there exists a sequence a such that
Ca is an α-set but ha 6≡ gα ([CHM02]). So these functions could be too general
in order to give a satisfactory idea about the size of the set. To understand this
situation we study the packing premeasure of these sets, which is defined as follows.
A δ-packing of a given set E is a disjoint family of open balls centered at E with
diameters less than δ. The h-packing premeasure of E is defined as

Ph
0 (E) = lim

δ→0

{ ∞∑
i=1

h(Ui) : {Bi}i is a δ-packing of E

}
.

As a consequence of our main result, which is dual to the one obtained in [BT54]
and will be dealt with in Section 4, we are able to characterize completely when a
dimension function is equivalent to a power function (Theorem 4.4). That is, for a
non-increasing sequence a and h ∈ D we obtain that

h ≡ gs ⇐⇒ 0 < Hs(Ca) ≤ P s
0 (Ca) < +∞.

Thus, to have that gα ≡ ha, it is not only necessary that Ca is an α-set but also
that Pα

0 (Ca) < +∞.

2. Some remarks and definitions

By the definition of Ph
0 , it is clear that it is monotone but it is not a measure

because it is not σ-additive; the h-packing measure Ph is obtained by a standard
argument, Ph(E) = inf{

∑∞
i=1 Ph

0 (Ei) : E =
⋃

i Ei}.
As with Hausdorff measures, given a set E there exists a critical value dimP E,

the packing dimension of E, such that Ps(E) = 0 if s > dimP E and Ps(E) = +∞
if s < dimP E. Analogously for the prepacking measure family {P s

0 } we call ∆E
its critical value. In [Tri82] it is shown that ∆E coincides with the upper Box
dimension of E, which we now define.

Given 0 < ε < ∞ and a non-empty bounded set E ⊂ IRd, let N(E, ε) be the
smallest number of balls of radio ε needed to cover E. The lower and upper Box
dimensions of E are given by

dimBE = lim
ε→0

log N(E, ε)
log 1/ε

and dimBE = lim
ε→0

log N(E, ε)
log 1/ε

respectively. When the lower and upper limits coincide, the common value is the
Box dimension of E and we denote it by dimB E.

Note that Hh(E) ≤ Ph(Ca) when h is a doubling function ([TT85]). Moreover,
dim E ≤ dimP E ≤ ∆E ≤ 1 and dim E ≤ dimBE ≤ dimBE; all these inequalities
can be strict ([Tri82]).

We observe that Hh is Borel-regular, which is also true if we only require the
right continuity of h ∈ D [Rog98]. On the other hand, Ph and Ph

0 are also Borel-
regular, but in this case one has to require for h ∈ D to be left continuous ([TT85],
Lemma 3.2). Since in this paper we are concerned with all of these measures, we
require that h ∈ D should be continuous.

Now we define a partial order in D , which will be our way of comparing the
elements of D .

Definition 2.1. Let f and h be in D .
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• f is smaller than h, denoted by f ≺ h, if

lim
x→0

h(x)/f(x) = 0.

• f is equivalent to h, f ≡ h, if

0 < c1 = lim
x→0

h(x)
f(x)

≤ lim
x→0

h(x)
f(x)

= c2 < +∞.

We set f � g when f ≺ g or f = g. We say that f and g are not comparable if
none of the relations f ≺ g, g ≺ f or f ≡ g holds.

Proposition 2.2. If νf is Hf or P f
0 or Pf , then we have the following

i) If f ≺ h then: νf (E) < ∞ =⇒ νh(E) = 0.
ii) If f ≡ h then:

a) νf (E) < ∞ ⇐⇒ νh(E) < ∞.
b) 0 < νf (E) ⇐⇒ 0 < νh(E).
c) In particular, E is a f-set if and only if E is a h-set.

The proof of this proposition for the Hausdorff measure case can be found in
[Rog98]; the packing cases are analogous.

3. Cantor sets associated to non-increasing sequences

Let a = {ak} be a positive, non-increasing and summable sequence. Let Ia be
a closed interval of length

∑∞
k=1 ak. Denote by Ca the family of all closed sets E

contained in Ia which are of the form E = Ia \
⋃

j≥1 Uj , where {Uj} is a disjoint
family of open intervals contained in Ia such that |Uk| = ak ∀k. Thus, every element
of Ca has Lebesgue measure zero.

From this family, we consider the Cantor set Ca associated to the sequence a
constructed as follows: In the first step, we remove from Ia an open interval of
length a1, resulting two closed intervals I1

1 and I1
2 . Having constructed the k-th

step, we get the closed intervals Ik
1 , . . . , Ik

2k contained in Ia. The next step consists
in removing from Ik

j an open interval of length a2k+j , obtaining the closed intervals

Ik+1
2j−1 and Ik+1

2j . Then we define Ca :=
⋂∞

k=1

⋃2k

j=1 Ik
j . Note that in this construction

there is a unique form of removing open intervals at each step; also, note that for
this construction it is not necessary for the sequence to be non-increasing.

Remark 3.1. Since a is non-increasing, the sequence {|Ik
j |}(k,j), with 1 ≤ j ≤ 2n

and k ≥ 1, is (lexicographically) non-increasing.

We associate to the sequence a the summable sequences a and a defined as

an = a2r−1, with 2r−1 ≤ n < 2r and

an = a2r , with 2r ≤ n < 2r+1;

thus an ≤ an ≤ an ∀n. The sets Ca y Ca are uniform, which means that for each
k ≥ 1, the closed intervals of the k-th step have all the same length. Observe that
for each uniform Cantor set the Hausdorff and lower box dimensions coincide (cf.
[CHM97]).

To study the Hausdorff measure and dimension of these sets, Besicovitch and
Taylor in [BT54] studied the decay of the sequence bn = rn/n, where rn =

∑
j≥n aj .

They introduced the number

(3.1) α(a) = lim
n→∞

αn, where nbαn
n = 1 ∀n,
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and showed that dim E ≤ α(a) for all E ∈ Ca. In fact, dim Ca = α(a) (see
for example [CMMS04]). Also, as a consequence of another result in [BT54] (see
Proposition 4.1 below),

(3.2) dim Ca = inf{s > 0 : lim nbs
n < +∞}.

In this paper (Theorem 4.2) we obtain the symmetrical result

dimBCa = ∆Ca = inf{s > 0 : lim nbs
n < +∞}.

On the other hand, the box dimensions of the sets in Ca are related to the
constants

(3.3) γ(a) = lim
k→∞

log 1/k

log ak
y β(a) = lim

k→∞

log 1/k

log ak
.

In fact, by Propositions 3.6 and 3.7 of Falconer’s book [Fal97], the box dimension
of E ∈ Ca exists if and only if γ(a) = β(a), and in this case dimB E = β(a).
Moreover, every E ∈ Ca has upper box dimension β(a), which in [Tri95] is shown
to be equal to limn→∞ αn. We do not know if every set in Ca has the same lower
box dimension, but as the following proposition shows, for Ca there is a symmetry
between lim αn and lim αn with respect to the box dimensions (Here we use the
non-increasingness of a).

Proposition 3.2. If a is a non-increasing sequence then dimBCa = dim Ca = α(a).

Proof. First note that lim nbs
n ∼ limnb

s

n. In fact, to see the nontrivial inequality,
if {nj} is a subsequence of the natural numbers let 2lj−1 ≤ nj < 2lj , so 2lj bs

2lj
≤

2njb
s
nj

and therefore limk→∞ 2kbs
2k ≤ 2 limn→∞ nbs

n. Now for 2jn ≤ n < 2jn+1,

rn ≤
∑

k≥2jn

ak =
∞∑

k=0

2jn+ka2jn+k

≤ 2
∞∑

k=0

2jn+k−1a2jn+k−1 = 2 r2jn−1 ≤ 2 r2jn−1 ,

hence limn→∞ nb
s

n ≤ 4 limj→∞ 2jbs
2j ≤ 8 limn→∞ nbs

n.
Then by (3.2) dim Ca = dim Ca, and by Proposition 3.1 of [CHM97] we have that

dim Ca = dimBCa. On the other hand, N(ε, Ca) ≤ N(ε, Ca) (Ca can be mapped to
Ca by a bijection which preserves the order; then, if two points of Ca are contained
in an open set U , the corresponding points of Ca will be contained in an open set
of the same diameter as U), so dimBCa ≤ dimBCa. �

4. Main results

The next proposition is a result that generalizes the one established in [BT54]
for the functions gs, to any function h ∈ D (c.f.[CHM02]). It shows that Hh(Ca)
behaves like nh(bn) when n →∞.

Proposition 4.1. For h ∈ D , 1
4 limn→∞ nh(bn) ≤ Hh(Ca) ≤ 4 limn→∞ nh(bn).

Proof. The lower inequality 1
4 limn→∞ nh(bn) ≤ Hh(Ca) is obtained in exactly

the same way than in [BT54] replacing gs by h. Hence, we only show here that
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Hh(Ca) ≤ 4 lim nh(bn). We begin by noting that |Ik
j | =

∑∞
i=0 2iak+1+i = b2k for

1 ≤ j ≤ 2k, k > 0. Then, from the identities

|Ik
1 | = a2k + (a2k+1 + a2k+1+1) + (a2k+2 + a2k+2+1 + a2k+2+2 + a2k+2+3) + . . . ,

|Ik−1
1 | = a2k−1 + (a2k+1−1 + a2k+1−1) + (a2k+2−1 + a2k+2−1 + a2k+2−1 + a2k+2−1) + . . .

and Remark 3.1, we have the following estimate

(4.1) |Ik
j | ≤ |Ik

1 | ≤ |Ik−1
1 | = b2k−1 ≤ b2k−1 ,

and hence
∑2k

j=1 h(Ik
j ) ≤ 2kh(b2k−1). Given δ > 0 there exists kδ such that |Ik

1 | < δ
for k ≥ kδ, that is, for k ≥ kδ, the closed intervals of the k-th step form a δ-
covering of Ca which impliesHh(Ca) ≤ 2 limk→∞ 2kh(b2k), and thereforeHh(Ca) ≤
4 lim nh(bn). �

Our main result is the following theorem, which is in some sense dual to the
previous one.

Theorem 4.2. For any h ∈ D 1
8 limn→∞ nh(bn) ≤ Ph

0 (Ca) ≤ 8 limn→∞ nh(bn).

Proof. For the first inequality, suppose that limn→∞ nh(bn) > d. To prove that
Ph

0 (Ca) ≥ d/8, for each δ > 0 it suffices to find a δ-packing {Bi}i of Ca with∑
i h(Bi) > d/8. Observe that, since {an} is non-increasing, then

(4.2) h(b2k) = h

2−k
∑

1≤i≤2k

|Ik
i |

 ≤ h
(
Ik
1

)
.

By hypothesis there exists a subsequence {nj}j≥1 such that njh(bnj ) > d. For each
j, let kj be the unique integer for which 2kj ≤ nj < 2kj+1; since {bn}n is decreasing,
it follows from (4.2) that

(4.3) d < njh(bnj ) < 2kj+1h(b2kj ) ≤ 2kj+1h
(
I

kj

1

)
.

Pick j big enough so that |Ikj

1 | < δ; since the diameter of this interval is smaller than
the diameter of every interval of the kj − 1 step, the family of intervals {Bi}2

kj−2

i=1 ,
where Bi is centered at the right endpoint of the interval I

kj−1
2i−1 and |Bi| = |Ikj

1 |,
turns out to be a δ-packing of Ca, and by (4.3),

∑
i h(Bi) = 2kj−2h(Ikj

1 ) > d/8.
For the second inequality, if {Bi}N

i=1 is a δ-packing of Ca, we define

ki = min{k : Ik
j ⊂ Bi for some 1 ≤ j ≤ 2k}.

By the definition of ki, Bi is centered at a point of an interval of the ki − 1 step
but it does not contain the interval, so |Bi| < |Iki−2

ji
|, where Iki−2

ji
is the interval of

the ki − 2 step which contains the center of Bi. Then, by the monotony of h and
(4.1),

(4.4)
N∑

i=1

h(Bi) ≤
N∑

i=1

h(Iki−2
ji

) ≤
N∑

i=1

h(b2ki−3).

Further, we can assume that |B1| ≥ . . . ≥ |BN |, so k1 ≥ . . . ≥ kN . Let l1 > . . . > lM
denote those ki’s that do not repeat themselves. Let θm be the number of repeated
lm’s, i.e., θm tells us how many of the Bi’s contain an interval of the lm-th step but
none of the previous ones. Since {Bi}N

i=1 is a disjoint family, θ1 cannot be greater
than the number of intervals of step l1, which is 2l1 ; each ball of the packing
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associated to l1 contains 2l2−l1 intervals of step l2 and therefore θ2 ≤ 2l2 − θ12l2−l1 .
Continuing with this process we obtain

θM ≤ 2lM −
M−1∑
i=1

θi2lM−li = 2lM

(
1−

M−1∑
i=1

θi

2li

)
,

and hence
∑M

i=1 θi/2li ≤ 1.
Finally, choose δ sufficiently small such that 2l1−3 ≥ n0, where

sup
n≥n0

nh(bn) ≤ lim
n→∞

nh(bn) + ε.

Then,
N∑

i=1

h(Bi) ≤
M∑

j=1

θj

2lj−3
2lj−3h(b2lj−3) ≤ 8( lim

n→∞
nh(bn) + ε) ,

and from this the theorem follows. �

We are now ready to complete the characterization promised in the introduction.
Note that the function ha ∈ D found in [CMMS04] is defined in such a way that

ha(bn) = 1/n for all n. Then, by Theorem 4.2 we obtain that Pha
0 (Ca) < +∞,

and therefore the Cantor sets associated to non-increasing sequences not only are
dimensional but also have a dimension function which simultaneously regularizes
the covering and packing processes in the construction of the measures. We need
the following Lemma.

Lemma 4.3. Let h, g ∈ D . In addition assume that 0 < Hh(Ca) ≤ Ph
0 (Ca) < +∞.

Then
a) h ≡ g ⇐⇒ 0 < limn→∞ ng(bn) ≤ limn→∞ ng(bn) < +∞;
b) g ≺ h ⇐⇒ limn→∞ ng(bn) = +∞;
c) h ≺ g ⇐⇒ limn→∞ ng(bn) = 0.

Proof. By Proposition 4.1 and Theorem 4.2, since Hh(Ca) > 0 and Ph
0 (Ca) < +∞,

there are costants 0 < ch and Ch < +∞ such that ch1/n ≤ h(bn) ≤ Ch1/n, and all
three necessary conditions follow. On the other hand, if {yj} is a sequence which
decreases to 0, then there exists a subsequence {nj} such that bnj+1 ≤ yj < bnj

.
Therefore

g(yj)
h(yj)

≤
g(bnj

)
h(bnj+1)

≤ 2c−1
h njg(bnj

)

and
g(yj)
h(yj)

≥ (2Ch)−1(nj + 1)g(bnj+1);

from which the sufficient conditions also follow. �

We have now the main theorem of this part.

Theorem 4.4. Let a be a non-increasing sequence, and let h ∈ D be such that
0 < Hh(Ca) ≤ Ph(Ca) < +∞. Then, for g ∈ D we have:
a) h ≡ g ⇐⇒ 0 < Hg(Ca) ≤ P g

0 (Ca) < +∞;
b) g ≺ h ⇐⇒ Hg(Ca) = +∞;
c) h ≺ g ⇐⇒ P g

0 (Ca) = 0.
In particular, h will be equivalent to xs if and only if 0 < Hs(Ca) ≤ P s

0 (Ca) < +∞.
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Proof. The proof is inmediate from Proposition 4.1, Theorem 4.2 and Lemma 4.3.
�

Corollary 4.5. Let γ = γ(a), β = β(a) and α = dimCa. Take ha to be the
dimension function of Ca.
a) If s < α and β < t then gs ≺ ha and ha ≺ gt. If Hα(Ca) = +∞ then

gα ≺ ha, and if Hα(Ca) < +∞ then gα ⊀ ha. If P β
0 (Ca) = 0 then ha ≺ gβ,

and if P β
0 (Ca) > 0 then ha ⊀ gβ.

b) In the case γ < β, ha 6≡ gs for no s ≥ 0. Moreover, if α < t < β then ha and
gt are not comparable. In the limit cases, if Hα(Ca) < +∞ then ha and gα

are not comparable, and if P β
0 (Ca) > 0, ha and gβ are not comparable.

Proof. In the case Hα(Ca) < +∞, if ga were to satisfy gα ≺ ha, Proposition 2.2
implies that Hha(Ca) = 0, which is a contradiction. Hence gα ⊀ ha. Analogously,
P β

0 (Ca) > 0 implies that ha ⊀ gβ , for if not Pha
0 (Ca) = +∞, contradicting Theorem

4.2. The rest of the claims of item a) are immediate from Theorem 4.4.
To show b), if ha ≡ gs for some s ≥ 0 then 0 < Hs(Ca) ≤ P s

0 (Ca) < +∞,
therefore dimBCa = dimBCa and hence γ = β. Moreover, by Proposition 2.2, it
follows that gs ⊀ h when s > dim Ca, and also ha ⊀ gs if 0 ≤ s < β. �

Note that γ < β if and only if dim Ca < dimBCa, so part b) of this corollary
emphasizes that in order to have ha ≡ gs we need γ = β. But this latter condition
and the fact that Ca is an α-set are not sufficient to ensure the equivalence, and thus
the hypothesis of Theorem 4.4 a) cannot be weakened to existence of box dimension
and Ca being an α-set.

Example 4.6. For each 0 < s < 1 there exists a Cantor set Ca associated to a
nonincreasing sequence for which dim Ca = dimBCa = s and 0 < Hs(Ca) < +∞,
but P s

0 (Ca) = +∞.

To construct this sequence we set λk =
(

1
2

) k
s+εk , where

εk =
{

s log l
k , 2m < k ≤ 2m+1, l = k − 2m, m even
0, otherwise

.

Let us define aj = λk for 2k−1 ≤ j < 2k and k ≥ 1. The uniform Cantor set Ca

gives us the example. In fact, it is easy to check that a is summable, decreasing
and, using (3.3), that dim Ca = dimBCa = s. Next we check the claims about the
measures:
a) 0 < limn→∞ nbs

n: Since b2k =
∑

i≥0 2iλk+1+i and λj ≥ ( 1
2 )

j
s ∀j, we have that

2kbs
2k ≥ 2k

∑
i≥0

(
1
2

) k+1+i
s −i

s

=
1
2

∑
i≥0

(
1
2

)( 1
s−1)i

s

= cs > 0

and remember that limn→∞ nbs
n ∼ limk→∞ 2kbs

2k .
b) limn→∞ nbs

n = +∞: Let nj = 22j−1, j odd. Then bnj
=
∑

i≥0 2iλ2j+i > λ2j ,
therefore

njb
s
nj
≥ 22j−1λs

2j = 2
2j(j−1) log 2

2j+(j−1) log 2
−1

,

which increases to infinity with j.
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c) limn→∞ nbs
n < +∞: Now we set nj = 22j

for j odd and observe that

(4.5) njb
s
nj

= nj

∑
i≥0

2iλ2j+1+i

s

=

∑
i≥j

2i∑
l=1

22i+l+2j( 1−s
s )−1λ2i+l

s

.

Each sum in l is bounded by a geometric term, more precisely, if j is sufficiently
large there is a constant Cs depending only on s such that

2i∑
l=1

22i+l+2j( 1−s
s )λ2i+l ≤ Cs

(
1
2

)i−j

,

or equivalently,

(4.6)
2i∑

l=1

2lλ2i+l ≤ Cs

(
1
2

)2i+2j( 1−s
s )+i−j

.

This is easy to check when i is odd. For i even we obtain
∑2i

l=1 2lλ2i+l <

Cs

(
1
2

) 2i

s+ε for small ε. Thus (4.6) will hold if

(4.7) 2i

(
1− (s + ε)

s + ε

)
≥ 2j

(
1− s

s

)
+ i− j.

But notice that (4.7) is true for all i ≥ j choosing ε sufficiently small and j large
enough so that ε2j < ε.

Remark 4.7. Proposition 4.1 and Theorem 4.2 are not valid in general as the fol-
lowing arguments show.

If a is a non-increasing sequence and ã is any rearrangement of a then ra
n ≤ rã

n;
hence, by (3.2) and since Cã ∈ Ca,

inf{s > 0 : lim n(bã
n)s < +∞} ≥ dim Ca ≥ dim Cã,

and each positive and summable sequence a has a rearrangement z for which
dim Cz = 0 (cf. [CMPS05]).

In the case of Theorem 4.2, let η(a) := inf{s > 0 : lim nbs
n < +∞} and consider

β(a) as defined in Section 3. Note that if t > η(a) then an < Cn1−1/t ∀n, and hence
β(a) ≤ t

1−t which implies that β(a) ≤ η(a)
1−η(a) . Therefore β(a)

1+β(a) ≤ η(a). Thus, to
show that this proposition fails in general, we exhibit a non-increasing sequence a
and a rearrangement ã of it for which

(4.8) β(a) <
β(ã)

1 + β(ã)

and therefore dimBC(ã) = β(a) < η(ã). For an =
(

1
n

)p, we set

ãn =


a3k , n = dlog 3ke, n 6= 3j ∀j

adlog 3ke, n = 3k, n 6= dlog 3je ∀j
an, otherwise

,

where dse denotes the smallest integer greater than s. Observe that this is a re-
arrangement of a since the sequence {dlog 3ke} is strictly increasing and dlog 33le 6=
3j for each l and each j. Then it is easy to check that β(a) = 1/p and that
β(ã) = log 3

p . Therefore (4.8) holds for p > log 3
log 3−1 .
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However these propositions keep on being true if we ask the Cantor set to be
uniform with no further assumptions on the sequence. This can be seen in Theorem
4.2 since inequalities (4.3) and (4.4), where the decay assumption is needed, are still
true for uniform Cantor sets. For Proposition 4.1 note that Lemma 4 of [BT54] does
not need the decay. Moreover, to each Cantor set associated to a non-increasing
sequence corresponds an uniform Cantor set with equivalent h-Hausdorff measure
and h-packing premeasure.

Finally we give an application of the results of this section.
Let p > 1 and q ∈ IR . Consider the sequence a defined by an = (log n)q/np,

∀ n > 1. We denote by Cp,q the Cantor set associated to a and define the dimension
function hp,q(x) = x

1
p /(− log x)

q
p .

Since γ(a) = β(a) = 1/p, we have that dim Cp,q = dimB Cp,q = 1/p for any q.
Moreover, if q = 0, Cp = Cp,0 is an 1/p-set (cf. [CMPS05]). Even more, as in this

case rn ∼ 1/np−1, Theorem 4.2 implies that P
1
p

0 (Ca) < +∞. The next corollary
extends these results.

Corollary 4.8. With the above notation, 0 < Hhp,q (Cp,q) ≤ P
hp,q

0 (Cp,q) < +∞.
In particular, Cp,q is an hp,q-set.

Proof. We show that rn ∼ (log n)q/np−1 and from this it is easy to see that
hp,q(bn) ∼ 1/n. First suppose that q ≥ 0. In this case we have that

rn ≥ (log n)q
∑
k≥n

k−p ≥ c1
(log n)q

np−1

and

rn ≤
∫ ∞

n−1

(log t)q

tp
dt,

so integrating by parts we get

rn ≤
1

p− 1

(
(log(n− 1))q

(n− 1)p−1
+ q

∫ ∞

n−1

(log t)q−1

tp
dt

)
= cp

(log n)q

np−1
+ O

(
(log n)q−1

np−1

)
≤ c2

(log n)q

np−1
,

where c1 and c2 are constants depending only of p and q.
Now suppose that q < 0. In this case is easy to see that rn ≤ c3(log n)q/np−1.

On the other hand, integrating by parts twice and since q(q − 1) > 0 we obtain

rn ≥
1

p− 1

(
(log n)q

np−1
+

q

p− 1
(log n)q−1

np−1
+

q(q − 1)
p− 1

∫ ∞

n

(log t)q−2

tp−1
dt

)
≥ 1

p− 1
(log n)q

np−1

(
1 +

q

p− 1
(log n)−1

)
;

taking n sufficiently large it follows that rn ≥ c4(log n)q/np−1. �

Note that hp,q � hs,t if and only if (1/p, q) ≤l (1/s, t) (≤l denote the lexicograph-
ical order in (0, 1)×IR). DefineH

1
p ,q = Hhp,q , so thatH

1
p ,0 = H

1
p . As a consequence

of the above result we can conclude the following. If q < 0, (1/p, q) <l (1/p, 0), and
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since Hp,q(Cp,q) < +∞, we have that H
1
p (Cp,q) = 0. On the other hand, if q > 0,

then (1/p, 0) <l (1/p, q) and Hp,q(Cp,q) > 0 implies that H
1
p (Cp,q) = +∞. Hence,

the family {hp,q} provides a more accurate classification than the usual {gs}, i.e., it
distinguishes more sets; further, the dimension induced by this family can be seen
as the set ((0, 1)× IR)∪{(0, 0)}∪{(1, 0)} ordered with ≤l, and the set function dim
turns out to be the restriction of this order to (0, 1)× {0}.
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