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Simultaneous untangling and smoothing of moving and fixed grids
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SUMMARY

In this paper a useful technique for simultaneous untangling and smoothing of meshes is presented.
It is based on an extension of an earlier mesh smoothing strategy developed by the authors and used to
solve the computational mesh dynamics stage in fluid-structure interaction problems. In moving grid
problems, mesh untangling is necessary when element inversion is happened due to a moving domain
boundary. The original smoothing strategy is defined in terms of the minimization of a functional
associated with the mesh distortion using an indicator of the element geometric quality. This functional
becomes discontinuous when an element has null volume, making impossible to obtain a valid mesh
from an invalid one. To circumvent this drawback, the original functional is transformed in order to
guarantee its continuity for the whole space of nodal coordinates, achieving the untangling technique.
The regularization depends on one parameter, allowing the recovery of the original functional when
this parameter tends to zero. This feature is very important because at first it is necessary to regularize
the functional in order to make the mesh valid, but then, it is advisable to use the original functional
to make the smoothing optimal. This technique is applied to several test cases, including 2D and 3D
meshes with simplicial elements. An additional example shows how this technique may be used for
mesh generation too and also how to extend this technique for non-simplicial grids.
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1. Introduction

Several scientific and industrial applications involve moving meshes. This class of problem
include those with free surfaces, two-fluid interfaces, fluid-object and fluid-structure
interactions, and moving mechanical components.

In computation of flow problems with moving boundaries and interfaces, depending on the
complexity of the interface and other aspects of the problem, we can use an interface-tracking
or interface-capturing technique. An interface-tracking technique requires meshes that “track”
the interfaces. The mesh needs to be updated as the flow evolves. In an interface-capturing

∗Correspondence to: Ezequiel J. López
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2 E. LÓPEZ ET.AL.

technique for two-fluid flows, the computations are based on fixed spatial domains, where an
interface function, marking the location of the interface, needs to be computed to “capture”
the interface within the resolution of the finite element mesh covering the area where the
interface is [1].

In fluid-structure interaction (FSI) problems, one of the most popular interface tracking
technique is the Arbitrary Lagrangian Eulerian (ALE) formulation [2, 3, 4]

One example for such a physical problem in solid mechanics with large deformations is
metal forming. In these cases the mesh is updated at each time step due to the motion of
the domain boundary, producing severe mesh quality deterioration and, in some situations,
producing an invalid mesh where any of the elements in the grid is inverted. It is well known
that poor quality elements have strong influence on stability, convergence and accuracy of
the numerical methods used. In Computational Mechanics the strategies developed to solve
mesh motion are grouped in a special topic named CMD (Computational Mesh Dynamics).
Its importance may be assessed simply making an inspection to the current bibliography
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Here, the main interest is the resolution of FSI problems. This kind of applications requires
the solution of the fluid and the structure problems, coupled in the physical domain. The flow
problem dictates the generalized forces acting over the structure. The structural problem
determines the geometry variation due to its deformation and also its translational and
rotational motion. Nowadays, efficient solution of FSI problems with large displacement relative
of the boundary is still a challenging problem in Computational Mechanics. Generally these
problems are solved in a partitioned fashion. First the fluid solution is obtained using a CFD
(Computational Fluid Dynamics) code with structural displacements estimated by a predictor
stage. The pressure and possibly the shear stresses are stored at each point of the fluid-structure
interface. Then these time-dependent loads are transferred to a CSD (Computational Structure
Dynamics) code, which finds the deformation of the structure in time [17, 1]. Then a new fluid
solution is found with the updated position of the structure. Although the moving mesh is
only an artificial field in the coupled three-field FSI problem (CFD+CSD+CMD), it strongly
influences the performance, robustness and also the accuracy of the overall approach.

Generally the CFD stage consumes most of the CPU time adding restrictions in time
step, specially in regions where the mesh is refined. The boundary motion may also cause
the inversion of some elements, forcing to reduce the time step due to CMD reasons. This
situation is not desirable because the CMD problem is artificially introduced to follow the
moving domain. To avoid this limitation it is advisable to introduce the possibility to fix the
inverted elements instead of reducing the time step. This kind of solution is possible via a
mesh untangling strategy.

This paper contributes in this sense, first the untangling makes the CMD implementation
more robust without influence on the time step selection. Furthermore, the smoothing
capability is necessary to optimize the mesh quality with consequences on the solution accuracy.

Mesh smoothing methods adjust the positions of the nodes in the grid while preserving its
topology (graph connectivity). Most of them are based on local algorithms, i.e. the free nodes
are reallocated one by one iteratively keeping fixed the remainder until the convergence is
reached.

The most popular strategy of mesh smoothing is the laplacian smoothing due to its low
computational cost and its simple implementation. This method moves the internal nodes to
the geometrical center of their neighbors. However, this method does not always work without
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SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING AND FIXED GRIDS 3

warranty of producing valid meshes. Also, in cases where convergence is not reached, the final
mesh may depend of the nodal sequence ordering. This last feature is frequently found in local
smoothing techniques. Other kind of smoothing related with the laplacian technique is the
Winslow smoothing, which is more robust in terms of avoiding the inversion of the elements in
the mesh. It is based on logical variables with the requirement of these variables be harmonic
functions [18]. Originally this technique was presented for structured meshes, being lately
extended to unstructured meshes by Knupp [19]. There are several smoothing methods based
on optimization having the common goal of improving the mesh quality in terms of some
quality indicator [20, 21, 22, 23, 24, 25, 26]. The main disadvantage of such methods is their
computational cost. Depending on the way in which the system is solved, there are two main
kind of methods: local methods and global methods. The global methods update the nodal
position simultaneously for the whole set of nodes.

The smoothing technique may confront with situations where the mesh is invalid, then an
untangling methodology need to be used. These methods are normally based on the element
volume [27] and in general both procedures, smoothing and untangling, are treated separately.
This tedious task may be incorporated for mesh generation where the user is interactively
looking for a good quality mesh. Thinking in FSI problems, the CMD should have the capability
of solving the mesh motion even though inverted elements were founded and guaranteeing a
smooth mesh at each time. Therefore a simultaneous procedure of smoothing and untangling
is preferable [28, 29, 30, 31]. In this paper a simultaneous untangling and smoothing technique
is proposed based on the optimization of the grid quality. The strategy arises from the
regularization of a functional presented previously [26] and applied to solve the mesh dynamics
in FSI problems.

The proposed method can be useful for mesh generation too. In this case the topology is
generated in an auxiliary domain in which the mesh may be generated in a structured way.
The boundary nodes in that mesh are relocated in the real boundary. This sharp movement of
the boundary nodes is similar to the situation faced in mesh dynamics. Using the untangling
and smoothing technique here presented, a valid mesh is generated.

The paper is organized in the following way: first the original mesh smoothing method is
briefly presented with the modifications introduced to avoid relaxation of initial mesh, next
the functional regularization and the strategy used for solving the optimization problem is
presented. Then, several results for CMD in 2D and 3D are included and a 2D mesh generation
application of this strategy is shown. Finally some conclusions and future work are included.

2. Original mesh smoothing strategy

In a previous work the authors have presented a mesh smoothing technique useful for CMD
problems [26]. The technique is based on an optimization problem solved in a global way, where
the functional means the mesh distortion. Such a functional was defined in the following way

F (x) =
∑

e

Fe(x)e (1)

with
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4 E. LÓPEZ ET.AL.

Fe(x)e = qn
e (2)

being qe some element quality indicator and n a negative integer.
Written in this way, the functional allows to be applied for any kind of elements defining

the quality indicator properly. In the present work the following geometric quality indicators
are proposed:

• Simplicial elements:

q = CqS (3)

where

qS =
V∑
j lnd

j

(4)

being lj the length of the j edge, V the volume and nd the number of spatial dimensions.
C = 4

√
3 for triangles and C = 36

√
2 for tetrahedra.

• Non-simplicial elements:

q = C
N∏

i=1

qS,i (5)

where C is a normalization constant such that 0 < q ≤ 1, N is the total number of
possible subdivision of the element in simplices and qS is given by equation (4).

Due to the quality indicator for non-simplices elements is based on those defined for simplices
ones, without lost of generality only the simplicial element case is analyzed.

The proposed functional is continuous if qe 6= 0 for all the elements in the mesh. This
property is lost when qe tends to zero and consequently Fe(x)e tends to infinity. This last
situation happens when there is at least one element in the mesh with Ve → 0 and

∑
j lnd

j is
bounded below (i.e. the simplex is not collapsed to a single point). Therefore, the application of
this technique is restricted only to valid meshes, since infinite barriers arise when the element
volume tends to zero, being impossible to recover a valid mesh starting from an invalid one. In
FSI problems this limitation is by-passed decreasing the time step size avoiding the tangling
of the grid caused by the motion of the boundary. However, the computational cost largely
increases, specially if some clustering of nodes are used close to the moving boundary to capture
fluid dynamics details like boundary layers. It is in this sense that the computational mesh
dynamics strategy enhanced with simultaneous untangling and smoothing is largely useful.

2.1. Avoiding relaxation of initial mesh

Many times the initial mesh introduced by the user is not the optimal mesh with respect
to the functional, as proposed above. Consider for instance the structured mesh M1 shown
in figure 1. The mesh is composed of 200 triangular elements. Even if the mesh has a good
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SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING AND FIXED GRIDS 5

quality, the optimization strategy tends to bring each element to a regular (equilateral) shape,
so that after a relaxation stage the mesh M3 is obtained. In this case, during the relaxation
process the nodes on sides AB, CD are fixed, whereas those on BC, AD are left to slide
in the horizontal direction. As a consequence of the optimization problem the elements near
vertices A and C tend to shrink, whereas those near vertices B and D tend to grow. This
effect is caused by the particular way the squares have been split in triangles. Note how the
elements tend to reach the equilateral shape in the relaxed mesh. After the mesh has relaxed,
subsequent displacements of the boundary nodes produce displacement of the internal nodes
as described before.

This initial “relaxation” stage may be or may be not desirable. If the initial mesh has bad
quality, then this stage may tend to get a new better mesh. However, if the initial mesh has
some ad-hoc refinement, then it is possible that the relaxation stage will revert this refinement.
Consider for instance mesh M2 in figure 1 which has a refinement towards side AB in such a
way that the horizontal spacing near CD is 3.5 times larger than that at AB. As a result of the
relaxation process the relaxed mesh M3 is reached. The resulting relaxed mesh depends only
on the topology of the mesh and the constraints on the boundary nodes, but not on the initial
position of the internal nodes. In fact, both meshes M2 and M1 (with and without refinement)
produce the same final mesh M3 after relaxation.

A

B C

D

relaxation

relaxation

M2 = initial mesh with refinement

M3 = relaxed mesh

M1 = initial homogeneous mesh
A

B C

D

A

B C

D

Figure 1. Relaxation of meshes
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Figure 2. Compensating for initial deformation in reference mesh

The functional can be easily modified in order to keep the initial refinement. First, note
that for simplicial elements there is a unique linear transformation (x0,T) that transform the
coordinates {xreg,j} of the regular element (i.e. equilateral triangle in 2D, regular tetrahedron
in 3D) to the actual element coordinates {xj}

xj = x0 + Txreg,j (6)

It is easy to see that the functional can be put as a function of the transformation matrix T

Fe = g(T) (7)

This can be seen because, the functional can be computed by taking the nodal coordinates of
the regular elements, applying the transformation and then compute the side lengths, volume,
and finally the functional. All this computation is encapsulated in the function g( · ). Of course,
the functional doesn’t depend on the translation x0. Moreover, it does depend only on the
metric of the transformation TT T, because it is independent of rotations, but for the analysis
that will follow it is needed only to accept that it depends on the transformation matrix, as
reflected in (7). By construction, g has a minimum when T = cO, with c a scaling factor and
O an orthogonal matrix, since in this case the actual element is similar to the regular element.

The objective is to modify the functional so that the optimal element shape for Fe is not the
regular element shape, besides the shape of some reference element with coordinates {xref,j}
(see figure 2). It is easy to see that this can be done by considering the transformation from
the reference element to the actual element

Fe = g(TT′−1) (8)

where T′ transforms the regular element to the reference element. For instance, as mentioned
above, a minimum is reached when TT′−1 = cO, i.e. when the actual element is similar in
shape to the reference element.

Note that, this modification can be simply introduced by computing transformations T,T′

and then computing the functional with the coordinates x′j = TT′−1xreg,j .
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SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING AND FIXED GRIDS 7

An example can be seen in figure 3. The original mesh at right has a refinement ratio of
1:10 near the AB side. Then, it is deformed at the AB side with a ramp with amplitude 0.2
(resulting mesh shown at left). Note that as no initial relaxation is produced, the final mesh
has still the refinement towards the AB side.

initial mesh with refinement deformed mesh

A

B C

D

B C

DA

Figure 3. Deformation of mesh with surface refinement

Computations of the analytical jacobians are also straightforward. The jacobians with
respect to the x′j are computed in the standard way, and then they are composed with the
jacobian

∂x′j
∂x′j

= TT′−1 T−1 (9)

3. Functional regularization

Being the main goal of the present paper to include the untangling capability to our original
smoothing technique, the functional was modified using an idea proposed in [30], that makes
the functional continuous for all element volume values. This modification consists in replacing
V in equation (4) by the following function:

h(V ) =
1
2
(V +

√
V 2 + 4δ2) (10)

This is a strictly increasing function of the volume and also it is a positive function for all
V (see figure 4). The parameter δ represents the value of the function for a null volume.

The modified functional is then written as:

F ∗e (x)e = q∗ne (11)

with
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8 E. LÓPEZ ET.AL.

O

h(V)

V

δ

Figure 4. Function h(V ).

q∗e = C
h(V )∑

i lnd
i

(12)

The dependence of h(V ) with the parameter δ is such that

lim
δ→0

h(V ) =
{

V if V ≥ 0
0 if V < 0

Therefore, when the parameter δ tends to zero the modified functional tends to the original
one for V ≥ 0, and also the modified optimal solution tends to the original one. In the limit
when δ → 0, F ∗(x) → F (x) point-wise.

The following simple example extracted from [30] shows how the original and the modified
functional work. Let the 2D mesh formed by the triangles ABp, BCp and CAp as it is observed
in figure 5. The points A(0,−1), B(

√
3, 0) and C(0, 1) are kept fixed, while the point p(x, y) has

their coordinates free to change. A valid mesh is obtained if the point p lies on the interior of
the triangle ABC, named the feasible region for the point p. In figure 6 the objective functions
for several values of the parameter δ as a function of x for y = 0 are shown. Note that for
δ 6= 0 the functional is continuous in R. It is also noticeable that decreasing the parameter
δ, the modified optimal solution approximates the original one (see the curve for δ = 0). In
this very simplified example the modified functionals have their optimal solution within the
feasible region, feature that not always may be guaranteed when the parameter δ is relatively
high.
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y

C

A

B

p

x

Figure 5. Mesh example 2D.

δ  = 0
δ  = 0.1
δ  = 0.2
δ  = 0.3

 80

 60

 40

 20

−2 −1  1  2  3  4  5

Figure 6. Regularized functional for some values of the parameter δ.

4. Solving strategy

In the present paper a global strategy for solving the system of equations is applied, taking as
variables the coordinates of the free nodes in the mesh simultaneously. Assuming that a valid
mesh exists for the given topology and boundary position, the goal is to look for the position of
the nodes in order to make optimal the original functional or to find an approximate solution
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10 E. LÓPEZ ET.AL.

close to the original one. This can be done by decreasing the value of the parameter δ below
a prefixed tolerance. According to numerical examples, the lower the parameter δ, the slower
the convergence rate of the optimization algorithm, without guarantee of a final convergence.
In addition, if δ is relatively high the optimal mesh may be invalid, being even worse if the
relative deformation of the domain is greater. Therefore, two main problems arise:

• find the decreasing sequence of the parameter δ to assure the final convergence to a valid
mesh.

• find the initial value for the parameter δ

To determine an equation that allows to decrease the parameter δ, we include it inside the
functional as a new global variable only for theoretical purposes; i.e. considering F ∗ = F ∗(x, δ).
Due to the functionality of h(V ) with the parameter δ, the value of the optimal regularized
functional increases when δ decreases (δ 6= 0). If the optimization problem is posed in terms
of the variables (x, δ) and using a Newton-like solver, the problem is written as

 ∂2F∗

∂x2
∂2F∗

∂x∂δ

∂2F∗

∂δ∂x
∂2F∗

∂δ2

[
∆x

∆δ

]
= −

[
∂F∗

∂x

∂F∗

∂δ

]

Rewriting the above equation in the following way

∂2F ∗

∂x2
∆x +

∂2F ∗

∂x∂δ
∆δ = −∂F ∗

∂x
(13)

∂2F ∗

∂δ∂x
∆x +

∂2F ∗

∂δ2
∆δ = −∂F ∗

∂δ

it is observed that this system may be solved in an uncoupled way if the parameter δ is kept
fixed for the first equation. Thus, the variable increments ∆x and ∆δ are written as

∆x = −
(

∂2F ∗

∂x2

)−1
∂F ∗

∂x
(14)

∆δ = −

(
∂F∗

∂δ + ∂2F∗

∂δ∂x ∆x
)

∂2F∗

∂δ2

The expression for ∆δ in (14) is adopted like the maximum value to reduce δ, limiting in
this way the decreasing rate of the sequence to avoid loosing of convergence.

Therefore, the updated δ in the iteration k is defined in the following way:

δk = max(δk−1 − α|∆δ|, βδk−1) (15)

being α and β constants lower than one.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING AND FIXED GRIDS 11

It was found that the off diagonal terms in the element-wise matrix have a strong influence
on the convergence of this optimization method. In the untangling stage, it is advisable to relax
these off diagonal terms to do the matrix more diagonal dominant. However, in the smoothing
stage these terms should be restored to take advantage of the convergence rate of full Newton
schemes. Here the relaxation parameter for these off diagonal terms (γ ≤ 1) may be constant
or variable with the iterations. For example, for a 2D case the element-wise matrix is modified
in the following way:

Ke =


(

∂2F∗

∂x2
1

)
e

γ
(

∂2F∗

∂x1∂x2

)
e

γ
(

∂2F∗

∂x2∂x1

)
e

(
∂2F∗

∂x2
2

)
e


The problem is solved by the Newton-Raphson method with Armijo inexact line search [32].

At each iteration δ is diminished only if the line search strategy gives a unit step as result.
This technique has a computational cost scarcely greater than the original one. Details of the
CPU times for the original strategy were published in [26].

4.1. Differential predictor

The optimization strategy means that at each time step the unknown node positions are
obtained by solving a minimization problem. The mesh coordinates vector x is composed of
nodes at the boundary xb and the internal nodes xint

x =
[

xb

xint

]
(16)

At each time step the minimization problem consists in finding the x that minimizes the
functional F (x). Due to some components of x (those in xb) are fixed by the boundary
conditions

xn
int = argmin

x̃int

F

([
xn

b

x̃int

])
(17)

The recurrence formula from the Newton-Raphson strategy is

xn,j+1
int = xn,j

int − (Kj)−1Rj (18)

where

R =
∂F

∂xint

K =
∂R

∂xint

(19)

This generates a sequence xn,j
int that, if converges, gives the solution of the optimization problem

lim
j→∞

xn,j
int = xn

int (20)

The simplest choice for the initial value xn,0
int is to take the unknown vector at the previous

time step

xn,0
int = xn−1,∞

int (21)
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12 E. LÓPEZ ET.AL.

However, this has the drawback that, if the elements near the moving mesh are small, then
the initial combination [xn−1,∞

int ,xn
b ] may lead to invalid elements, even for small time steps.

In fact, the time step is limited by the element size at the wall, and the limit time step of the
moving mesh problem diminishes with mesh refinement.

To avoid this, a linear predictor for the initial mesh is performed. If the solution xint(t) for
each t in the range tn−1 ≤ t ≤ tn is considered, then

R(xint(t),xb(t)) = 0 (22)

Taking derivatives with respect to time and evaluating at t = tn−1(
∂R

∂xint

)
tn−1

ẋint(tn−1) +
(

∂R
∂xb

)
tn−1

ẋb(tn−1) = 0 (23)

and then the Newton-Raphson sequence can be initialized with the extrapolation

xn,0
int = xn−1,∞

int + ∆t ẋint(tn−1) (24)

For instance, consider a 1D problem with a homogeneous mesh of N linear elements in the
interval [0, 1]. The right boundary is fixed and the left boundary is moving to the right
with velocity 1. With the standard initialization strategy the limit time step initially is
∆tCMD = h = 1/N , since a larger time step will cause the left boundary to pass over the
position of the first internal node (initially at x = h). On the other hand, with the differential
predictor, the limit time step is ∆tCMD = 1, since in fact the differential predictor gives the
optimal solution, and the subsequent Newton-Raphson iteration is not needed. It has been
verified through numerical experiments that with differential predictor the limiting time step
∆tCMD is independent of the mesh refinement.

5. Numerical results

In this section the numerical results for several test examples are presented. These examples
show the capability of the proposed strategy for different deformations of the boundary, from
medium (50%) to high deformations (99%) carried out in only one step. In all these cases
initially inverted elements were found. 2D and 3D mesh dynamics problems and also a 2D
mesh generation problem are presented. In the whole set of test cases the following convergence
criteria had been applied:

• Valid mesh.
• For the k iteration,

|qk
min − qk−1

min|
qk
min

< εq

being qmin = mine qe and εq a prefixed tolerance.

The relaxation coefficient for the Hessian matrix was chosen as γ = 0.5 for the untangling
stage and γ = 1 for the smoothing stage. These values had shown to be very robust. When
the mesh is initially invalid, the starting value of the parameter δ is chosen according to the
following criterion based on the minimum volume (Vmin = mine Ve). As h(V ) is a strictly
increasing function, then
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SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING AND FIXED GRIDS 13

hmin = h(Vmin) =
1
2

(
Vmin +

√
V 2

min + 4δ2

)
(25)

Adopting h∗min = hmin/δ as an user defined parameter and getting δ from the last equation,
the following criterion to initialize δ arises:

δ =

{
h∗minVmin

h∗min
2−1

+ εδ if V ≤ εδ

0 if V > εδ

where εδ > 0 is the minimum value given to the initial δ such that δ > 0 when Vmin = 0.
In the whole set of numerical examples, the following set of parameter values were used:

n = −1, α = 1, β = 0, εq = 0.01, h∗min = 0.1875 and εδ = 10−6. In these tests, the reference
element utilized was the regular element and no differential predictor was used.

5.1. Test 1

Figure 7 shows the original domain and the deformation sequence for this problem. The test
was solved for a relative deformation of 50%, 90% and 99%. A structured mesh with 200
triangular elements and 121 nodes was employed. The results present the original invalid mesh
with inverted elements and the final valid mesh (figures 8 to 13). It is also included the evolution
of the minimum quality with iterations (figure 14).

y

A

O

B

C

x

t

Figure 7. Test 1 - Domain.

5.2. Test 2

This test contains two squares, one inside the other initially centered as observed in figure 15.
The internal square is displaced without contact towards one of the sides of the external square.
The mesh has 710 triangular elements and 415 nodes. Three cases with different deformations
were solved: 50 %, 90 % and 99 %. The results achieved are presented in figures 16 to 22.
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14 E. LÓPEZ ET.AL.

Figure 8. Test 1 - 50 % def. - Initial mesh. Figure 9. Test 1 - 50 % def. - Final mesh.

Figure 10. Test 1 - 90 % def. - Initial mesh. Figure 11. Test 1 - 90 % def. - Final mesh.

5.3. Test 3

This test is the 3D extension of the test presented in subsection 5.1. Figure 23 shows the
domain for different deformations. The top face of the cube is moved in the vertical direction.
During the deformation, this face is transformed in two planes at different heights joined by a
truncated cone with upper radius r and lower radius R.
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Figure 12. Test 1 - 99 % def. - Initial mesh. Figure 13. Test 1 - 99 % def. - Final mesh.
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Figure 14. Test 1 - Evolution of qmin.

A mesh with 1080 tetrahedral elements and 343 nodes was used. This test was solved for
50%, 80% and 87% of relative deformation. Figures 24 to 30 show the results achieved.

5.4. Test 4

This test was taken from [31] and consists in a unit cube with 625 tetrahedras and 216 nodes.
The invalid initial mesh was obtained transforming the cube to another cube of 10 units of
side length changing the coordinates of some nodes in the following way: the internal nodes
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16 E. LÓPEZ ET.AL.
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Figure 15. Test 2 - Domain.

Figure 16. Test 2 - 50 % def. - Initial mesh. Figure 17. Test 2 - 50 % def. - Final mesh.

are kept fixed, those nodes lying on the edges are relocated on the edges of the new cube and
those nodes lying on the faces of the original cube are projected on the new faces respectively.
(see figure 31). In figure 32 the final mesh obtained is shown.

In figure 33 the minimum quality as a function of the number of iterations is presented.
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Figure 18. Test 2 - 90 % def. - Initial mesh. Figure 19. Test 2 - 90 % def. - Final mesh.

Figure 20. Test 2 - 99 % def. - Initial mesh. Figure 21. Test 2 - 99 % def. - Final mesh.

5.5. Mesh generation

As it was previously mentioned, the strategy of simultaneous untangling and smoothing may
serve as an algorithm for mesh generation. Here, a 2D test example is presented to give an
idea about its potentiality. This case was extracted from [33] and it consists to find the mesh
for the domain bounded by x = 0, x = 1, y = 1 and y = 0.75 + 0.25 sin(π(0.5 + 2x)). To this
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Figure 22. Test 2 - Evolution of qmin.

objective, and initial mesh composed by 800 triangular elements and 441 nodes covering a unit
square was chosen. Deforming the boundaries of the original square to match the desired final
boundary, an invalid mesh is temporarily obtained. To fix this mesh the proposed technique is
applied like in mesh dynamics problems. The achieved results are shown in figures 34 and 35.

5.6. Supersonic flow past a highly flexible structure

The above presented strategy was also applied to a FSI test [34]. This test consists of a two
dimensional supersonic flow impinging on a flexible plate of a finite thickness that undergoes
large deformations. A 65900 triangular elements and 36000 nodes mesh was used to cover
the whole domain. Initially, the mesh kinematics obtained from a typical FSI solution was
employed. Some deformed meshes are shown in figures 36 to 39. The respective pressure field
at each time are presented in figures 40 to 43. Applying the basic smoothing strategy, the
computational cost due to the mesh dynamics part was 25 % of the total CPU time. Because
of the large mesh deformation, the time step size of the simulation was limited by the CMD
strategy in order to guarantee the validity of the mesh for all the time interval. In this way,
the CFD code had to reduce the Courant number to assure that the mesh did not collapse,
increasing the computational cost.

Being the target to assess the simultaneous untangling and smoothing technique presented
when it is applied to this FSI problem, the same sequence of deformed meshes obtained with
the original technique was taken. Starting with the mesh at the time step t1 a new mesh for the
structure deformation for t2 > t1 was computed. The robustness of this method was assessed
according to the maximum time step size able to be used to produce good quality meshes. In
this way it is possible to remove the time step restriction due to the CMD leaving this size
only imposed by physical and numerical features of the real problems involved.

With the proposed strategy a Courant number 100 times greater than the original one
imposed by the CFD criterion can be used. The results achieved may be observed in figures 44
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Figure 23. Test 3 - Problem definition.

and 45. This figures show the minimum quality and the number of iterations to get a converged
mesh as a function of time.

The computational cost of this strategy was not measured directly. However, an estimation
of it may be viewed from figure 45. Each iteration within the nonlinear loop has a cost slightly
greater than that obtained for the original smoothing technique. This little extra cost is due to
the line search and the evaluation of the element quality at each iteration. The new strategy
takes between 1 to 16 iterations to get the final mesh compared with 100 iterations used
to obtain a similar mesh with the original method. This comparison goes in favour of the
simultaneous untangling and smoothing technique over the original standard smoothing.
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Figure 24. Test 3 - 50 % def. - Initial mesh. Figure 25. Test 3 - 50 % def. - Final mesh.

Figure 26. Test 3 - 80 % def. - Initial mesh. Figure 27. Test 3 - 80 % def. - Final mesh.

6. Conclusions

In this work a simultaneous mesh untangling and smoothing technique based on the solution
of an optimization problem solved in a global way was presented. From several tests in both
2D and 3D with medium, large and extra large deformation it may be concluded that this
procedure is very robust. Normally, in FSI problems the time step size is restricted by one of
the two physical problems, being the mesh dynamics an auxiliary problem where one does not
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Figure 28. Test 3 - 87 % def. - Initial mesh. Figure 29. Test 3 - 87 % def. - Final mesh.
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Figure 30. Test 3 - Evolution of qmin.

expect that this stage of the whole procedure be more restrictive than any of the others two.
However, in several applications the refinement imposes to reduce the time step size to the
mesh dynamics in order to avoid the element inversion. Enhancing the CMD with simultaneous
untangling and smoothing circumvents this drawback. A global solver is very attractive to make
this procedure more user independent. The computational cost of each time step is scarcely
more expensive than in the original mesh smoothing strategy. But, taking into account that
this new procedure does not alter the time step size in FSI problems, in general it makes the
global computational cost cheaper and more robust. As a side effect this proposed technique
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Figure 31. Test 4 - Initial mesh. Figure 32. Test 4 - Final mesh.
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Figure 33. Test 4 - Evolution of qmin.

was successfully applied to mesh generation of a simple 2D domain. In future works it is
expected to prove this capability to others 3D mesh in more complex domains, and also to
extend the functional to get nearly conformal meshes to be applied in airfoil meshing. From
the mathematical point of view this methodology deserves more work.
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Figure 34. Final mesh.
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for tetrahedral mesh optimisation. International Conference on Computational Science 2003; 2657: 568–
580.

32. Papalambros PY, Wilde DJ. Principles of Optimal Design. Modeling and Computation. Cambridge
University Press, 1988.

33. Haussling HJ, Coleman RM. A method for generation of orthogonal and nearly orthogonal boundary-fitted

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING AND FIXED GRIDS 27

coordinate systems. Journal of Computational Physics 1981; 43: 373–381.
34. Tam D, Radovitzky R, Samtaney R. An algorithm for modelling the interaction of a flexible rod with

a two-dimensional high-speed flow. International Journal for Numerical Methods in Engineering 2005;
64(8): 1057–1077.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls


	Introduction
	Original mesh smoothing strategy
	Avoiding relaxation of initial mesh

	Functional regularization
	Solving strategy
	Differential predictor

	Numerical results
	Test 1
	Test 2
	Test 3
	Test 4
	Mesh generation
	Supersonic flow past a highly flexible structure

	Conclusions

