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Abstract. The Integral, Iφ, and Derivative, Dφ, operators of order φ, with φ a function of
positive lower type and upper type lower than 1, were defined in [HV2] in the setting of spaces
of homogeneous-type. These definitions generalize those of the fractional integral and derivative

operators of order α, where φ(t) = tα, given in [GSV].

In this work we show that the composition Tφ = Dφ ◦ Iφ is a singular integral operator. This
result in addition with the results obtained in [HV2] of boundedness of Iφ and Dφ or the T1-

theorems proved in [HV1] yield the fact that Tφ is a Calderón-Zygmund operator bounded on the

generalized Besov, Ḃψ,qp , 1 ≤ p, q <∞, and Triebel-Lizorkin spaces, Ḟψ,qp , 1 < p, q <∞, of order

ψ = ψ1/ψ2, where ψ1 and ψ2 are two quasi-increasing functions of adequate upper types s1 and
s2, respectively.

1. Introduction

In the context of normal spaces of homogeneous-type (X, δ, µ) of order θ ≤ 1, the integral operator,
Iφ, and the derivative operator, Dφ, of order φ, where φ is a function of positive lower type and
upper type lower than θ, were defined in [HV2] in such way that their kernels become equivalent to
φ(δ(x, y))/δ(x, y) and 1/(φ(δ(x, y))δ(x, y)), respectively.
It was proved in that work, by means of the Calderón-type reproduction formulas given in [HS],
that Iφ is continuous from the Besov spaces Ḃψ,qp , 1 ≤ p, q <∞, and Triebel-Lizorkin spaces, Ḟψ,qp ,
1 < p, q < ∞, into Ḃφψ,qp , 1 ≤ p, q < ∞ and Ḟφψ,qp , 1 ≤ p, q < ∞, respectively. Similarly, it was

seen that Dφ is continuous from Ḃψ,qp and Ḟψ,qp into Ḃψ/φ,qp and Ḟψ/φ,qp , respectively, for the waited
range of types of the two functions in each case.
This results generalize the classical ones referred to the fractional integral and derivative operators,
Iα and Dα, and their action on the Besov Ḃβ,qp and Ḟ β,qp spaces.
In this work we prove that the composition Tφ = Dφ◦Iφ is a singular integral operator in the classical
sense and, hence, we complete the proof of that it is a Calderón-Zygmund operator bounded on the
generalized Besov and Triebel-Lizorkin spaces.
It worth saying that, once the standard conditions on the kernel of Tφ are proved, the same result
is arised by the T1-theorems for those spaces proved in [HV1].
This work is organized in the following way:
In section 2 we define the class of functions involved in the ’order’ of the integral and derivative
operators. The structure of normal spaces of homogeneous type, the test function space and the
notion of continuous approximation to the identity is also set in that section. The definitions of the
integral and derivative operators and the main theorem are stated in section ??.
In section ?? known results on the class of quasi-increasing functions are given and, afterwards, size
and smoothness conditions of the kernels of Iφ and Dφ and the theorems of boundedness on Lipschitz
spaces proved in [HV2] are stated. Finally, the proof of the fact that Tφ is a Calderón-Zygmund
operator is in section ??.

2. Preliminaries

A function φ(t) defined on t > 0 is said to be quasi-increasing if there is a positive constant C
such that if t1 < t2 then φ(t1) ≤ Cφ(t2).
Analogously, φ(t) is quasi-decreasing if there is a positive constant C such that if t1 < t2 then
φ(t2) ≤ Cφ(t1).
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On the other hand, φ(t) is said to be of lower type iφ, 0 ≤ iφ < ∞, if there is a constant C1 > 0
such that

φ(uv) ≤ C1u
iφφ(v) for u < 1 and v > 0. (2.1)

Similarly, φ(t) is of upper type sφ, 0 ≤ sφ <∞ if there is a constant C2 > 0 such that

φ(uv) ≤ C2u
sφφ(v) for u ≥ 1 and v > 0. (2.2)

Clearly, the potential tα, with α ≥ 0, is of lower and upper type α. The functions max(tα, tβ) and
min(tα, tβ), with α < β, are both of lower type α and upper type β. Also, tβ(1+log+ t), with β ≥ 0,
is of lower type β and of upper type β + ε, for every ε > 0.
If φ(t) is of both lower type iφ and upper type sφ then iφ ≤ sφ. Also, if φ(t) is quasi-increasing then
φ(t) is of lower-type 0 and, reciprocally, if φ(t) is of lower type iφ ≥ 0 then it is quasi-increasing.
Finally we say that two functions ψ(t) and φ(t) are equivalent, ψ ' φ, if there are positive constants
C1 and C2 such that C1 ≤ φ/ψ ≤ C2.

Let now define the structure of spaces of homogeneous type which is the underlying geometry for
the test functions spaces defined in this work.
Given a set X a real valued function δ(x, y) defined on X×X is a quasi-distance on X if there exists
a constant A > 1 such that for all x, y, z ∈ X it verifies:

δ(x, y) ≥ 0 and δ(x, y) = 0 if and only if x = y

δ(x, y) = δ(y, x)
δ(x, y) ≤ A[δ(x, z) + δ(z, y)].

In a set X endowed with a quasi-distance δ(x, y), the balls Bδ(x, r) = {y : δ(x, y) < r} form a basis
of neighborhoods of x for the topology induced by the uniform structure on X.
Let µ be a positive measure on a σ- algebra of subsets of X which contains the open set and the balls
Bδ(x, r). The triple X := (X, δ, µ) is a space of homogeneous type if there exists a finite constant
A′ > 0 such that µ(Bδ(x, 2r)) ≤ A′µ(Bδ(x, r)) for all x ∈ X and r > 0. Maćıas and Segovia ([MS])
showed that how to find a quasi-distance d(x, y) equivalent to δ(x, y) and 0 < θ ≤ 1, such that

|d(x, y)− d(x′, y)| ≤ Cr1−θd(x, x′)θ (2.3)

holds whenever d(x, y) < r and d(x′, y) < r.
If δ satisfies (2.1) then X is said to be of order θ.
X is a normal space if A1r ≤ µ(Bδ(x, r)) ≤ A2r for every x ∈ X and r > 0 and some positive
constants A1 and A2.
In this work X := (X, δ, µ) means a normal space of homogeneous type of order θ and A denotes the
constant of the triangular inequality associated to δ.

Given a quasi-increasing function ξ : IR+ → IR+ such that limt→0 ξ(t) = 0 and limt→∞ ξ(t) = ∞,
the Lipschitz space Λξ is the class of all functions f : X → lC such that

|f(x)− f(y)| ≤ Cξ(δ(x, y)) for every x, y ∈ X,

and the number |f |ξ denoting the infimum of the constants C appearing above, defines a semi-norm
on Λξ, since |f |ξ = 0 for all constants functions f .
Furthermore, given a ball B in X, Λξ(B) denotes the set of functions f ∈ Λξ with support in B.
Since, a function belonging to this space is bounded, the number ‖f‖ξ = ‖f‖∞+ |f |ξ, defines a norm
that gives a Banach structure to Λξ(B).
We say that a function f belongs to Λξ0 iff f ∈ Λξ(B) for some ball B. The space Λξ0 is the inductive
limit of the Banach spaces Λξ(B).
Finally, (Λξ0)

′ will mean the space of all continuous linear functionals on Λξ0.
When ξ(t) = tβ , with 0 < β ≤ θ, we have the classical Lipschitz spaces Λβ and Λβ0 .

Finally, we shall consider a symmetric approximation to the identity, that is a family of integral
operators {St}t>0, as defined in [GSV], whose kernels st(x, y) satisfy the following properties:
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There are positive constants, b1, b2, c1, c2 and c3, such that for all x, y ∈ X and t > 0, st(x, y) satisfies

st(x, y) = st(y, x),
0 ≤ st(x, y) ≤ c1/t,

st(x, y) = 0 if δ(x, y) > b1t and, c2/t < st(x, y) if δ(x, y) < b2t,

|st(x, y)− st(x′, y)| < c3δ
θ(x, x′)/t1+θ, for all x, x′, y ∈ X,∫

st(x, y)dµ(y) = 1, for all x ∈ X,

st(x, y) is continuously differenciable in t.

3. Integral and Derivative operators of order φ
and main theorem

The general setting for the definition of both operators is that φ : IR+ → IR+ is a quasi-increasing
function such that limt→0+ φ(t) = 0.
We define

Kφ(x, y) =
∫ ∞

0

φ(t)
t
st(x, y)dt for x 6= y.

Clearly, Kφ(x, y) > 0 and Kφ(x, y) = Kφ(y, x) for every (x, y).
For φ of positive lower type and upper type sφ < 1 the integral operator of order φ, Iφ, and its
extension Ĩφ are defined in the following way:
Given any quasi-increasing function ξ of upper type β > 0.

If f ∈ Λξ ∩ L1 then

Iφf(x) :=
∫
X

Kφ(x, y)f(y)dµ(y).

If β + sφ < θ and f ∈ Λξ then

Ĩφf(x) :=
∫
X

(Kφ(x, y)−Kφ(x0, y))f(y)dµ(y),

for every x ∈ X and an arbitrary fix x0 ∈ X.

On the other hand, if φ is of finite upper-type we define

K1/φ(x, y) =
∫ ∞

0

1
φ(t)t

st(x, y)dt, for x 6= y,

Clearly K1/φ is also positive and symmetric.
For φ a function of lower type iφ > 0 and upper type sφ, the derivative operator of order φ, Dφ, and
its extension, D̃φ are defined as follows:
Given any function ξ of lower type α and of upper type β, such that sφ < α,

If f ∈ Λξ ∩ L∞, then

Dφf(x) =
∫
X

K1/φ(x, y)(f(y)− f(x))dµ(y) and,

if f ∈ Λξ, then

D̃φf(x) =
∫
X

(K1/φ(x, y)(f(y)− f(x))−K1/φ(x0, y)(f(y)− f(x0)))dµ(y)

for each x ∈ X and an arbitrary, but fix, x0 ∈ X.
The theorem whose proof is the purpose of this work is stated as follows:

Theorem 3.1. Let φ be of lower type iφ > 0 and of upper type sφ such that sφ < ε ≤ θ.
Then Tφ = Dφ ◦ Iφ is a singular integral operator whose associated kernel is

K(x, y) =
∫
K1/φ(x, z)(Kφ(z, y)−Kφ(x, y))dµ(z),
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4. Previous results

A straightforward consequence of the definitions is that if φ(t) is of upper type sφ then there is
a constant C > 0 such that

φ(uv) ≥ 1
C
usφφ(v), for u < 1, v > 0. (4.4)

Similarly, if φ(t) is of lower type iφ then there is a constant C > 0 such that

φ(uv) ≥ 1
C
uiφφ(v), for u ≥ 1, v > 0. (4.5)

Also, it is easy to check that

Proposition 4.1. If φ(t) is of lower type iφ and ξ(t) is of upper type λ ≤ iφ then φ(t)/ξ(t) is quasi-
increasing.
On the other hand, if φ(t) is of upper type sφ and ξ(t) is of lower type λ ≥ sφ then φ(t)/ξ(t) is
quasi-decreasing.

Proposition 4.2. If φ(t) is of lower type α > 0 and upper type β ∈ IR and 0 < γ < α then the
function

ψ(t) = tγ
∫ t

0

φ(u)
uγ+1

du

is equivalent to φ, continuous, increasing and invertible. Moreover, its inverse ψ−1 is of lower type
β−1 and of upper type α−1.

The next corollaries of the above Proposition will be needed to define the quasi-metrics associated
to the kernels of our operators.

Corollary 4.1. If φ is a quasi-increasing function of upper type sφ < 1 then there is an equivalent
function φ̃ such that φ̃(t)/t is decreasing, continuous and invertible on t > 0.

Corollary 4.2. If φ(t) is a quasi-increasing function of finite upper type then there exists a function
φ̂(t) equivalent to φ(t), such that tφ̂(t) is increasing, continuous and invertible in IR+.

The following properties will be useful throughout the proof of the theorem:
Let φi(t) be a function of lower type αi and of upper type βi, i= 1,2. For every x ∈ X and r > 0 it
holds that

If α1 > β2 then
∫
δ(x,y)≤r

φ1(δ(x, y))
φ2(δ(x, y))δ(x, y)

dµ(y) ≤ C
φ1(r)
φ2(r)

. (4.6)

If β1 < α2 then
∫
δ(x,y)≥r

φ1(δ(x, y))
φ2(δ(x, y))δ(x, y)

dµ(y) ≤ C
φ1(r)
φ2(r)

. (4.7)

Let now give a representation of the kernel of Iφ in terms of a quasi-metric equivalent to δ.
If φ is a quasi-increasing function of upper-type sφ < 1 consider a fix function φ̃, as given in Corollary
??. Then

Kφ(x, y) =
φ̃(δφ(x, y))
δφ(x, y)

for x 6= y,

where δφ(x, y) is defined as the unique solution of

φ̃(δφ(x, y))
δφ(x, y)

=
∫ ∞

0

φ(t)
t
st(x, y)dt if x 6= y, and

δφ(x, y) = 0 if x = y.

When φ(t) = tα, 0 < α < 1, we can choose φ̃ = φ and then δα := δφ is the quasi-metric associated
to Iα defined in [GSV].
The following lemmas and theorems are proved in [HV2]. The first one shows that Kφ(x, y) is
equivalent to φ(δ(x, y))/δ(x, y).

Lemma 4.1. If φ is of upper type sφ < 1 then there are positive constants C1 and C2 such that for
δ(x, y) > 0,

C2
φ(δ(x, y))
δ(x, y)

≤ φ̃(δφ(x, y))
δφ(x, y)

≤ C1
φ(δ(x, y))
δ(x, y)
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In particular,

0 < Kφ(x, y) ≤ C
φ(δ(x, y))
δ(x, y)

. (4.8)

Moreover, δφ is a quasi-metric equivalent to δ.

Lemma 4.2. Let φ be of upper type sφ < 1. Then

|Kφ(x, y)−Kφ(x′, y)|+ |Kφ(y, x)−Kφ(y, x′)| ≤ C

(
δ(x, x′)
δ(x, y)

)θ
φ(δ(x, y))
δ(x, y)

(4.9)

whenever δ(x, y) ≥ 2Aδ(x, x′).

Lemma 4.3. Let φ be of upper type sφ < θ. Then∫
X

[Kφ(x, y)−Kφ(x′, y)]dµ(y) = 0, (4.10)

for every x and x′ ∈ X.

Theorem 4.4. Let φ be of lower type iφ > 0 and upper type sφ < 1 and ξ a quasi-increasing function
of upper type β.

If f ∈ Λξ ∩ L1 and β > 0 then Iφf(x) converges absolutely for all x and if, also, β + sφ < θ then
there is a constant C > 0, independent of f , such that

|Iφf |Λξφ ≤ C|f |Λξ .

Also, if f ∈ Λξ and β + sφ < θ then Ĩφf(x) converges absolutely for all x and there is a constant
C > 0, independent of f , such that

|Ĩφf |Λξφ ≤ C|f |Λξ .

Moreover, If f ∈ Λξ ∩ L1, then Ĩφf coincides with Iφf as an element of Λξφ (since Ĩφf(x) =
Iφf(x)− Iφf(x0).)

From the proof of the above theorems the following results are obtained:

Remarks 4.5. If φ is of upper type sφ, ξ is of upper type β and β+sφ < θ then Iφ maps Λξ∩L1∩L∞
in Λξφ ∩ L∞ and ‖Iφf‖Λξφ ≤ C(‖f‖ξ + ‖f‖1).

Remarks 4.6. If f ∈ Λβ0 and β + iφ < θ then Iφf ∈ Λβ+iφ ∩ L∞ and ‖Iφf‖β+iφ ≤ Cµ(suppf)‖f‖β.
It then follows that Iφ is a linear continuous operator from Λβ0 on (Λβ0 )′

In analogous way to the integral operator, a representation of the kernel of Dφ in terms of
an adequate quasi-metric, size and smoothness properties on the kernel and boundedness of the
derivative operator on Lipschitz spaces are given bellow.
Let φ be a quasi-increasing function of finite upper type and consider a fix function φ̂, as given in
Corollary ??.
Hence we have that

K1/φ(x, y) =
1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
for x 6= y.

where δ1/φ(x, y) is defined as the unique solution of the equation

1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
=

∫ ∞

0

1
φ(t)t

st(x, y)dt if x 6= y, and

δ1/φ(x, y) = 0 if x = y.

When φ(t) = tα, 0 < α < 1, choosing φ̂ = φ it turns out that δ−α := δt−α is the quasi-metric
associated to Dα defined in [GSV].
The next lemma shows the equivalence between K1/φ(x, y) and 1/(φ(δ(x, y))δ(x, y)).
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Lemma 4.7. If φ is a quasi-increasing function of finite upper type then there are positive constants
C1 and C2 such that

C1
1

φ(δ(x, y))δ(x, y)
≤ 1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
≤ C2

1
φ(δ(x, y))δ(x, y)

.

In particular,

0 < K1/φ(x, y) ≤ C
1

φ(δ(x, y))δ(x, y)
. (4.11)

Moreover, δ1/φ is a quasi-metric equivalent to δ.

Lemma 4.8. If φ is a quasi-increasing function of finite upper type then

|K1/φ(x, y)−K1/φ(x′, y)|+ |K1/φ(y, x)−K1/φ(y, x′)|

≤ C

(
δ(x, x′)
δ(x, y)

)θ 1
φ(δ(x, y))δ(x, y)

(4.12)

for δ(x, y) ≥ 2Aδ(x, x′).

Theorem 4.9. Let φ be a function of lower type iφ > 0 and upper type sφ.
Let also ξ be a quasi-increasing function of lower type α and upper type β.
If f ∈ Λξ ∩ L∞ and sφ < α then Dφf(x) is absolutely convergent for every x ∈ X and if, also,
β < θ + iφ then

‖Dφf‖ξ/φ ≤ C‖f‖ξ.

If f ∈ Λξ, sφ < α and β < θ + iφ then D̃φf(x) is absolutely convergent for every x ∈ X and

|D̃φf |ξ/φ ≤ C|f |ξ.

Moreover, if f ∈ Λξ ∩ L∞, then D̃φf coincides with Dφf as an element of Λξ, (since D̃φf(x) =
Dφf(x)−Dφf(x0).)

Remarks 4.10. Let ξi be a function of lower type αi and upper type βi for i = 1, 2 and let sφ < α1

then

< Dφf, g >=
∫∫

K1/φ(x, y)(f(y)− f(x))g(x)dµ(x)dµ(y),

for any f ∈ Λξ1 ∩ L∞ and g ∈ L1.
Furthermore, if f ∈ Λξ1 ∩ L∞ ∩ L1, g ∈ Λξ2 ∩ L∞ ∩ L1, and sφ < α2 then

< Dφf, g >=< Dφg, f > .

5. Proof of Theorem ??

Let first see that Tφ is a linear continuous operator, Tφ : Λβ0 → (Λβ0 )′, for every β such that
sφ− iφ < β < θ− iφ. In fact, by Remark ??, Iφ is continuous from Λβ0 to Λβ+iφ ∩L∞ for β < θ− iφ
and, by Remark ??, Dφ is continuous from Λβ+iφ ∩ L∞ to (Λβ0 )′, if sφ − iφ < β.
In the following proofs of size and smoothness conditions of K, inequalities (??) and (??) will be
used without explicitly mention them whenever the size of Kφ or K1/φ is involved in the below
inequalities.
To prove that

|K(x, y)| ≤ C

δ(x, y)
for x 6= y, (5.13)

we consider the following partition of X

D1 = {z : δ(x, z) ≥ 2Aδ(x, y)},

D2 = {z :
1

2A
δ(x, y) < δ(x, z) < 2Aδ(x, y)},

D3 = {δ(x, z) ≤ 1
2A

δ(x, y)}.
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First notice that if y ∈ D1 then δ(z, y) > δ(x, y). Therefore, from φ(t)/t quasi-decreasing and (??)–
since iφ > 0–, it follows that∫

D1

K1/φ(x, z)|Kφ(z, y)−Kφ(x, y)|dµ(z)

≤ C

∫
D1

1
φ(δ(x, z))δ(x, z)

(
φ(δ(z, y))
δ(z, y)

+
φ(δ(x, y))
δ(x, y)

)dµ(z)

≤ C
φ(δ(x, y))
δ(x, y)

∫
δ(x,z)≥2Aδ(x,y)

1
φ(δ(x, z))δ(x, z)

dµ(z)

≤ C
1

δ(x, y)
.

Secondly, if y ∈ D2 then δ(z, y) ≤ A(δ(z, x) + δ(x, y)) < 4A2δ(x, y), and, from (??) it follows that∫
D2

K1/φ(x, z)|Kφ(z, y)−Kφ(x, y)|dµ(z)

≤ 2C
1

φ(δ(x, y))δ(x, y)

∫
δ(z,y)<4A2δ(x,y)

φ(δ(z, y))
δ(z, y)

dµ(z)

≤ C
1

δ(x, y)
.

Finally, if y ∈ D3, from Lema (??) and (??)– since sφ < θ – it follows that∫
D3

K1/φ(x, z)|Kφ(z, y)−Kφ(x, y)|dµ(z)

≤ C
φ(δ(x, y))
δ(x, y)1+θ

∫
δ(x,z)≤ 1

2A δ(x,y)

δ(z, x)θ

φ(δ(x, z))δ(x, z)
dµ(z)

≤ C
1

δ(x, y)
.

The proof of (??) is thus finished.
It will now be shown that Tφ = Dφ ◦ Iφ has K as associated kernel.

Let f and g ∈ Λβ0 with disjoint supports. Then

Dφ ◦ Iφf(x) =
∫
K1/φ(x, z)(Iφf(z)− Iφf(x))dµ(z)

=
∫
K1/φ(x, z)

∫
(Kφ(z, y)−Kφ(x, y))f(y)dµ(y)dµ(z).

If x /∈ suppf then using (??), this last integral is absolutely convergent. Applying Fubini’s theorem
it follows that

Dφ ◦ Iφf(x) =
∫

(
∫
K1/φ(x, z)(Kφ(z, y)−Kφ(x, y))dµ(z))f(y)dµ(y)

=
∫
K(x, y)f(y)dµ(y).

Moreover, if suppf ∩ suppg = ∅ then
∫
|K(x, y)||f(y)|dµ(y) is bounded for x ∈ suppg, and therefore

< Tφf, g > =
∫
X

Tφf(x)g(x)dµ(x)

=
∫ ∫

K(x, y)f(y)g(x)dµ(y)dµ(x).

We will now prove that there are constants C > 0, ν > 1 and 0 < γ < 1, such that

|K(x, y)−K(x′, y)| ≤ C
δ(x, x′)γ

δ(x, y)1+γ
, if δ(x, y) > νδ(x, x′), (5.14)
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Notice that

|K(x, y)−K(x′, y)| ≤∫ ∣∣K1/φ(x, z)(Kφ(z, y)−Kφ(x, y))−K1/φ(x′, z)(Kφ(z, y)−Kφ(x′, y))
∣∣ dµ(z).

(5.15)

Denoting by h(z) the function inside the above integral, choosing k and ν such that 2 ≤ 3A2 < k < ν
A ,

and setting
δ(x, y) > νδ(x, x′), (5.16)

we consider the partition of X defined by A = {z : δ(x, z) > 1
k δ(x, y)}, and its complement Ac. To

obtain a bound for the integral on the set A we display h(z) in the form

h(z) = (K1/φ(x, z)−K1/φ(x′, z))Kφ(z, y)

+K1/φ(x, z)(Kφ(x′, y)−Kφ(x, y))

+Kφ(x′, y)(K1/φ(x′, z)−K1/φ(x, z))
= I1 + I2 + I3.

Notice that if z ∈ A then, by (??), it holds that
δ(x, z) > 1

k δ(x, y) >
ν
k δ(x, x

′), now, from (??) -since φ is quasi-increasing- it turns out that∫
A

|I3|dµ(z) ≤ C
φ(δ(x′, y))
δ(x′, y)

δ(x, x′)θ
∫
δ(x,z)> 1

k δ(x,y)

1
φ(δ(x, z))δ(x, z)1+θ

dµ(z)

≤ C
φ(δ(x′, y))
δ(x′, y)

δ(x, x′)θ

φ(δ(x, y))δ(x, y)θ
.

Nevertheless, from (??) it holds that
δ(x, y) ≤ A(δ(x, x′) + δ(x′, y)) ≤ A

ν δ(x, y) +Aδ(x′, y) and, as ν > A,
δ(x′, y) > ( 1

A −
1
ν )δ(x, y) > Cδ(x, y), with C > 0. Moreover, since φ(t)/t is quasi-decreasing then∫

A

|I3|dµ(z) ≤ C
δ(x, x′)θ

δ(x, y)1+θ
. (5.17)

On the other hand, using (??) and (??) -since φ is of positive lower type- it follows that∫
A

|I2|dµ(z) ≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

∫
δ(x,z)> 1

k δ(x,y)

dµ(z)
φ(δ(x, z))δ(x, z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
. (5.18)

Finally To obtain a bound for
∫
A
|I1|, the following partition of A is considered

D1 = {z : δ(x, z) > kδ(x, y)},

D2 = {z :
1
k
δ(x, y) < δ(x, z) ≤ kδ(x, y)}.

First notice that if z ∈ D1 and (??) holds then δ(x, z) > kδ(x, y) > νkδ(x, x′) and νk > A.
Therefore, ∫

D1

|I1|dµ(z) ≤ Cδ(x, x′)θ
∫
D1

1
φ(δ(x, z))δ(x, z)1+θ

φ(δ(z, y))
δ(z, y)

dµ(z),

but for z ∈ D1 it also holds that
δ(x, z) ≤ A(δ(x, y) + δ(y, z)) ≤ A( 1

k δ(x, z) + δ(y, z)), and then δ(y, z) > ( 1
A − 1

k )δ(x, z), with
1/A− 1/k > 0. Since φ(t)/t is quasi-decreasing then∫

D1

|I1|dµ(z) ≤ Cδ(x, x′)θ
∫
δ(x,z)>kδ(x,y)

1
δ(x, z)2+θ

dµ(z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
. (5.19)
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On the other hand, if z ∈ D2 and (??) holds then νδ(x, x′) < δ(x, y) < kδ(x, z). Therefore,∫
D2

|I1|dµ(z) ≤ δ(x, x′)θ
∫
D2

1
δ(x, z)1+θφ(δ(x, z))

φ(δ(z, y))
δ(z, y)

dµ(z).

Nevertheless, for z ∈ D2 it also holds that
δ(z, y) ≤ A(δ(x, z) + δ(x, y)) ≤ A(k + 1)δ(x, y), and δ(x, z) > 1

k δ(x, y). Therefore,∫
D2

|I1|dµ(z) ≤ C
δ(x, x′)θ

φ(δ(x, y))δ(x, y)1+θ

∫
δ(z,y)≤Cδ(x,y)

φ(δ(z, y))
δ(z, y)

dµ(z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
. (5.20)

We conclude from (??) and (??) that∫
A

|I1|dµ(z) ≤ C
δ(x, x′)θ

δ(x, y)1+θ
, (5.21)

and, (??), (??) and (??) imply ∫
A

|h(z)|dµ(z) ≤ C
δ(x, x′)θ

δ(x, y)1+θ
. (5.22)

To bound
∫
Ac , we consider the following partition of Ac = {z : 1

k δ(x, y) ≥ δ(x, z)},

B1 = {z : δ(x, z) ≤ ν/kδ(x, x′)}

B2 = {z : ν/kδ(x, x′) ≤ δ(x, z) ≤ 1
k
δ(x, y)}.

Firstly notice that ∫
B1

|h(z)|dµ(z)

≤
∫
B1

1
φ(δ(x, z))δ(x, z)

|Kφ(z, y)−Kφ(x, y)|dµ(z)

+
∫
B1

1
φ(δ(x′, z))δ(x′, z)

|Kφ(z, y)−Kφ(x′, y)|dµ(z)

= F1 + F2.

Nevertheless, if z ∈ Ac and δ(x, y) > νδ(x, x′) then δ(x, y) ≥ kδ(x, z) and it also holds that

δ(x′, y) ≥ Cδ(x′, z), (5.23)

with C > 1. Indeed, by (??), it holds that

δ(x, y) ≤ A(δ(x, x′) + δ(x′, y)) ≤ A(ν−1δ(x, y) + δ(x′, y)),

and, since A < ν then

δ(x, y) ≤ νA

ν −A
δ(x′, y). (5.24)

Therefore, for z ∈ Ac and δ(x, y) > νδ(x, x′) it holds that

δ(x′, z) ≤ A(δ(x, x′) + δ(x, z)) ≤ A(ν−1 + k−1)δ(x, y) ≤ A(1/ν + 1/k)
1/A− 1/ν

δ(x′, y); (5.25)

and since A(1/ν + 1/k)/(1/A − 1/ν) < 1, (??) is now clear. On Ac, the smoothness condition on
Kφ can be used to get

F1 ≤ C
φ(δ(x, y))
δ(x, y)1+θ

∫
δ(x,z)< ν

k δ(x,x
′)

1
φ(δ(x, z))δ(x, z)

δ(x, z)θdµ(z)

≤ C
φ(δ(x, y))
δ(x, y)1+θ

δ(x, x′)θ

φ(δ(x, x′))
.

Moreover, by (??) and (??), it holds that

F1 ≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
. (5.26)
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On the other hand, from (??) it follows that

F2 ≤ C
φ(δ(x′, y))
δ(x′, y)1+θ

∫
δ(x,z)<ν/kδ(x,x′)

1
φ(δ(x′, z))δ(x′, z)1+θ

dµ(z);

but, for z ∈ B1, δ(x′, z) ≤ A(δ(x′, x) + δ(x, z)) < A(1 + ν/k)δ(x, x′), holds and then,

F2 ≤ C
φ(δ(x′, y))
δ(x′, y)1+θ

δ(x, x′)θ

φ(δ(x, x′))
.

Nevertheless, from (??) and (??), we get that δ(x′, y) > ν−A
A δ(x, x′), and from (??) and, again (??),

it follows that

F2 ≤ C
δ(x, x′)θ−sφ

δ(x′, y)1+θ−sφ
≤ C

δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
. (5.27)

We then conclude from (??) and (??) that∫
B1

|h(z)|dµ(z) ≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
. (5.28)

On the other hand reordering h(z) in (??), we get∫
B2

|h(z)|dµ(z)

≤
∫
B2

|K1/φ(x, z)−K1/φ(x′, z)||Kφ(z, y)−Kφ(x, y)|dµ(z)

+
∫
B2

1
φ(δ(x′, z))δ(x′, z)

|Kφ(x′, y)−Kφ(x, y)|dµ(z)

= J1 + J2.

Using the smoothness conditions on both kernels, Kφ and K1/φ, and (??) we obtain that

J1 ≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

∫
ν
k δ1/φ(x,x′)≤δ1/φ(x,z)

1
φ(δ(x, z))δ(x, z)

dµ(z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))
φ(δ(x, x′))

≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
. (5.29)

On the other hand, since δ(x, x′) ≤ 1
ν δ(x, y), then

J2 ≤
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

∫
B2

1
φ(δ(x′, z))δ(x′, z)

dµ(z),

but ν
k δ(x, x

′) ≤ δ(x, z) ≤ A(δ(x′, z) + δ(x, x′)) and, therefore, δ(x′, z) ≥ 1
A( ν

k−A)δ(x, x
′). We then

conclude that

J2 ≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

∫
δ(x′,z)≥Cδ(x,x′)

1
φ(δ(x′, z))δ(x′, z)

dµ(z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))
φ(δ(x, x′))

≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
. (5.30)

By (??) and (??), we have proved that∫
B2

|h(z)|dµ(z) ≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
; (5.31)

and, by (??) and (??), we have got that∫
Ac

|h(z)|dµ(z) ≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
. (5.32)

From (??) and (??), choosing γ = θ − sφ, inequality (??) is obtained.
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It remains to prove that there are constants C ′ > 0, ν′ > 1 and 0 < γ′ < 1, such that

|K(y, x)−K(y, x′)| ≤ C
δ(x, x′)γ

′

δ(x, y)1+γ′
if δ(x, y) > ν′δ(x, x′). (5.33)

Notice that if
δ(x, y) > 2Aδ(x, x′) (5.34)

holds then δ(x′, y) ≤ (A+1/2)δ(x, y). We may thus consider the partition of X in the family of sets

A = {z : δ(y, z) <
1

2A
min(δ(x′, y), δ(x, y))}

B = {z :
1

2A
min(δ(x′, y), δ(x, y)) ≤ δ(z, y) < 2Aδ(x, y)},

C = {z : 2Aδ(x, y) ≤ δ(z, y)}.

Moreover, from (??) follows that

δ(x, x′) <
1

2A
δ(x, y) < δ(x′, y), (5.35)

and then δ(x, x′) < min(δ(x, y), δ(x′, y). Therefore, the set A may be parted in the nonempty sets

A1 = {z : δ(y, z) ≤ 1
2A

δ(x, x′)},

A2 = {z :
1

2A
δ(x, x′) ≤ δ(y, z) <

1
2A

min(δ(x′, y), δ(x, y))}.

On the other hand, notice that the left side of (??) is

|K(y, x)−K(y, x′)| ≤∫
K1/φ(y, z) |(Kφ(z, x)−Kφ(y, x))− (Kφ(z, x′)−Kφ(y, x′))| dµ(z).

Denoting g(z) the function inside the above integral, the smoothness estimate on Kφ, inequalities
(??) – since sφ < θ–, and (??), the fact that φ(t)/t1+θ is quasi-decreasing and, finally, (??) lead to
the bound ∫

A1

g(z)dµ(z)

≤
∫
A1

1
φ(δ(y, z))δ(y, z)

|Kφ(z, x)−Kφ(y, x)|dµ(z)

+
∫
A1

1
φ(δ(y, z))δ(y, z)

|Kφ(z, x′)−Kφ(y, x′)|dµ(z)

≤ C

(
φ(δ(y, x))
δ(y, x)1+θ

+
φ(δ(y, x′))
δ(y, x′)1+θ

) ∫
δ(y,z)≤ 1

2A δ(x,x
′)

δ(y, z)θ

φ(δ(y, z))δ(y, z)
.dµ(z)

≤ C
φ(δ(y, x))
δ(y, x)1+θ

δ(x, x′)θ

φ(δ(x, x′))

≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
. (5.36)

We now reorder g(z) to write∫
A2

g(z)dµ(z)

≤
∫
A2

1
φ(δ(y, z))δ(y, z)

|Kφ(z, x)−Kφ(z, x′)|dµ(z)

+
∫
A2

1
φ(δ(y, z))δ(y, z)

|Kφ(y, x′)−Kφ(y, x)|dµ(z)

= H1 +H2. (5.37)
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Nevertheless, for z ∈ A2 δ(x, y) ≤ A(δ(x, z) + δ(y, z)) ≤ A(δ(x, z) + 1
2Aδ(x, y)) holds, and then

δ(x, y) ≤ 1
2Aδ(x, z). Therefore, from the fact that φ(t)/(t1+θ) is quasi-decreasing, (??) and (??) it

follows that

H1 ≤ Cδ(x, x′)θ
∫
δ(y,z)≥ 1

2A δ(x,x
′)

1
φ(δ(y, z))δ(y, z)

φ(δ(x, z))
δ(x, z)1+θ

dµ(z)

≤ Cδ(x, x′)θ
φ(δ(x, y))
δ(x, y)1+θ

∫
δ(y,z)≥ 1

2A δ(x,x
′)

1
φ(δ(y, z))δ(y, z)

dµ(z)

≤ Cδ(x, x′)θ
φ(δ(x, y))
δ(x, y)1+θ

1
φ(δ(x, x′))

≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
, (5.38)

Similarly

H2 ≤ Cδ(x, x′)θ
φ(δ(x, y))
δ(x, y)1+θ

∫
δ(y,z)≥ 1

2A δ(x,x
′)

1
φ(δ(y, z))δ(y, z)

dµ(z)

≤ Cδ(x, x′)θ
φ(δ(x, y))
δ(x, y)1+θ

1
φ(δ(x, x′))

≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
. (5.39)

Thus, (??), (??), (??) and (??) give∫
A

g(z)dµ(z) ≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
. (5.40)

On the other hand, ∫
B

g(z)dµ(z)

≤
∫
B

1
φ(δ(y, z))δ(y, z)

|Kφ(z, x)−Kφ(z, x′)|dµ(z)

+
∫
B

1
φ(δ(y, z))δ(y, z)

|Kφ(y, x′)−Kφ(y, x)|dµ(z)

= G1 +G2.

From (??), it follows that

G2 ≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

∫
δ(y,z)≥ 1

2A min(δ(x′,y),δ(x,y))

1
φ(δ(y, z))δ(y, z)

dµ(z).

But from (??), for z ∈ B we have

δ(y, z) ≥ 1
4A2

δ(x, y) = Cδ(x, y), (5.41)

and thus,

G2 ≤ Cδ(x, x′)θ
φ(δ(x, y))
δ(x, y)1+θ

∫
δ(z,y)≥Cδ(x,y)

1
φ(δ(y, z))δ(y, z)

dµ(z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
. (5.42)

To get a bound for G1, we first notice that from (??) it follows that δ(y, x) and δ(y, x′) are equivalent,
since (??) holds and, also, δ(y, x′) ≤ A(δ(y, x) + δ(x, x′)) ≤ (A+ 1

2 )δ(y, x).
We now cut the set B in

D1 = B ∩ {z : δ(z, x) < 4A2δ(x, x′)},
and D2 = B ∩ {z : δ(z, x) ≥ 4A2δ(x, x′)},

and thus we write

G1 ≤
(∫

D1

+
∫
D2

)
1

φ(δ(y, z))δ(y, z)
|Kφ(z, x)−Kφ(z, x′)|dµ(z) = G11 +G12.
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From (??), 1/(φ(t)t) quasi-decreasing, (??) – as iφ > 0– and since for z ∈ D1 it holds that δ(z, x′) ≤
A(δ(z, x) + δ(x, x′)) ≤ A(4A2 + 1)δ(x, x′), then it follows that

G11 ≤ C

∫
δ(z,x)<4A2δ(x,x′)

1
φ(δ(y, z))δ(y, z)

(
φ(δ(z, x))
δ(z, x)

+
φ(δ(z, x′))
δ(z, x′)

)
dµ(z)

≤ C
1

φ(δ(y, x))δ(y, x)
(
∫
δ(z,x)<4A2δ(x,x′)

φ(δ(z, x))
δ(z, x)

dµ(z)

+
∫
δ(z,x′)<A(4A2+1)δ(x,x′)

φ(δ(z, x′))
δ(z, x′)

dµ(z))

≤ C
1

φ(δ(y, x))δ(y, x)
φ(δ(x, x′)).

Furthermore, from (??) and (??) it follows that

G11 ≤ C
δ(x, x′)iφ

δ(y, x)iφ+1
. (5.43)

On the other hand, (??) and (??) lead to

G12 ≤ δ(x, x′)θ
∫
δ(z,x)≥4A2δ(x,x′)

1
φ(δ(y, z))δ(y, z)

φ(δ(z, x))
δ(z, x)1+θ

dµ(z)

≤ C
δ(x, x′)θ

φ(δ(y, x))δ(y, x)

∫
δ(z,x)≥4A2δ(x,x′)

φ(δ(z, x))
δ(z, x)1+θ

dµ(z)

≤ C
1

φ(δ(y, x))δ(y, x)
φ(δ(x, x′))

≤ C
δ(x, x′)iφ

δ(x, y)iφ+1
. (5.44)

Thus, looking at (??), (??) and (??), and since iφ < θ, we conclude that∫
B

g(z)dµ(z) ≤ C
δ(x, x′)iφ

δ(x, y)iφ+1
. (5.45)

At last, to get a bound on the set C we write∫
C

g(z)dµ(z)

≤
∫
δ(y,z)≥2Aδ(y,x)

1
φ(δ(y, z))δ(y, z)

|Kφ(z, x)−Kφ(z, x′)|dµ(z)

+
∫
δ(y,z)≥2Aδ(y,x)

1
φ(δ(y, z))δ(y, z)

|Kφ(y, x′)−Kφ(y, x)|dµ(z)

= J1 + J2. (5.46)

Notice that for z ∈ C it holds that δ(y, x) ≤ 1
2Aδ(y, z) ≤

1
2 (δ(y, x) + δ(x, z)), and then δ(y, x) ≤

δ(x, z), and, from (??), it follows that δ(x, z) ≥ 2Aδ(x, x′). Furthermore, since 1/φ(t)t is quasi-
decreasing then

J1 ≤ δ(x, x′)θ
∫
δ(y,z)≥2Aδ(y,x)

1
φ(δ(y, z))δ(y, z)

φ(δ(z, x))
δ(z, x)1+θ

dµ(z)

≤ C
δ(x, x′)θ

φ(δ(x, y))δ(x, y)

∫
δ(x,z)≥δ(y,x)

φ(δ(z, x))
δ(z, x)1+θ

dµ(z)

≤ C
δ(x, x′)θ

δ(y, x)1+θ
. (5.47)

Finally, from (??) we deduce that

J2 ≤ δ(x, x′)θ

δ(y, x)1+θ
φ(δ(y, x))

∫
δ(y,z)≥2Aδ(y,x)

1
φ(δ(y, z))δ(y, z)

dµ(z)

≤ C
δ(x, x′)θ

δ(y, x)1+θ
. (5.48)
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From (??), (??) and (??) we have got that∫
C

g(z)dµ(z) ≤ C
δ(x, x′)θ

δ(y, x)1+θ
. (5.49)

Nevertheless, since 0 < iφ < θ and θ − sφ < θ, from (??), (??) and (??)it turns out that

|K(y, x)−K(y, x′)| ≤ C
δ(x, x′)min(iφ,θ−sφ)

δ(y, x)1+min(iφ,θ−sφ)
,

for δ(x, y) > 2Aδ(x, x′). The proof of this theorem is thus finished. ♦
We remark that once the standard conditions of size and smoothness on the kernel of Tφ have been

proved, the T1-theorems stated in [HV] give an alternative proof of the fact that Tφ is a Calderón-
Zygmund operator bounded on the generalized Besov and Triebel-Lizorkin spaces, even without
necessarily knowing the action of Iφ and Dφ on those spaces. In fact, it was proved in [H] that Tφ1 =
T ∗φ1 = 0 and Tφ is a weakely bounded operator, that is, | < Tφf, g > | ≤ C‖f‖β‖g‖β(µ(B))1+2β , for
f and g ∈ Λβ0 (B) and B a ball.
That is the way, through the known T1 theorems in L2(X), used in [GSV] to show that Tα = DαIα
is a Calderón-Zygmund operator.
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