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Abstract. In this work we define the Integral, Iφ, and Derivative, Dφ, operators of order φ, in
the setting of spaces of homogeneous-type, where φ is a function of positive lower type and upper

type lower than 1.

We show that Iφ and Dφ are bounded from Lipschitz spaces Λξ to Λξφ and Λξ/φ respectively,
with suitable restrictions on the quasi-increasing function ξ for each case. We also prove that Iφ

and Dφ are bounded from the generalized Besov Ḃψ,qp , with 1 ≤ p, q < ∞, and Triebel-Lizorkin

spaces Ḟψ,qp , with 1 < p, q <∞, of order ψ to those of order φψ and ψ/φ respectively, where ψ is

the quotient of two quasi-increasing functions of adequate upper types.

1. Introduction

In the context of normal spaces of homogeneous-type (X, δ, µ) of order θ ≤ 1, the fractional
integral and derivative operators of order α, with 0 < α < θ, were defined by Gatto, Segovia and
Vàgi in [GSV] by linking them to quasi-distances constructed through the kernels {st(x, y)}t>0 of a
symmetric approximation to the identity. Namely, if δα : X ×X → [0,∞) is defined by

δα(x, y) =
(∫ ∞

0

tα−1st(x, y)dt
)1/α−1

for x 6= y and δα(x, y) = 0 for x = y; (1.1)

and δ−α : X ×X → [0,∞) by

δ−α(x, y) =
(∫ ∞

0

t−α−1st(x, y)dt
)1/−α−1

for x 6= y and δ−α(x, y) = 0 for x = y, (1.2)

then the authors proved that δα and δ−α are quasi-metrics equivalent to δ. The fractional integral
Iα was thus defined by

Iαf(x) =
∫
X

f(y)
δ1−αα (x, y)

dµ(y),

for f ∈ Λβ ∩ L1, and the fractional derivative Dα by

Dαf(x) =
∫
X

f(y)− f(x)
δ1+α−α (x, y)

dµ(y)

for f ∈ Λβ ∩ L∞ and α < β ≤ θ.
The definition of the quasi-metrics and the resulting operators allowed the authors to prove that the
composition Tα = DαIα is a Calderón-Zygmund operator and that it is invertible in L2 for small
positive values of α.

The purpose of this work is to show that these technics can also be used to define the in-
tegral, Iφ, and derivative, Dφ, operators whose kernels are equivalent to φ(δ(x, y))/δ(x, y) and
1/φ(δ(x, y))δ(x, y) respectively and φ belongs to a class of quasi-increasing functions. This class
of growth functions includes the potentials tα, 0 < α < 1, but also functions as, for example,
max(tα, tβ), min(tα, tβ), with 0 < α < β < 1, and tβ(1 + log+ t), 0 ≤ β < 1.

We then prove that those operators are bounded on Lipschitz spaces Λξ defined by functions
whose moduli of continuity are dominated by a function ξ(t) in the class of growth function.
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We finally study boundedness of the integral and derivative operators on the Besov Ḃψ,qp , 1 ≤
p, q <∞, and Triebel-Lizorkin spaces Ḟψ,qp , 1 < p, q <∞, of distributions of order ψ, where ψ is the
quotient of two quasi-increasing functions of adequate upper types. These spaces defined in [HV]
are a generalization of the spaces Ḃα,qp and Ḟα,qp , −θ < α < θ, given in [HS] in the setting of spaces
of homogeneous type. The Calderón-type reproduction formulas proved in [HS] play a fundamental
roll in their definition but also in proving boundedness of our operators on them.

This work is organized in the following way:
In section 2 the class of functions involved in the ’order’ of the integral and derivative operators

and in local regularity of our function and distribution spaces is defined. Also the structure of
normal spaces of homogeneous type, the test function spaces, the notions of discrete and continuous
(in the time variable) approximations to the identity and the definitions of the generalized Besov
and Triebel-Lizorkin spaces are set there. The integral and derivative operators are defined in
section 3 and the main theorems are stated in section 4. Known results on the class of quasi-
increasing functions and some consequences of them, the Calderón-type reproduction formula and
properties of the generalized Besov and Triebel-Lizorkin spaces are given in section 5. In section 6
new representations of the kernels of the integral and derivative operators are obtained and size and
smoothness properties on them are proved. Theorems of boundedness of the operators on Lipschitz
spaces are proved in section 7. Lemmas needed to prove boundedness theorems on Besov and
Triebel-Lizorkin spaces are given in section 8. Finally, the proofs of those theorems are in section 9.

2. Preliminaries

Let first define the class of functions controlling local regularity of the distribution spaces con-
cerning us and that are also related to the operators defined in this work.
A function φ(t) defined on t > 0 is said to be quasi-increasing if there is a positive constant C such
that if t1 < t2 then φ(t1) ≤ Cφ(t2).
Analogously, φ(t) is quasi-decreasing if there is a positive constant C such that if t1 < t2 then
φ(t2) ≤ Cφ(t1).
On the other hand, φ(t) is said to be of lower type iφ, 0 ≤ iφ < ∞, if there is a constant C1 > 0
such that

φ(uv) ≤ C1u
iφφ(v) for u < 1 and v > 0. (2.3)

Similarly, φ(t) is of upper type sφ, 0 ≤ sφ <∞ if there is a constant C2 > 0 such that

φ(uv) ≤ C2u
sφφ(v) for u ≥ 1 and v > 0. (2.4)

Obviously, the potential tα, with α ≥ 0, is of lower and upper type α. The functions max(tα, tβ)
and min(tα, tβ), with α < β, are both of lower type α and upper type β. Also, tβ(1 + log+ t), with
β ≥ 0, is of lower type β and of upper type β + ε, for every ε > 0. Clearly, if φ(t) is of both lower
type iφ and upper type sφ then iφ ≤ sφ. On the other hand, if φ(t) is quasi-increasing then φ(t) is
of lower-type 0 and, reciprocally, if φ(t) is of lower type iφ ≥ 0 then it is quasi-increasing.
To finish the definitions of this class of growth functions we say that two functions ψ(t) and φ(t) are
equivalent, ψ ' φ, if there are positive constants C1 and C2 such that C1 ≤ φ/ψ ≤ C2.

Let now define the structure of spaces of homogeneous type which is the underlying geometry for
the test functions spaces defined in this work.
Given a set X a real valued function δ(x, y) defined on X×X is a quasi-distance on X if there exists
a constant A > 1 such that for all x, y, z ∈ X it verifies:

δ(x, y) ≥ 0 and δ(x, y) = 0 if and only if x = y

δ(x, y) = δ(y, x)
δ(x, y) ≤ A[δ(x, z) + δ(z, y)].

In a set X endowed with a quasi-distance δ(x, y), the balls Bδ(x, r) = {y : δ(x, y) < r} form a basis
of neighborhoods of x for the topology induced by the uniform structure on X. Let µ be a positive
measure on a σ- algebra of subsets of X which contains the open set and the balls Bδ(x, r). The
triple X := (X, δ, µ) is a space of homogeneous type if there exists a finite constant A′ > 0 such that
µ(Bδ(x, 2r)) ≤ A′µ(Bδ(x, r)) for all x ∈ X and r > 0. Maćıas and Segovia, [MS], showed that it is
always possible to find a quasi-distance d(x, y) equivalent to δ(x, y) and 0 < θ ≤ 1, such that

|d(x, y)− d(x′, y)| ≤ Cr1−θd(x, x′)θ (2.5)
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holds whenever d(x, y) < r and d(x′, y) < r. If δ satisfies (2.5) then X is said to be of order θ.
Furthermore, X is a normal space if A1r ≤ µ(Bδ(x, r)) ≤ A2r for every x ∈ X and r > 0 and some
positive constants A1 and A2.

In this work X := (X, δ, µ) means a normal space of homogeneous type of order θ and A denotes
the constant of the triangular inequality associated to δ.

Let us now introduce the test function spaces which concern us in this work.
Given a quasi-increasing function ξ : IR+ → IR+ such that limt→0 ξ(t) = 0 and limt→∞ ξ(t) = ∞,

the Lipschitz space Λξ is the class of all functions f : X → lC such that

|f(x)− f(y)| ≤ Cξ(δ(x, y)) for every x, y ∈ X,

and the number |f |ξ denoting the infimum of the constants C appearing above, defines a semi-norm
on Λξ, since |f |ξ = 0 for all constants functions f .
Furthermore, given a ball B in X, Λξ(B) denotes the set of functions f ∈ Λξ with support in B.
Since, a function belonging to this space is bounded, the number ‖f‖ξ = ‖f‖∞+ |f |ξ, defines a norm
that gives a Banach structure to Λξ(B).
We say that a function f belongs to Λξ0 iff f ∈ Λξ(B) for some ball B. The space Λξ0 is the inductive
limit of the Banach spaces Λξ(B).
Finally, (Λξ0)

′ will mean the space of all continuous linear functionals on Λξ0.
When ξ(t) = tβ , with 0 < β ≤ θ, we have the classical Lipschitz spaces Λβ and Λβ0 .

Another suitable class of test functions, the set M (β,γ), was defined in [HS]. Indeed, setting
0 < β ≤ 1, γ > 0 and x0 ∈ X fix, a function f is called a smooth molecule of type (β, γ) of width d
centered in x0, if there exists a constant C > 0 such that

|f(x)| ≤ C
d

(d+ δ(x, x0))1+γ
, (2.6)

|f(x)− f(x′)| ≤ Cδ(x, x′)β
(

d

(d+ δ(x, x0))1+γ
+

d

(d+ δ(x′, x0))1+γ

)
, (2.7)∫

f(x)dµ(x) = 0, (2.8)

hold for every x ∈ X.
If the norm ‖f‖(β,γ), is defined by the infimum of the constants appearing in (2.6) and (2.7), the
set M (β,γ)(x0, d) of all smooth molecules of type (β, γ) of width d centered in x0 is a Banach space.
Fixing x0 ∈ X and d = 1, that space will be named M (β,γ), and the set of all linear continuous
functionals on M (β,γ) will be called (M (β,γ))′. Along this work < h, f > denotes the natural
application of h ∈ (M (β,γ))′ to f ∈M (β,γ).

In order to define the generalized Besov and Triebel–Lizorkin spaces of distributions the definition
of an approximation to the identity as given in [HS], is needed.
A sequence (Sk)k∈Z of integral operators is called an approximation to the identity , if the kernels
Sk(x, y) associated to Sk are functions from X × X in lC and there exist 0 < ε ≤ θ and a finite
constant C such that for all k ∈ Z and x, x′, y, y′ ∈ X they satisfy

Sk(x, y) = 0 if δ(x, y) ≥ (2A)−k and ‖Sk‖∞ ≤ C(2A)k, (2.9)

|Sk(x, y)− Sk(x′, y)| ≤ C(2A)k(1+ε)δ(x, x′)ε, (2.10)

|Sk(x, y)− Sk(x, y′)| ≤ C(2A)k(1+ε)δ(y, y′)ε, (2.11)
|[Sk(x, y)− Sk(x, y′)]− [Sk(x′, y)− Sk(x′, y′)]|

≤ C(2A)k(1+2ε)δ(x, x′)εδ(y, y′)ε,∫
X

Sk(x, y)dµ(y) =
∫
X

Sk(x, y)dµ(x) = 1. (2.12)

In all this paper the constant ε, 0 < ε ≤ θ, will denote that associated to an approximation to the
identity satisfying (2.10), (2.11) and (2.12).
If (Sk)k∈Z is an approximation to the identity then the family of operators Dk = Sk − Sk−1 satisfy∑
k∈Z Dk = I in L2, since limk→∞ Skf = f and limk→−∞ Skf = 0 in L2. Moreover, their
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associated kernels Dk(x, y) satisfy properties (2.9) to (2.12) and∫
X

Dk(x, y)dµ(y) =
∫
X

Dk(x, y)dµ(x) = 0. (2.13)

Let us now define the spaces of distributions for us considered.
In the sequel we denote by ψ the function ψ = φ1/φ2, where φ1(t) and φ2(t) are quasi-increasing
functions of upper types s1 < ε and s2 < ε, respectively .
For f ∈ (M (β,γ))′, with 0 < β, γ < ε, a norm is defined by

‖f‖Ḃψ,qp
=

(∑
k∈Z

(
1

ψ((2A)−k)
‖Dkf‖p)q

) 1
q

if 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, (2.14)

with the obvious change for the case q = ∞. By interchanging the order of the norms in Lp and lq

it is also defined the norm

‖f‖Ḟψ,qp
=

∥∥∥∥∥∥
(∑
k∈Z

(
1

ψ((2A)−k)
|Dkf |)q

) 1
q

∥∥∥∥∥∥
Lp

, if 1 < p, q <∞. (2.15)

The Besov space Ḃψ,qp , 1 ≤ p, q ≤ ∞, is the set of all f ∈
(
M (β,γ)

)′
, with β > s1 and γ > s2 , such that

‖f‖Ḃψ,qp
<∞ and |〈f, h〉| ≤ C‖f‖Ḃψ,qp

‖h‖(β,γ),

for all h ∈M (β,γ).
Analogously, The Triebel–Lizorkin space Ḟψ,qp , with 1 < p, q < ∞, is the set of all f ∈

(
M (β,γ)

)′
,

with β > s1 and γ > s2, such that

‖f‖Ḟψ,qp
<∞, and |〈f, h〉| ≤ ‖f‖Ḟψ,qp

‖h‖(β,γ),

for all h ∈M (β,γ).
When ψ(t) = tα and −ε < α < ε, the definitions of the Besov spaces Ḃα,qp and the Triebel-Lizorkin
spaces Ḟα,qp given in [HS] are recovered.

Finally, to build our concerning operators we consider a symmetric approximation to the identity,
{St}t>0, as defined in [GSV]. This collection can be built in a similar fashion to that of the family
{Sk}k∈Z and the kernel st(x, y) associated to St satisfies the following properties:
There are positive constants, b1, b2, c1, c2 and c3, such that for all x, y ∈ X and t > 0, st(x, y) satisfies

st(x, y) = st(y, x), (2.16)
0 ≤ st(x, y) ≤ c1/t, (2.17)
st(x, y) = 0 if δ(x, y) > b1t and, c2/t < st(x, y) if δ(x, y) < b2t, (2.18)

|st(x, y)− st(x′, y)| < c3δ
θ(x, x′)/t1+θ, for all x, x′, y ∈ X, (2.19)∫

st(x, y)dµ(y) = 1, for all x ∈ X, (2.20)

st(x, y) is continuously differenciable in t. (2.21)

3. Integral and Derivative operators of order φ

Let consider a symmetric approximation to the identity, {St}t>0, whose kernels satisfy properties
(2.16) to (2.21), and a quasi-increasing function φ : IR+ → IR+ such that limt→0+ φ(t) = 0.
We now define

Kφ(x, y) =
∫ ∞

0

φ(t)
t
st(x, y)dt for x 6= y.

Clearly, Kφ(x, y) > 0 and Kφ(x, y) = Kφ(y, x) for every (x, y).
If φ is of positive lower type and upper type sφ < 1 the integral operator of order φ, Iφ, and its
extension Ĩφ are defined in the following way:
Let ξ be any quasi-increasing function of upper type β.

If β > 0 and f ∈ Λξ ∩ L1 then

Iφf(x) :=
∫
X

Kφ(x, y)f(y)dµ(y), (3.22)
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If β + sφ < θ and f ∈ Λξ then

Ĩφf(x) :=
∫
X

(Kφ(x, y)−Kφ(x0, y))f(y)dµ(y), (3.23)

for every x ∈ X and an arbitrary fix x0 ∈ X.
On the other hand, for φ of finite upper-type we define

K1/φ(x, y) =
∫ ∞

0

1
φ(t)t

st(x, y)dt, for x 6= y,

Clearly K1/φ is positive and symmetric.
If φ is a function of lower type iφ > 0 and upper type sφ the derivative operator of order φ, Dφ, and
its extension, D̃φ are defined as follows:
For any function ξ of lower type α and of upper type β, such that sφ < α,

if f ∈ Λξ ∩ L∞, then

Dφf(x) =
∫
X

K1/φ(x, y)(f(y)− f(x))dµ(y) and (3.24)

if f ∈ Λξ, then

D̃φf(x) =
∫
X

(K1/φ(x, y)(f(y)− f(x))−K1/φ(x0, y)(f(y)− f(x0)))dµ(y) (3.25)

for each x ∈ X and an arbitrary, but fix, x0 ∈ X.

4. Main theorems

The main theorems proved in this work are stated next:

Theorem 4.1. Let φ be of lower type iφ > 0 and upper type sφ < 1 and ξ a quasi-increasing function
of upper type β.

If f ∈ Λξ ∩ L1 and β > 0 then Iφf(x) converges absolutely for all x and if, also, β + sφ < θ then
there is a constant C > 0, independent of f , such that

|Iφf |Λξφ ≤ C|f |Λξ .

If f ∈ Λξ and β + sφ < θ then Ĩφf(x) converges absolutely for all x and there is a constant C > 0,
independent of f , such that

|Ĩφf |Λξφ ≤ C|f |Λξ .
Moreover, If f ∈ Λξ ∩ L1, then Ĩφf coincides with Iφf as an element of Λξφ (since Ĩφf(x) =
Iφf(x)− Iφf(x0).)

Theorem 4.2. Let φ be a function of lower type iφ > 0 and upper type sφ.
Let also ξ be a quasi-increasing function of lower type α and upper type β.
If f ∈ Λξ ∩ L∞ and sφ < α then Dφf(x) is absolutely convergent for every x ∈ X and if, also,
β < θ + iφ then

‖Dφf‖ξ/φ ≤ C‖f‖ξ.

If f ∈ Λξ, sφ < α and β < θ + iφ then D̃φf(x) is absolutely convergent for every x ∈ X and

|D̃φf |ξ/φ ≤ C|f |ξ.

Moreover, if f ∈ Λξ ∩ L∞, then D̃φf coincides with Dφf as an element of Λξ, (since D̃φf(x) =
Dφf(x)−Dφf(x0).)

Theorem 4.3. Let φ be a function of lower type iφ > 0 and upper type sφ < ε.
Let also denote ψ = ψ1/ψ2, where ψ1 and ψ2 are quasi-increasing functions of upper types s1 and
s2 respectively.
If s1 + sφ < ε and s2 + sφ − iφ < ε, then Iφ is a linear continuous operator from Ḟψ,qp to Ḟφψ,qp , for
1 < p, q <∞.

Theorem 4.4. Suppose that φ and ψ satisfy the same hypothesis as in the previous theorem.
If s1 + sφ < ε and s2 + sφ − iφ < ε then Iφ is a linear continuous operator from Ḃψ,qp to Ḃφψ,qp , for
1 ≤ p, q <∞.
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Theorem 4.5. Let φ be a function of positive lower type and of upper type sφ < ε. Also denote
ψ = ψ1/ψ2, where ψ1 and ψ2 are quasi-increasing functions of upper type s1 and s2, respectively.
If s1 < ε and sφ + s2 < ε then, Dφ is a linear continuous operator from Ḟψ,qp to Ḟ

ψ/φ,q
p , for

1 < p, q <∞.

Theorem 4.6. Let φ be of positive lower type and of upper type sφ < ε.
Consider ψ = ψ1/ψ2, where ψ1 and ψ2 are quasi-increasing functions of upper type s1 and s2,
respectively.
If s1 < ε and sφ + s2 < ε then Dφ is a linear continuous operator from Ḃψ,qp to Ḃ

ψ/φ,q
p , for

1 ≤ p, q <∞.

5. Previous results

A straightforward proof shows that if φ(t) is of upper type sφ then there is a constant C > 0 such
that

φ(uv) ≥ 1
C
usφφ(v), for u < 1, v > 0. (5.26)

Similarly, if φ(t) is of lower type iφ then there is a constant C > 0 such that

φ(uv) ≥ 1
C
uiφφ(v), for u ≥ 1, v > 0. (5.27)

Also, it is easy to check that

Proposition 5.1. If φ(t) is of lower type iφ and ξ(t) is of upper type λ ≤ iφ then φ(t)/ξ(t) is quasi-
increasing.
On the other hand, if φ(t) is of upper type sφ and ξ(t) is of lower type λ ≥ sφ then φ(t)/ξ(t) is
quasi-decreasing.

After some manipulation it comes out that

Proposition 5.2. If φ(t) is of lower type α > 0 and upper type β ∈ IR and 0 < γ < α then the
function

ψ(t) = tγ
∫ t

0

φ(u)
uγ+1

du

is equivalent to φ, continuous, increasing and invertible. Moreover, its inverse ψ−1 is of lower type
β−1 and of upper type α−1.

Corollary 5.1. If φ is a quasi-increasing function of upper type sφ < 1 then there is an equivalent
function φ̃ such that φ̃(t)/t is decreasing, continuous and invertible on t > 0.

Indeed, since t/φ(t) is of lower type 1− sφ > 0 and of upper type 1, Proposition 5.2 claims that
there exists an increasing and invertible function, ψ(t), equivalent to t/φ(t) and having the same
lower and upper types. It is an exercise to prove that φ̃ = t/ψ(t) satisfies the statements of Corollary
5.1.

Corollary 5.2. If φ(t) is a quasi-increasing function of finite upper type then there exists a function
φ̂(t) equivalent to φ(t), such that tφ̂(t) is increasing, continuous and invertible in IR+.

This comes out by defining φ̂(t) = ψ̂(t)/t, where ψ̂(t) is the function equivalent to tφ(t), of lower
type 1 and upper type 1 + sφ, given by Proposition 5.2.

The following properties will be useful when studying local regularity and integrability of the
functions and distributions that concern us. Their proof is based on dyadic partition.

Proposition 5.3. Let φi(t) be a function of lower type αi and of upper type βi, i= 1,2. The following
inequalities hold for x ∈ X and r > 0:

If α1 > β2 then
∫
δ(x,y)≤r

φ1(δ(x, y))
φ2(δ(x, y))δ(x, y)

dµ(y) ≤ C
φ1(r)
φ2(r)

. (5.28)

If β1 < α2 then
∫
δ(x,y)≥r

φ1(δ(x, y))
φ2(δ(x, y))δ(x, y)

dµ(y) ≤ C
φ1(r)
φ2(r)

. (5.29)
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The Calderón-type reproduction formulas, proved in [HS] in the context of spaces of homogeneous
type, are needed to define the Besov and Triebel-Lizorkin spaces and to prove boundedness theorems
on them. They are stated next.

Theorem 5.1. Let (Sk)k∈Z be an approximation to the identity and set Dk = Sk − Sk−1. Then,
there exist families of operators (D̃k)k∈Z and (D̂k)k∈Z such that for all f ∈M (β,γ)

f =
∞∑

k=−∞

D̃kDkf =
∞∑

k=−∞

DkD̂kf,

where the series converges in M (β′,γ′), for β′ < β and γ′ < γ.

If (D̃k)k∈Z y (D̂k)k∈Z are like in Theorem (5.1) then their associated kernels D̃k(x, y) and D̂k(x, y)
are (ε′, ε′)-smooth molecules of width (2A)−k, as functions of the first and second variable respec-
tively, for each 0 < ε′ < ε. Then D̃∗

kf and D̂∗
kf ∈M (β,γ), whenever f ∈M (β,γ), 0 < β, γ < ε.

Thus, for h ∈
(
M (β,γ)

)′
D̃kh and D̂kh are defined as elements of

(
M (β,γ)

)′
by < D̃kh, f >=<

h, D̃∗
kf > and < D̂kh, f >=< h, D̂∗

kf >. Therefore, the formulas in Theorem (5.1) will also hold
true in the sense of distributions. More precisely,

Theorem 5.2. Let (Dk)k∈Z , (D̃k)k∈Z and (D̂k)k∈Z be like in Theorem (5.1). Then for all f ∈
(M (β,γ))′,

f =
∞∑

k=−∞

D̃kDkf =
∞∑

k=−∞

DkD̂kf,

in the sense of
〈f, g〉 = lim

M→∞
〈
∑
|k|≤M

D̃kDkf, g〉 = lim
M→∞

〈
∑
|k|≤M

DkD̂kf, g〉

for all g ∈M (β′,γ′), with β′ > β and γ′ > γ.

Using the Calderón–type reproduction formula it can be proved that if the operators Dk in the
definitions of the norms are replaced by Ek = Pk − Pk−1, with (Pk)k∈Z another approximation to
the identity of order ε ≤ θ, the resulting norms are equivalent to those defined in (2.14) and (2.15),
(see [H]). The same result is true if the operators Dk are replaced by D̃∗

k or D̂k.

In the following two lemmas the main properties of the generalized Besov and Triebel-Lizorkin
spaces are stated without proof, for the sake of briefness.

Lemma 5.3. The classes Ḃψ,qp , 1 ≤ p, q < ∞ and Ḟψ,qp , 1 < p, q < ∞ are Banach spaces and their

dual spaces are Ḃ1/ψ,q′

p′ and Ḟ 1/ψ,q′

p′ respectively, with 1/p+ 1/p′ = 1 and 1/q + 1/q′ = 1.

Lemma 5.4. The molecular space M (β,γ) is embedded in Ḃψ,qp , 1 ≤ p, q <∞ and Ḟψ,qp , 1 < p, q <∞,
when s1 < β and s2 < γ. Moreover, M (ε′,ε′) is dense in Ḃψ,qp , 1 ≤ p, q <∞ and Ḟψ,qp ,1 < p, q <∞,
for all ε′, such that max(s1, s2) < ε′ < ε.

In the setting of IRn and for q = ∞ unified approaches between Besov spaces of order ξ related
to a Banach space E of functions (in our definitions E = Lp) and Lipschitz classes of distributions
whose moduli of continuity in E is dominated by ξ are treated in [J] and [B]. Also see [I] for the
inhomogeneous case. The identification between the Sobolev space of fractional order L̇p,α and Ḟα,qp

in the setting of spaces of homogeneous type is treated in [GV].

6. Main lemmas

Let now define two quasi-metrics associated to φ and equivalent to δ and obtain new representa-
tions of the kernels of Iφ and Dφ in terms of each quasi-metric.
Consider a quasi-increasing function φ of upper-type sφ < 1 and a fix function φ̃, as given in Corol-
lary 5.1.
We define δφ : X ×X → IR in the following way: for every pair (x, y) ∈ X, δφ(x, y) is the unique
solution of

φ̃(δφ(x, y))
δφ(x, y)

=
∫ ∞

0

φ(t)
t
st(x, y)dt if x 6= y, (6.30)

δφ(x, y) = 0 if x = y.
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We then have that

Kφ(x, y) =
φ̃(δφ(x, y))
δφ(x, y)

for x 6= y.

When φ(t) = tα, 0 < α < 1, we can choose φ̃ = φ and then δα := δφ is the quasi-metric associated
to Iα defined in (1.1).
The next lemma proves that Kφ(x, y) is equivalent to φ(δ(x, y))/δ(x, y).

Lemma 6.1. If φ is of upper type sφ < 1 then there are positive constants C1 and C2 such that for
δ(x, y) > 0,

C2
φ(δ(x, y))
δ(x, y)

≤ φ̃(δφ(x, y))
δφ(x, y)

≤ C1
φ(δ(x, y))
δ(x, y)

(6.31)

Proof: By (2.17) and (2.18), it holds that∫ ∞

0

φ(t)
t
st(x, y)dt ≤ c1

∫ ∞

δ(x,y)/b1

φ(t)
t2

dt.

The substitution t = uδ(x, y)/b1 and inequality (2.4) yield to∫ ∞

0

φ(t)
t
st(x, y)dt ≤

c1b1
δ(x, y)

φ(
δ(x, y)
b1

)
∫ ∞

1

1
u2−sφ

du ≤ C1
φ(δ(x, y))
δ(x, y)

(6.32)

since sφ < 1 and φ(s/b1) ≤ Cmax(1, 1/bsφ1 )φ(s) for all s > 0.
On the other hand, by (2.18) and the fact that φ is quasi-increasing, it follows that∫ ∞

0

φ(t)
t
st(x, y)dt ≥ c2

∫ ∞

δ(x,y)/b2

φ(t)
t2

dt

≥ Cc2
φ(δ(x, y)/b2)
δ(x, y)/b2

∫ ∞

1

1
u2
du = C2

φ(δ(x, y))
δ(x, y)

, (6.33)

since φ(s/b2) ≥ Cmin(1, 1/bsφ2 )φ(s) for all s > 0. From definition (6.30) and the above inequalities
then (6.31) follows. ♦
An immediate consequence of the previous lemma is that

0 < Kφ(x, y) ≤ C
φ(δ(x, y))
δ(x, y)

. (6.34)

Lemma 6.2. If φ(t) is of upper type sφ < 1 then δφ is a quasi-metric equivalent to δ.

Proof: Since sφ < 1, from (6.31) and φ ' φ̃ it follows that

C ′2
φ̃(δ(x, y))
δ(x, y)

≤ φ̃(δφ(x, y))
δφ(x, y)

≤ C ′1
φ̃(δ(x, y))
δ(x, y)

. (6.35)

Nevertheless, since ψ(t) = t/φ̃(t) is increasing and invertible and its inverse function is of finite
upper type, it follows that

C ′′1 δ(x, y) ≤ δφ(x, y) ≤ C ′′2 δ(x, y).
Clearly, from the above equivalence turns out that δφ is a quasi-metric.♦

The next two lemmas state smoothness and cancellation properties of Kφ.

Lemma 6.3. Let φ be of upper type sφ < 1. Then

|Kφ(x, y)−Kφ(x′, y)| ≤ C

(
δ(x, x′)
δ(x, y)

)θ
φ(δ(x, y))
δ(x, y)

(6.36)

whenever δ(x, y) ≥ 2Aδ(x, x′).

Proof: Let a = b−1
1 min{δ(x, y), δ(x′, y)}. where b1 is that defined in (2.18). From (6.30), it follows

that

|Kφ(x, y)−Kφ(x′, y)| ≤
∫ ∞

a

φ(t)
t
|st(x, y)− st(x′, y)|dt,

From the smoothness property (2.19) of st it follows that

|Kφ(x, y)−Kφ(x′, y)| ≤
∫ ∞

a

φ(t)
t

δ(x, x′)θ

t1+θ
dt (6.37)
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Since sφ < 1, Proposition 5.1 says that φ(t)/t is quasi-decreasing and then,

|Kφ(x, y)−Kφ(x′, y)| ≤ Cδ(x, x′)θ
φ(a)
a1+θ

(6.38)

Since δ(x, y) ≥ 2Aδ(x, x′) then δ(x, y) ≤ 2Aδ(x′, y) and thus, δ(x, y) ≤ 2Ab1a. But, since φ(t)/tl is
quasi-decreasing whenever l > sφ, it follows that

|Kφ(x, y)−Kφ(x′, y)| ≤ Cδ(x, x′)θ
φ(δ(x, y))
δ(x, y)1+θ

which is our statement.♦

Lemma 6.4. Let φ be of upper type sφ < θ. Then∫
X

[Kφ(x, y)−Kφ(x′, y)]dµ(y) = 0, (6.39)

for every x and x′ ∈ X.

Proof: First notice that the integral in (6.39) is absolutely convergent. Indeed, (6.30), (2.17) and
(2.18) yield to∫

X

∫ 1

0

φ(t)
t
|st(x, y)− st(x′, y)|dtdµ(y)

≤ C

∫ 1

0

φ(t)
t

∫
X

(|st(x, y)|+ |st(x′, y)|)dµ(y)dt ≤ C

∫ 1

0

φ(t)
t
dt <∞.

(6.40)

Moreover, from (2.19) it follows that∫
X

∫ ∞

1

φ(t)
t
|st(x, y)− st(x′, y)|dtdµ(y)

≤ C(δ(x, x′))θ
∫ ∞

1

φ(t)
t2+θ

∫
δ(x,y)<b1t o δ(x′,y)<b1t

dµ(y)dt

≤ C(δ(x, x′))θ
∫ ∞

1

φ(t)
t1+θ

dt ≤ C(δ(x, x′))θ
∫ ∞

1

1
t1+θ−sφ

dt <∞. (6.41)

Therefore, (6.39) is obtained by Fubini’s theorem and (2.20).♦

Let now consider a quasi-increasing function φ of finite upper type and the function φ̂, as given
by Corollary 5.2.
We then define δ1/φ : X ×X → IR such that δ1/φ(x, y) is the unique solution of the equation

1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
=

∫ ∞

0

1
φ(t)t

st(x, y)dt if x 6= y, and (6.42)

δ1/φ(x, y) = 0 if x = y.

Hence we have that

K1/φ(x, y) =
1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
for x 6= y.

When φ(t) = tα, 0 < α < 1, choosing φ̂ = φ it turns out that δ−α := δt−α is the quasi-metric
associated to Dα defined in (1.2).

The following results are obtained in analogous way to the case of Iφ and their proof is ommited
for the sake of briefness. The first one sets that K1/φ(x, y) is equivalent to 1/(φ(δ(x, y))δ(x, y)).

Lemma 6.5. If φ is a quasi-increasing function of finite upper type then there are positive constants
C1 and C2 such that

C1
1

φ(δ(x, y))δ(x, y)
≤ 1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
≤ C2

1
φ(δ(x, y))δ(x, y)

. (6.43)

Moreover, δ1/φ is a quasi-metric equivalent to δ.
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Immediately follows from the above lemma ths size estimate

0 < K1/φ(x, y) < C
1

φ(δ(x, y))δ(x, y)
(6.44)

Lemma 6.6. If φ is a quasi-increasing function of finite upper type then

|K1/φ(x, y)−K1/φ(x′, y)|+ |K1/φ(y, x)−K1/φ(y, x′)|

≤ C

(
δ(x, x′)
δ(x, y)

)θ 1
φ(δ(x, y))δ(x, y)

(6.45)

for δ(x, y) ≥ 2Aδ(x, x′).

7. Proof of Theorems 4.1 and 4.2

Proof of Theorem 4.1
Let us first see that Iφf(x) is absolutely convergent for every x ∈ X. From (6.30), it follows that∫

X

|Kφ(x, y)||f(y)|dµ(y) ≤ C

∫
X

φ(δ(x, y))
δ(x, y)

|f(y)|dµ(y),

= C

(∫
δ(x,y)≤1

+
∫
δ(x,y)>1

)
φ(δ(x, y))
δ(x, y)

|f(y)|dµ(y) = I1 + I2. (7.46)

Applying (5.28) -since iφ > 0-, and the fact that ξ is quasi-increasing it follows that

I1 ≤ C

∫
δ(x,y)≤1

φ(δ(x, y))
δ(x, y)

(|f(y)− f(x)|+ |f(x)|)dµ(y)

≤ C|f |ξ
∫
δ(x,y)≤1

(φξ)(δ(x, y))
δ(x, y)

dµ(y) + C|f(x)|
∫
δ(x,y)≤1

φ(δ(x, y))
δ(x, y)

dµ(y)

≤ C(ξ(1)|f |ξ + |f(x)|)
≤ C(|f |ξ + |f(x)|) (7.47)

Furthermore, since sφ < 1 then φ(t)/t is quasi-decreasing and

I2 ≤ C

∫
δ(x,y)>1

φ(δ(x, y))
δ(x, y)

|f(y)|dµ(y) ≤ C‖f‖1 (7.48)

Inequalities (7.47) and (7.48) lead to the bound

|Iφf(x)| ≤
∫
X

|Kφ(x, y)||f(y)|dµ(y) < C(|f |ξ + |f(x)|+ ‖f‖1), (7.49)

for every x ∈ X.
In order to prove that Ĩφ is well defined we follow the idea of the above proof. In fact, using

(5.28) for δ(x, y) ≤ 2Aδ(x, x0) and, on the other hand, (6.36), the fact that sφ + β < θ, and (5.29)
for δ(x, y) ≥ 2Aδ(x, x0), it is not hard to prove that∫

X

|Kφ(x, y)−Kφ(x0, y)||f(y)|dµ(y) < Cφ(δ(x, x0))(ξ(δ(x, x0))|f |ξ + |f(x)|),

for every x, x0 ∈ X.
To prove that |Iφf |φξ ≤ C|f |ξ and |Ĩφf |φξ ≤ C|f |ξ it is enough to consider x1, x2 ∈ X, x1 6= x2,

set r = δ(x1, x2) and show that there is a constant C > 0 such that

|Ĩφf(x2)− Ĩφf(x1)| = |Iφf(x2)− Iφf(x1)| ≤ C|f |ξξ(r)φ(r), (7.50)

where it must be understood that f ∈ Λξ for Ĩφ and f ∈ Λξ ∩ L1 for Iφ.
By Lema 6.4 we can write

Ĩφf(x2)− Ĩφf(x1) = Iφf(x2)− Iφf(x1) =
∫
X

(f(y)− f(x2))(Kφ(x2, y)−Kφ(x1, y))dµ(y).
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and the right member in the above equalities is bounded by∫
δ(y,x2)≤2Ar

φ(δ(y, x2))
δ(y, x2)

|f(y)− f(x2)|dµ(y)

+
∫
δ(y,x2)≤2Ar

φ(δ(y, x1))
δ(y, x1)

|f(y)− f(x2)|dµ(y)

+
∫
δ(y,x2)>2Ar

|Kφ(x2, y)−Kφ(x1, y)||f(y)− f(x2)|dµ(y)

= J1 + J2 + J3. (7.51)

Let denote B = B(x2, 2Ar) and Bc its complement. From the smoothness condition of f and since
ξφ is of positive lower type it holds that

J1 ≤ C|f |ξ
∫
B

φ(δ(y, x2))
δ(y, x2)

ξ(δ(y, x2))dµ(y) ≤ C|f |ξ,ξ(r)φ(r) (7.52)

On the other, since B ⊂ B(x1, A(2A+ 1)r), ξ is quasi-increasing and φ is of positive lower type, it
holds that

J2 ≤ C|f |ξ
∫
B

φ(δ(y, x1))
δ(y, x1)

ξ(δ(y, x2))dµ(y) ≤ C|f |ξξ(r)φ(r) (7.53)

Finally, the smoothness conditions on the kernel and on f , the condition β+sφ < θ and Proposition
5.3 are used to get

J3 ≤ C|f |ξrθ
∫
Bc

φ(δ(y, x2))ξ(δ(y, x2))
δ(y, x2)1+θ

dµ(y) ≤ C|f |ξξ(r)φ(r).♦ (7.54)

Remarks 7.1. From inequality (7.49) it also follows that Iφ is a linear continuous operator from
M (β1,γ1) to

(
M (β2,γ2)

)′
, for every β1, γ1, β2 and γ2 > 0. More precisely, there is a finite constant C

such that
| < Iφf, g > | ≤ C‖f‖M(β1,γ1)‖g‖M(β2,γ2) , for every pair f ∈ M (β1,γ1) and g ∈ M (β2,γ2) and,
moreover, it holds that

< Iφf, g >=< f, Iφg >=
∫ ∫

Kφ(x, y)f(y)g(x)dµ(y)dµ(x). (7.55)

Proof of Theorem 4.2
By (6.43) we have∫

X

|K1/φ(x, y)||f(y)− f(x)|dµ(y) ≤ C

∫
δ(x,y)≤1

|f(y)− f(x)|
φ(δ(x, y))δ(x, y)

dµ(y)

+C
∫
δ(x,y)>1

|f(y)− f(x)|
φ(δ(x, y))δ(x, y)

dµ(y) = I1 + I2, (7.56)

Since sφ < α, from (5.28) it follows that

I1 ≤ C|f |ξ
∫
δ(x,y)≤1

ξ(δ(x, y))
φ(δ(x, y))δ(x, y)

dµ(y) ≤ C|f |ξ. (7.57)

Furthermore, since iφ > 0 and f ∈ L∞, (5.29) leads to

I2 ≤ 2C‖f‖∞
∫
δ(x,y)>1

1
φ(δ(x, y))δ(x, y)

dµ(y) ≤ C‖f‖∞, (7.58)

and thus, from (7.57) and (7.58),∫
X

|K1/φ(x, y)||f(y)− f(x)|dµ(y) ≤ C‖f‖ξ for every x ∈ X, (7.59)

which implies that

‖Dφf‖∞ ≤ C‖f‖ξ for sφ < α (7.60)
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To show that D̃φf(x) is absolutely convergent for f ∈ Λξ and |D̃φf |ξ/φ = |Dφf |ξ/φ ≤ C|f |ξ is
enough to prove that∫

X

|K1/φ(x, y)(f(y)− f(x))−K1/φ(x0, y)(f(y)− f(x0))|dµ(y)

≤ C|f |ξ
ξ(δ(x, x0))
φ(δ(x, x0))

, for every x, x0 ∈ X. (7.61)

Firstly, if y ∈ B = B(x, 2Aδ(x, x0)) then δ(y, x0) ≤ A(2A+ 1)δ(x, x0), and proceeding as in (7.57),
since sφ < α, we have∫

B

|K1/φ(x, y)(f(y)− f(x))−K1/φ(x0, y)(f(y)− f(x0))|dµ(y) ≤ C|f |ξ
ξ(δ(x, x0))
φ(δ(x, x0))

. (7.62)

Moreover, by reordering the integrand, it follows that∫
Bc
K1/φ(x, y)(f(y)− f(x))−K1/φ(x0, y)(f(y)− f(x0))|dµ(y)

≤
∫
Bc
K1/φ(x, y)|f(x0)− f(x)|dµ(y)

+
∫
Bc
|f(y)− f(x0)||K1/φ(x, y)−K1/φ(x0, y)|dµ(y) = J1 + J2. (7.63)

From (5.29) and iφ > 0 it follows that

J1 ≤ C|f |ξ
ξ(δ(x, x0))
φ(δ(x, x0))

.

On the other hand, Proposition 6.45, the facts that if y ∈ Bc then δ(y, x0) ≤ Cδ(x, y), ξ is quasi-
increasing and finally, inequality (5.29), since β < θ + iφ, lead to the bound

J2 ≤ C|f |ξδ(x, x0)θ
∫
Bc

ξ(δ(x, y))
δ(x, y)1+θφ(δ(x, y))

dµ(y) ≤ C|f |ξ
ξ(δ(x, x0))
φ(δ(x, x0))

.

We then arrived to inequality (7.61).♦

Remarks 7.2. Let ξi be a function of lower type αi and upper type βi for i = 1, 2 and let sφ < α1

then

< Dφf, g >=
∫∫

K1/φ(x, y)(f(y)− f(x))g(x)dµ(x)dµ(y), (7.64)

for any f ∈ Λξ1 ∩ L∞ and g ∈ L1.
Furthermore, if f ∈ Λξ1 ∩ L∞ ∩ L1, g ∈ Λξ2 ∩ L∞ ∩ L1, and sφ < α2 then

< Dφf, g >=< Dφg, f > . (7.65)

Indeed, by (7.60), if f ∈ Λξ1 ∩L∞, with sφ < α1, then Dφf ∈ L∞ and < Dφf, g > is well defined
for g ∈ L1 and the left side of (7.64) is absolutely convergent. The identity then follows from Fubini’s
theorem.
Moreover, we have that | < Dφf, g > | ≤ C‖f‖ξ‖g‖L1

Furthermore, if f ∈ Λξ1 ∩ L∞ ∩ L1, g ∈ Λξ2 ∩ L∞ ∩ L1, and sφ < α2, the previous argument also
leads to the identity

< Dφg, f >=
∫∫

K1/φ(x, y)(g(y)− g(x))f(x)dµ(x)dµ(y). (7.66)

Therefore,

< Dφf, g > − < Dφg, f >=
∫∫

K1/φ(x, y)(f(y)g(x)− f(x)g(y))dµ(x)dµ(y) = 0 (7.67)

since the integrand h(x, y) satisfies the condition h(x, y) = −h(y, x) and∫ ∫
h(x, y)dµ(x)dµ(y) is absolutely convergent.

Remarks 7.3. Since M (β,γ) ⊂ Λβ ∩L∞ ∩L1, for any β and γ > 0, from Remark (7.2) follows that
Dφ is a linear continuous operator from M (β1,γ1) in (M (β2,γ2))′, for sφ < β1, γ1, γ2 > 0 and β2 > 0.
Moreover, if also sφ < β2 then < Dφf, g >=< Dφg, f >.



INTEGRAL AND DERIVATIVE OPERATORS OF FUNCTIONAL ORDER. . . 13

8. Lemmas needed to prove Theorems 4.3, 4.4, 4.5 and 4.6

Seeking for the continuity of the operator Iφ on the generalized Besov and Triebel-Lizorkin spaces,
a representation of the operator Iφ in terms of the Calderón-type reproduction formulas is needed.
Let consider an approximation to the identity {Sk}k∈ZZ of order ε ≤ θ and the family {Dk =
Sk − Sk−1}k∈ZZ. Given f ∈M (β1,γ1), with 0 < β1 ≤ 1 and γ1 > 0, by Theorem (5.1) it follows that

f = lim
M→∞

∑
|j|≤M

DjD̂jf, (8.68)

where the series converges in M (β′,γ′) for every β′ < β1 and γ′ < γ1. Moreover, by Remark (7.1) Iφ
is a linear continuous operator from M (β′,γ′)

into
(
M (β′′,γ′′)

)′
, for every β′′ > 0 and γ′′ > 0. Then, for g ∈ M (β2,γ2), 0 < β2 ≤ 1 and γ2 > 0, it

holds that
< Iφf, g >= lim

M→∞

∑
|j|≤M

< IφDjD̂jf, g > . (8.69)

Choosing β′′ < β2 and γ′′ < γ2 and now applying the Theorem (5.2) it follows that

< Iφf, g > = lim
M→∞

lim
N→∞

∑
|k|≤N

∑
|j|≤M

< D̃kDkIφDjD̂jf, g >

= lim
M→∞

lim
N→∞

∑
|k|≤N

∑
|j|≤M

< DkIφDj(D̂jf), D̃∗
kg >,

It is easy to check that the kernel associated to the operator Iφ,kj = DkIφDj is defined by

Kφ,kj(x, y) =< Dk(x, .), IφDj(., y) >=
∫ ∫

Dk(x, z)Kφ(z, u)Dj(u, y)dµ(u)dµ(z),

(8.70)

and it satisfies
Kφ,kj(x, y) = Kφ,jk(y, x), for every x, y ∈ X and k, j ∈ ZZ. (8.71)

In analogous way, Remark (7.3) yields a representation of Dφ in terms of the Calderón-type repro-
duction formulas. Indeed, we get that

< Dφf, g > = lim
M→∞

lim
N→∞

∑
|k|≤N

∑
|j|≤M

< D̃kDkDφDjD̂jf, g >

= lim
M→∞

lim
N→∞

∑
|k|≤N

∑
|j|≤M

< DkDφDj(D̂jf), D̃∗
kg >,

for every pair of functions f ∈ M (β1,γ1) and g ∈ M (β2,γ2), with sφ < β1 and β2, γ1, γ2 > 0. The
kernel associated to the operator Dφ,kj = DkDφDj is given by

K1/φ,kj(x, y) = < DφDj(., y), Dk(x, .) >

=
∫∫

Dk(x, z)K1/φ(z, u)(Dj(u, y)−Dj(z, y))dµ(u)dµ(z), (8.72)

which is well defined by Remark (7.2). Moreover, since the kernels Dk(x, z) and Dj(u, y) are sym-
metric, from (7.65) it follows that

K1/φ,kj(x, y) = K1/φ,jk(y, x). (8.73)

A sharp bound for Kφ,kj(x, y) will be obtained in the following lemma.

Lemma 8.1. If φ is of positive lower type and of upper type sφ < ε ≤ θ then the kernel Kφ,kj satisfies
the inequality

|Kφ,kj(x, y)| ≤ Cφ((2A)−(k∨j))
(2A)−(k∨j)(ε−sφ)

((2A)−(k∧j) + δ(x, y))1+(ε−sφ)
. (8.74)

where a ∨ b = max(a, b) and a ∧ b = min(a, b).
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Proof: It is enough to consider the case k ≥ j since the other immediately follows from this by
(8.71).
From (8.70) and as Dk has null mean in each variable, the kernel can be rewritten in the form

Kφ,kj(x, y) =
∫ ∫

Dk(x, z)[Kφ(z, u)−Kφ(x, u)]Dj(u, y)dµ(u)dµ(z). (8.75)

Let first consider the case δ(x, y) ≤ 4A2C(2A)−j .
Defining η(t) ∈ Λε, with η(t) = 1 if |t| ≤ A and η(t) = 0 if |t| > 4A2, by Lemma (6.4) it holds that

Kφ,kj(x, y)

=
∫ ∫

Dk(x, z) (Kφ(z, u)−Kφ(x, u)) (Dj(u, y)−Dj(x, y)) η(
δ(x, u)
(2A)−k

)dµ(u)dµ(z)

+
∫ ∫

Dk(x, z) (Kφ(z, u)−Kφ(x, u)) (Dj(u, y)−Dj(x, y))

×
(

1− η(
δ(x, u)
(2A)−k

)
)
dµ(u)dµ(z) = D +B.

The first term D satisfies

|D| ≤

C

∫
|Dk(x, z)|

∫
δ(x,u)≤(2A)−k+1

|Kφ(z, u)−Kφ(x, u)||Dj(u, y)−Dj(x, y)|dµ(u)dµ(z)

≤ C(2A)j(1+ε)
∫
|Dk(x, z)|

∫
δ(x,u)≤C(2A)−k

(Kφ(z, u) +Kφ(x, u))δ(x, u)εdµ(u)dµ(z),

but if δ(x, z) ≤ C(2A)−k and δ(x, u) ≤ C(2A)−k, then δ(z, u) ≤ C(2A)−k. Moreover, since φ is of
positive lower type, inequality (5.28) and the size condition (6.34) can be used to get

|D| ≤

C(2A)j(2A)−(k−j)ε

(∫
δ(x,u)≤C(2A)−k

Kφ(x, u)dµ(u) +
∫
δ(z,u)≤C(2A)−k

Kφ(z, u)dµ(u)

)
≤ C(2A)j(2A)−(k−j)εφ((2A)−k). (8.76)

On the other hand,

|B| ≤∫ ∫
δ(x,u)≥C(2A)−k+1

|Dk(x, z)||Kφ(z, u)−Kφ(x, u)||Dj(u, y)−Dj(x, y)|dµ(u)dµ(z)

=

(∫ ∫
C(2A)−k+1≤δ(x,u)≤C(2A)−j+1

+
∫ ∫

δ(x,u)≥C(2A)−j+1

)
|Dk(x, z)||Kφ(z, u)−Kφ(x, u)||Dj(u, y)−Dj(x, y)|dµ(u)dµ(z)

= B1 +B2.

As δ(x, u) ≥ 2Aδ(x, z) for u in the domain of B1 and B2, Lemma 6.3 can be applied. Moreover,
denoting Ci = {C(2A)−k+i ≤ δ(x, u) ≤ C(2A)−k+i+1}, i = 1, 2, . . . , since sφ > 0 and φ(t)/t is
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quasi-decreasing and ε ≤ θ then

B1 ≤ C(2A)j(1+ε)
∫
|Dk(x, z)|

k−j∑
i=1

∫
Ci

|Kφ(z, u)−Kφ(x, u)|δ(x, u)εdµ(u)dµ(z)

≤ C(2A)j(1+ε)
∫
|Dk(x, z)|

k−j∑
i=1

∫
Ci

δ(x, z)ε
φ(δ(x, u))
δ(x, u)

dµ(u)dµ(z)

≤ C(2A)j(1+ε)(2A)−kε
k−j∑
i=1

φ((2A)−k+i)

≤ C(2A)jφ((2A)−k)(2A)−(k−j)ε
k−j∑
i=1

(2A)isφ

≤ C(2A)jφ((2A)−k)(2A)−(k−j)(ε−sφ).

On the other side, since sφ < ε ≤ θ, from (5.29) it follows that

B2 ≤ C(2A)j
∫
|Dk(x, z)|

∫
δ(x,u)≥C(2A)−j+1

|Kφ(z, u)−Kφ(x, u)|dµ(u)dµ(z)

≤ C(2A)j
∫
|Dk(x, z)|

∫
δ(x,u)≥C(2A)−j+1

δ(x, z)ε

δ(x, u)ε
φ(δ(x, u))
δ(x, u)

dµ(u)dµ(z)

≤ C(2A)j(2A)−(k−j)εφ((2A)−j)

≤ C(2A)jφ((2A)−k)(2A)−(k−j)(ε−sφ). (8.77)

Nevertheless, since tε < tε−sφ for t < 1 and (2A)j(1+ε−sφ) ≤ C1/((2A)−j + δ(x, y))1+ε−sφ for
δ(x, y) ≤ 4A2(2A)−j , inequality (8.74) arises from (8.76) to (8.77).
Let now consider the case δ(x, y) ≥ 4A2C(2A)−j .
If Dj(u, y) 6= 0 then δ(u, y) < C(2A)−j and thus, δ(x, u) ≥ 2AC(2A)−j > 2Aδ(x, z), moreover, the
equivalence δ(x, u) ' (2A)−j + δ(x, y) holds. Therefore, using Lemma 6.3 and (5.26), from (8.75) it
follows that

|Kφ,kj(x, y)|

≤ C

∫
|Dk(x, z)|

∫
δ(u,y)<C(2A)−j

δ(x, z)ε

δ(x, u)1+ε
φ(δ(x, u))|Dj(u, y)|dµ(u)dµ(z)

≤ C

∫
|Dk(x, z)|

∫
δ(u,y)<C(2A)−j

δ(x, z)ε−sφ

δ(x, u)1+ε−sφ
φ(δ(x, z))|Dj(u, y)|dµ(u)dµ(z)

≤ Cφ
(
(2A)−k

) (2A)−k(ε−sφ)

((2A)−j + δ(x, y))1+ε−sφ
.♦

The next lemma follows easily from Lemma 8.1.

Lemma 8.2. If φ is of positive lower type and of upper type sφ < ε then∫
|Kφ,kj(x, y)|dµ(x) +

∫
|Kφ,kj(x, y)|dµ(y) ≤ Cφ((2A)−(k∨j))(2A)−|k−j|(ε−sφ).

An estimate of Iφ,kj in terms of the Hardy-Littlewood maximal operator derives from Lemma
(8.1).

Lemma 8.3. If φ is of positive lower type and of upper type sφ < ε then

|Iφ,kjh(x)| ≤ Cφ((2A)−(k∨j))(2A)−|k−j|(ε−sφ)M |h|(x), (8.78)

where M denotes the Hardy-Littlewood maximal operator.
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Proof: As in the proof of Lemma (8.1), it is enough to consider the case k ≥ j. From that lemma
it follows that∫

|Kφ,kj(x, y)||h(y)|dµ(y)

≤ Cφ((2A)−k)

(
((2A)−k(ε−sφ))(2A)j(ε−sφ)+1

∫
δ(x,y)≤4A2C(2A)−j

|h(y)|dµ(y)

+
∫
δ(x,y)>4A2C(2A)−j

(2A)−k(ε−sφ)

δ(x, y)(ε−sφ)+1
|h(y)|dµ(y)

)
= I1 + I2.

Clearly,

I1 ≤ Cφ((2A)−k)((2A)−(k−j)(ε−sφ))M(|h|)(x).

Finally, defining the sets Qi = {y : C(2A)i−j ≤ δ(x, y) ≤ C(2A)i+1−j}, i = 2, 3, . . . , since sφ < ε
then

I2 ≤ Cφ((2A)−k)
∞∑
i=2

∫
Qi

(2A)−k(ε−sφ)

δ(x, y)1+(ε−sφ)
|h(y)|dµ(y)

≤ Cφ((2A)−k)(2A)−(k−j)(ε−sφ)
∞∑
i=2

(2A)−i(ε−sφ)(2A)i−j
∫
δ(x,y)≤C(2A)i+1−j

|h(y)|dµ(y)

≤ Cφ((2A)−k)(2A)−(k−j)(ε−sφ)M |h|(x).♦

Corresponding results are obtained for the kernel K1/φ,kj and the operator Dφ,kj in the following
lemmas

Lemma 8.4. Let φ be of lower type iφ > 0 and upper type sφ < ε. Then, there is a constant C > 0
such that

|K1/φ,kj(x, y)| ≤ C
1

φ((2A)−(k∨j))
(2A)−(k∨j)ε

((2A)−(k∧j) + δ(x, y))1+ε
,

where a ∨ b = max(a, b) and a ∧ b = min(a, b).

Proof: It is enough to consider the case k ≥ j since the other one immediately follows from this by
(8.73). Let first consider the case δ(x, y) ≤ 4A2(2A)−j .
Since Dk has null mean in the z variable, the kernel defined in (8.72) can be rewritten as

K1/φ,kj(x, y) =∫∫
Dk(x, z)[K1/φ(z, u)(Dj(u, y)−Dj(z, y))

−K1/φ(x, u)(Dj(u, y)−Dj(x, y))]dµ(u)dµ(z).

Fix η(t) ∈ Λε0(IR), such that η(t) = 1 for |t| ≤ A and η = 0, for |t| ≥ 2A. Then,

K1/φ,kj(x, y)

=
∫∫

Dk(x, z)
(
K1/φ(z, u)(Dj(u, y)−Dj(z, y))−K1/φ(x, u)(Dj(u, y)−Dj(x, y))

)
×η( δ(x, u)

(2A)−k
)dµ(u)dµ(z)

+
∫∫

Dk(x, z)
(
K1/φ(z, u)(Dj(u, y)−Dj(z, y))−K1/φ(x, u)(Dj(u, y)−Dj(x, y))

)
×(1− η(

δ(x, u)
(2A)−k

))dµ(u)dµ(z) = D +B.
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First notice that if δ(x, z) ≤ C(2A)−k and δ(x, u) ≤ C(2A)−k, then δ(z, u) ≤ CA(2A)−k. Therefore,
from (2.10), applied to Dj , and (5.28) it follows that

|D| ≤
∫
|Dk(x, z)|(

∫
δ(z,u)≤CA(2A)−k

|K1/φ(z, u)|(2A)j(1+ε)δ(z, u)εdµ(u)dµ(z)

+
∫
|Dk(x, z)|(

∫
δ(x,u)≤c(2A)−k

|K1/φ(x, u)|(2A)j(1+ε)δ(x, u)εdµ(u)dµ(z)

≤ C(2A)j(1+ε)
(2A)−kε

φ((2A)−k)
. (8.79)

On the other hand, it holds that

|B| ≤
∫∫

δ(x,u)≥(2A)−k+1
|Dk(x, z)|(

|K1/φ(z, u)−K1/φ(x, u)||Dj(u, y)−Dj(x, y)|
+K1/φ(z, u)|Dj(x, y)−Dj(z, y)|

)
dµ(u)dµ(z) = B1 +B2.

But, if Dk(x, z) 6= 0 and δ(x, u) ≥ (2A)−k+1 then δ(z, u) ≥ C(2A)−k. Moreover, since iφ > 0, from
(6.44), (2.10) and (5.29), we deduce that

B2 ≤ C(2A)j(1+ε)
∫
|Dk(x, z)|

∫
δ(z,u)≥c(2A)−k

δ(z, x)ε

φ(δ(z, u))δ(z, u)
dµ(u)dµ(z)

≤ C(2A)j(2A)−(k−j)ε
∫
|Dk(x, z)|

∫
δ(z,u)≥C(2A)−k

1
φ(δ(z, u))δ(z, u)

dµ(u)dµ(z)

≤ C
(2A)j(1+ε)(2A)−kε

φ((2A)−k)
. (8.80)

We now split B1 in the form

B1 ≤

(∫∫
(2A)−k+1≤δ(x,u)≤(2A)−j+1

+
∫∫

δ(x,u)≥(2A)−j+1

)
|Dk(x, z)||K1/φ(z, u)−K1/φ(x, u)||Dj(u, y)−Dj(x, y)|dµ(u)dµ(z)

= B1,1 +B1,2.

Since δ(x, z) ≤ C(2A)−k and δ(x, u) ≥ 2Aδ(x, z), smoothness conditions (6.45) and (2.10) and, also,
(2.3) lead to the bound

B1,1 ≤ C(2A)j(1+ε) ×∫
|Dk(x, z)|

∫
(2A)−k+1≤δ(x,u)≤(2A)−j+1

δ(x, u)ε
δ(x, z)ε

δ(x, u)1+ε
1

φ(δ(x, u))
dµ(u)dµ(z)

≤ C(2A)j(2A)−(k−j)ε
k−j∑
i=1

∫
(2A)−k+i≤δ(x,u)≤(2A)−k+i+1

1
φ(δ(x, u))δ(x, u)

dµ(u)

≤ C(2A)j(2A)−(k−j)ε 1
φ((2A)−k)

k−j∑
i=1

(2A)−iiφ

≤ C
(2A)j(2A)−(k−j)ε

φ((2A)−k)

∞∑
i=1

(2A)−iiφ ≤ C
(2A)j(2A)−(k−j)ε

φ((2A)−k)
. (8.81)

On the other hand, using (6.45), (2.9), (5.29) and the fact that φ is quasi-increasing, we obtain

B1,2 ≤ C(2A)j
∫
|Dk(x, z)|

∫
δ(x,u)≥(2A)−j+1

δ(x, z)ε

δ(x, u)1+ε
1

φ(δ(x, u))
dµ(u)dµ(z)

≤ C(2A)j(2A)−kε
1

(2A)−jεφ((2A)−j)
≤ C(2A)j(2A)−(k−j)ε 1

φ((2A)−k)
. (8.82)
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From inequalities (8.79), (8.80), (8.81) and (8.82), we conclude that
if δ(x, y) ≤ 4A2(2A)−j then

|K1/φ,kj(x, y)| ≤ C(2A)j(1+ε)(2A)−kε
1

φ((2A)−k)
≤ C

(2A)−kε

((2A)−j + δ(x, y))1+ε
1

φ((2A)−k)
.

To finish the proof, we consider the case δ(x, y) ≥ C4A2(2A)−j .
Notice that if δ(x, z) ≤ C(2A)−k then δ(z, y) ≥ CA(2A)−j and therefore Dj(z, y) = 0. Moreover,
the condition

∫
Dk(x, z)dµ(z) = 0 enables us to rewrite the kernel in (8.72) in the form

K1/φ,kj(x, y) =
∫
Dk(x, z)

∫
(K1/φ(z, u)−K1/φ(x, u))Dj(u, y)dµ(u)dµ(z).

But, also, since δ(u, y) ≤ C(2A)−j then δ(x, u) ≥ C(2A)−j ≥ C(2A)−k ≥ 2Aδ(x, z) and δ(x, u) ≥
C(δ(x, y) + (2A)−j). Therefore, from (6.45) and the fact that φ(t) is quasi-increasing, we deduce
that

|K1/φ,kj(x, y)|

≤
∫
|Dk(x, z)|

∫
δ(u,y)<(2A)−j

δ(x, z)ε|Dj(u, y)|
δ(x, u)1+εφ(δ(x, u))

dµ(u)dµ(z)

≤ C
(2A)−kε

((2A)−j + δ(x, y))1+ε
1

φ((2A)−k)

∫
|Dk(x, z)|

∫
|Dj(u, y)|dµ(u)dµ(z)

≤ C
(2A)−kε

((2A)−j + δ(x, y))1+ε
1

φ((2A)−k)
.♦

The proof of the following two lemmas are similar to those given for the integral of order φ and so
they will be omitted.

Lemma 8.5. If φ is of lower type iφ > 0 and upper type sφ < ε, then there is a constant C > 0 such
that ∫

|K1/φ,kj(x, y)|dµ(x) +
∫
|K1/φ,kj(x, y)|dµ(y) ≤ C

(2A)−|k−j|ε

φ((2A)−(k∨j))
. (8.83)

Lemma 8.6. If φ is of lower type iφ > 0 and upper type sφ < ε, then there is a constant C > 0 such
that

|Dφ,kjh(x)| ≤ C
(2A)−|k−j|ε

φ((2A)−(k∨j))
M |h|(x), (8.84)

where M denotes the Hardy-Littlewood maximal operator.

9. Proof of Theorems 4.3, 4.4, 4.5, and 4.6

If max(s1, s2) < ε then the space M (ε,ε) is dense in Ḟψ,qp and Ḃψ,qp and hence, in all the theorems,
it is enough to prove the boundedness of the operators on such molecules. Proof of Theorem 4.3

For f ∈M (ε,ε), by using (8.69) we obtain

‖Iφf‖Ḟφψ,qp
= ‖

(∑
k∈Z

(
1

φ((2A)−k)ψ((2A)−k)
|DkIφf)|

)q)1/q

‖p

≤ ‖

∑
k∈Z

 1
φ((2A)−k)ψ((2A)−k)

∑
j∈Z

|DkIφDj(D̂jf)|

q1/q

‖p

≤ ‖

∑
k∈Z

 1
φ((2A)−k)ψ((2A)−k)

∑
j≤k

|Iφ,kj(D̂jf)|

q1/q

+

∑
k∈Z

 1
φ((2A)−k)ψ((2A)−k)

∑
j>k

|Iφ,k,j(D̂jf)|

q1/q

‖p = ‖S1 + S2‖p.
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First notice that as ψ2 is quasi-increasing and ψ1 is of upper-type s1, for k ≥ j it holds that

1
ψ((2A)−k)

=
ψ2((2A)−k)
ψ1((2A)−k)

≤ C(2A)(k−j)s1
ψ2((2A)−j)
ψ1((2A)−j)

= C
(2A)(k−j)s1

ψ((2A)−j)
, (9.85)

Also, since ψ1 is quasi-increasing and ψ2 is of upper-type s2 then, for k < j,

1
ψ((2A)−k)

=
ψ2((2A)−k)
ψ1((2A)−k)

≤ C(2A)(j−k)s2
ψ2((2A)−j)
ψ1((2A)−j)

= C
(2A)(j−k)s2

ψ((2A)−j)
, (9.86)

Therefore, applying (8.78) and then (9.85) it follows that

S1(x) ≤

∑
k∈Z

∑
j≤k

(2A)−(k−j)(ε−sφ−s1)

ψ((2A)−j)
M |D̂jf |(x)

q1/q

=

∑
k∈Z

∑
j≥0

(2A)−j(ε−sφ−s1)

ψ((2A)−(k−j))
M |D̂k−jf |(x)

q1/q

. (9.87)

On the other hand, using (8.78), (9.86) and inequality

φ((2A)−j) ≤ C(2A)−(j−k)iφφ((2A)−k), for j > k, (9.88)

it follows that

S2(x) ≤

∑
k∈Z

∑
j>k

(2A)−(j−k)(ε−sφ+iφ−s2)

ψ((2A)−j)
M |D̂jf |(x)

q1/q

(9.89)

From Minkowski’s inequality and the hypothesis sφ + s1 < ε for (9.87), and sφ − iφ + s2 < ε for
(9.89), it follows that

S1(x) + S2(x) ≤ C

(∑
k∈Z

(
M |D̂kf |(x)
ψ((2A)−k)

)q)1/q

(9.90)

for every x ∈ X. Since 1 < p, q < ∞, we are able to apply the Fefferman-Stein vector valued
maximal inequality to get that

‖S1 + S2‖p ≤ C‖

(∑
k∈Z

(
|D̂kf |

ψ((2A)−k)

)q)1/q

‖p ≤ C‖f‖Ḟψ,qp
.♦

Proof of Theorem 4.4
For f ∈M (ε,ε), by (8.69), it holds that

‖Iφf‖Ḃφψ,qp
≤

∑
k∈Z

 1
φ((2A)−k)ψ((2A)−k)

∑
j∈Z

‖DkIφDj(D̂jf)‖p

q1/q

≤

∑
k∈Z

 1
φ((2A)−k)ψ((2A)−k)

∑
j≤k

‖Iφ,k,j‖p,p‖(D̂jf)‖p

q1/q

+

∑
k∈Z

 1
φ((2A)−k)ψ((2A)−k)

∑
j>k

‖Iφ,k,j‖p,p‖(D̂jf)‖p

q1/q

= S1 + S2.

Nevertheless, from Lemma 8.2, it follows that

‖Iφ,k,j‖p,p ≤ Cφ((2A)−(k∨j))(2A)−|k−j|(ε−sφ). (9.91)
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In fact, for 1 < p <∞, it holds that

‖Iφ,kjh‖p ≤
(∫

(
∫
|Kφ,kj(x, y)||h(y)|dµ(y))pdµ(x)

)1/p

≤

(∫ (∫
|Kφ,kj(x, y)|dµ(y)

)p/p′ (∫
|Kφ,kj(x, y)||h(y)|pdµ(y)

)
dµ(x)

)1/p

;

(9.92)

and, for p = 1,

‖Iφ,kjh‖1 ≤
∫ ∫

|Kφ,kj(x, y)||h(y)|dµ(y)dµ(x). (9.93)

Then applying Lemma (8.2) in (9.92) and (9.93), it follows that

‖Iφ,kjh‖p

≤ C
(
φ((2A)−(k∨j)(2A)−|k−j|(ε−sφ))

)1/p′
(∫ ∫

|Kφ,kj(x, y)||h(y)|pdµ(y)dµ(x)
)1/p

≤ Cφ((2A)−(k∨j))(2A)−|k−j|(ε−sφ)‖h‖p,

for 1 < p <∞, and

‖Iφ,kjh‖1 ≤ Cφ((2A)−(k∨j))(2A)−|k−j|(ε−sφ)

∫
|h(y)|dµ(y)

= Cφ((2A)−(k∨j))(2A)−|k−j|(ε−sφ)‖h‖1.

for p = 1. Thus inequality (9.91) results. Substituting it in S1 and using (9.85), it follows that

S1 ≤ C

∑
k∈Z

∑
j≤k

(2A)−(k−j)(ε−sφ−s1) ‖(D̂jf)‖p
ψ((2A)−j)

q1/q

(9.94)

On the other hand, using (9.91), (9.85) and (9.88) it follows that

S2 ≤ C

∑
k∈Z

∑
j>k

(2A)−(j−k)(ε−sφ+iφ−s2) ‖(D̂jf)‖p
ψ((2A)−j)

q1/q

. (9.95)

For 1 ≤ q < ∞, Minkowski’s inequality and conditions sφ + s1 < ε for (9.94) and sφ − iφ + s2 < ε
for (9.95) lead to the bound

S1 + S2 ≤ C‖f‖Ḃψ,qp
.

Proof of Theorem 4.5
For f ∈M (ε,ε), proceeding as in the above proofs and applying (8.72) it follows that

‖Dφf‖Ḟψ/φ,qp
≤ ‖

∑
k∈Z

φ((2A)−k)
ψ((2A)−k)

∑
j≤k

|Dφ,kj(D̂jf)|

q1/q

+

∑
k∈Z

φ((2A)−k)
ψ((2A)−k)

∑
j>k

|Dφ,kj(D̂jf)|

q1/q

‖p = ‖S1(x) + S2(x)‖p.

Using (8.84) and (9.85) it follows that

S1(x) ≤ C

∑
k∈Z

∑
j≤k

(2A)−(k−j)(ε−s1)M |D̂jf |(x)
ψ((2A)−j)

q1/q

(9.96)

On the other side, again using (8.84) and inequalities (9.86) and

φ((2A)−k) ≤ C(2A)(j−k)sφφ((2A)−j), for k < j,
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then

S2(x) ≤ C

∑
k∈Z

∑
j>k

(2A)−(j−k)(ε−sφ−s2)M |D̂jf |(x)
ψ((2A)−j)

q1/q

(9.97)

From Minkowski’s inequality and the hipothesis s1 < ε for (9.96) and sφ+s2 < ε for (9.97) it follows
that

S1(x) + S2(x) ≤ C

(∑
k∈Z

(
M |D̂kf |(x)
ψ((2A)−k)

)q)1/q

.

From the Fefferman–Stein vector valued maximal inequality, for 1 < p, q <∞, it follows that

‖S1 + S2‖p ≤ C‖

(∑
k∈Z

(
|D̂kf |(x)
ψ((2A)−k)

)q)1/q

‖p ≤ C‖f‖Ḟψ,qp
.♦

Since the proof of Theorem 4.6 is similar to the previous ones it is ommited.
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[GV] A.E. Gatto y S.Vági, On Sobolev Spaces of Fractional Order and ε–Families of Operators on
Spaces of Homogeneous Type,
Studia Math 133 (1), 1999, 19–27.

[H] S.I.Hartzstein, Acotación de operadores de Calderón–Zygmund en espacios de Triebel–Lizorkin
y de Besov generalizados sobre espacios de tipo homogéneo. Thesis, 2000, UNL, Santa Fe,
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