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Abstract.  In the present article the stationary dynamic behavior of homogeneous,
isotropic and linear elastic Kirchhoff plates is modeled by the Boundary Element Method
(BEM). The dynamic stationary fundamental solution of the bi-harmonic equation is used
to transform the governing partial differential equations into Boundary Integral Equations
(BIE). The BIE is discretized by continuous and/or discontinuous linear elements. After the
boundary quantities are determined, domain variables may be easily obtained by an
integration procedure. Two displacement integral equations are written for every boundary
node. The collocation points of the integral equations are place outside the plate domain,
leading to a non-singular BE formulation. In this article the Frequency Response Functions
of the thin plates are determined. Modal data, i.e., natural frequencies and the
corresponding mode shapes, are obtained from information contained in the FRF. The
procedure is validated by comparison with analytical and numerical results available in
the literature.
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1  INTRODUCTION

It is well known that the Boundary Element Method (BEM) is an accurate and efficient
numerical method for plate dynamic analysis1. The transformation of the plate differential
equation into an integral equations requires an auxiliary state. There are basically two
approaches for treating plate dynamic stationary problems by the BEM2, according to the
type of auxiliary state that is applied. The first method possible strategy makes use of the
so-called static fundamental solution. In this case the resulting integral equation presents
boundary integrals but also a domain integral. So it is necessary to develop a procedure to
deal with the domain integral3,4. The second method uses the so called dynamic
fundamental solution and the resulting integral equation requires only the discretization of
the boundary of the plate being analyzed. The BE formulation can also be divided in direct
and indirect, depending on the type of varibles used to set up the problem5. If physical
quantities are used, the direct formulation is obtained. If ficticious auxiliary varibles are
considered, the formulation is called indirect.

The free vibration of plates using the direct version of the BEM was first reported by
Vivoli6 and Vivoli and Filippi7. Wong and Hutchinson8 presented a formulation of the free
plate vibration problem by the direct BEM including the effect of corners. Forced
vibrations of plates were first considered by Bézine and Gamby9 by a time domain direct
BEM employing constant elements.

In this article, the direct BEM based on the dynamic stationary fundamental solution is
presented for the forced and free vibration analysis of elastic plates subjected to time
harmonic loadings. The dynamic stationary fundamental solution of the is expressed in
terms of the modified Bessel functions. Frequency is explicitly included in the fundamental
solution.

In the present BE implementation the geometry of the plate and the variables are
discretized using linear elements. At plate corners, where the variables may present
discontinuities, discontinuous elements are employed. Corner effects are not taken into
account. In thin plate bending problems, every boundary node of a well posed problem
presents two unkowns and, consequently, two integral equations are required for the node.
One possible choice is to use as the first integral equation, a displacement equation and for
the second one, an equation describing the rotation normal to the boundary. The strategy
followed in the present article is to use two displacement integral equations for every node.
Two distinct collocation points, placed outside the plate domain, are chosen for every node.
This leads to a non-sigular BE formulation. The advantage of the formulation is to avoid
the need to treat singular integrals. The greatest disadvantage is that it introduces more
degrees of freedom related to the coordinates where the collocation points should be best
placed.

In this stationary formulation the plate modal quantities, that is, the natural frequencies
and the vibration modes, are obtained with the aid of Frequency Response Functions (FRF).
A point of the plate is excited by an harmonic force of constant amplitude and the resulting
displacement is measured (calculated) at another point. The displacement response for a
given range of frequencies constitutes the FRF. The plate operational eigenfrequencies
(operational natural frequencies) are obtained from the resonances present in the FRF.
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The operational eigenmodes (vibration mode shapes) are determined by calculating the
plate displacement field at the determined eigenfrequencies. Interior plate points are used to
determined the operational mode shape. The present formulation is applied, exemplarily, to
the dynamic analysis of a plate with known analytical solution. It is shown that the
implemented procedure delivers accurate operational eigenfrequencies and eigenmodes.
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x1, u

x2, v

x3, w

g

Fig. 1  Coordinate system.

2  BASIC EQUATIONS

A Cartesian coordinate system xj, (j = 1, 2, 3), shown in figure 1, is used to describe the
plate domain. The quantity h is the plate thickness, – h/2 ≤ x3 ≤ h/2. The displacements are
given by u, v, w, respectively. Normal and shear stresses components acting on the plate are
designated by σ11, σ22, σ33 and τ12, τ13, τ23. The equilibrium equations for an infinitesimal
plate element under a dynamical transverse loading g = g (x1, x2, t) and in absence of a
body force are given by:

whgq i,i ��ρ=+ (1)

0qm ij,ij =− (2)

where, ρh is the mass density per unit area, overdots indicate differentiation with respect to
time t and

∫
−

=
2/

2/

33

h

h
ijij dxxm σ (3)

are the bending and twisting moment and

∫
−

=
2/

2/

33

h

h
ii dxq τ (4)

are the shear components acting on the element. In thin plate theory, the constitutive
relations in terms of out-of-plane displacement w may be written as:
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( )[ ]kkijijij wwDm ,,1 νδν +−−= (5)

ijji Dwq ,−= (6)

In equations (5) and (6)  D = Eh3/12(1-ν2) is the plate flexural rigidity. Proper
substitution of expressions (5) and (6) into equations (2) and (1) yields the standard
dynamic equation for thin plates:

D
g

w
D
h

w4 =+∇ ��
ρ

(7)

Consider that all variables are undegoing a time harmonic displacement,
u(t)= û exp(iωt)with circular frequency ω. Under this circunstance, load g and deflections w
will also vary harmonically:

( ) ( ) [ ]tiexpx,xgt,x,xg 2121 ω�= (8a)

( ) ( ) [ ]tiexpx,xwt,x,xw 2121 ω�= (8b)

Substituting relations (8) into equation (7) yields the equation governing the dynamic
stationary behavior of Kirchhoff plates:

D
g

ww 44
�

�� =−∇ η (9)

where

D
h 2

4 ωρη = (10)

Considering the force and moment conditions at the plate boundary Γ, the twisting
moment Mns is usually integrated with the shear force qn acting on the boundary, resulting
in the equivalent shear force Vn , which is given by:

snsnn MqV ,+= (11)

Boundary conditions are expressed in terms of the displacement w, the normal slope w,n,
the bending moment Mn and equivalent shear force Vn where n and s represent the outward
normal and the tangential coordinates at the boundary Γ, respectively (Fig. 2). Usual
boundary conditions are:

Clamped: 0,w,0w n ==           (12)

Simply Supported: 0,0 == nMw           (13)

Free: 0M,0V nn ==           (14)
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Fig. 2 Normal n and tangential s coordinates at a boundary point x.

3  FUNDAMENTAL SOLUTION

The displacement fundamental solution of equation (9) is given by w* = w* (ξ, x). It is
the solution of equation (9) with a Dirac‘s Delta distribution as the load g applied at the
poin ξ:

( )x,ww *4*4 ξδη −=−∇ (15)

It represents the transversal deflection of an infinitely extended plate at point x due to a
unit concentrated lateral load at point ξ (Fig. 2). The solution of (15) has the form7, 10, 11

( ) ( ) ( )rKCrYCrJCiw 020101
* ηηη ++−= (16)

with

21 8

1
C

η
= ,                       

22 4
1

C
πη

= (17)

In equation (16) J0 e Y0  are the zero order Bessel functions of the first and second kind,
respectively, K0 is the zero order modified Bessel function of the second kind, i = √-1, and

xr −= ξ . Explicit expressions for remaining fundamentals solutions, in terms of �
Q� ,

� *
n  and � *

n  are as follows 4, 7, 8:

( ) ( ) ( )[ ] βηηηβηη cosrKCrYCcosrJCi,w 121111
*
n +−= (18)
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( )[ ] ( ) ( ) ( )
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( )[ ] ( ) ( )[ ]rKCrYC2cos11
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( ) ( ) ( )[ ]
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4  BOUNDARY INTEGRAL FORMULATION

The next step in the Boundary Element Method formulation is to transform the
differential equation (9) into a boundary integral equation2. With the aid of a reciprocal
work theorem and the fundamental solution (16) and its derivatives (18) to (20), it is
possible to write an integral equation for the displacement components w at a point ξ,  w(ξ):

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) =+−+ ∫ ∑
=Γ

ξΓξξξ
cN

1i
ccic

*
cin

*
n

*
nP xwx,Rxdx,wx,Mxwx,VwC

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )∫ ∑
=

++−
Γ

ξΓξξ
cN

1i
c

*
cicci

*
nn

*
n x,wxRxdx,,wxMx,wxV

( ) ( ) ( )XdX,wXg * Ωξ
Ω
∫+ (21)

with,

( )iB
ns

F
nsci MMR −= (22)
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In equation (21) CP depends only upon the geometry of the boundary and it equals to 1/2
for the case of a smooth boundary, Nc is the number of corners; Rci is the corner reaction
that is related to twisting moment Mns in the forward (F) and backward (B) neighborhood
of the i-th corner; w,n

*, Mn
*, Vn

*
, Rci

* and wci
* represent the elements derived from the

fundamentals solution w* and, finally, g(X) is the load applied perpendicularly to the plate
surface.

The boundary equation (21) can be discretized by dividing the boundary Γ into Ne

elements. Within every element Γe the generalized displacements and forces may be
approximated by a polynomial interpolation. In the present case linear interpolation
functions (shape functions) φm are used and the resulting equation may be written in terms
of the nodal variables �m

k , ��mnk , wci, � m
nk , � m

nk , Rci:

( ) ( ) ( ) ( ) ( ) ( ) +−+ ∫ ∫∑∑
==

j j

ee

xdxx,M,wxdx)x,(VwwC jm
*
n

N

1j

m

knjm
*

n

N

1j

m
kp

Γ Γ

ΓφξΓφξξ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+−=+ ∑ ∫∑ ∫∑
===

xdxx,,wMxdxx,wVxwx,R j

N

1j
m

*
n

m

kn

N

1j
jm

*m

kncci

N

1i
c

*
ci

e

j

e

j

c

ΓφξΓφξξ
ΓΓ

   ( ) ( ) ( ) ( ) ( )XdX,wXgx,wxR *
c

*
cic

N

1i
ci

c

Ωξξ
Ω
∫∑ ++

=

(23)

In the present implementation the collocation point ξ is placed outside the plate domain
(ξ∉Ω) and the integration free-term disappears, Cp=0. Moreover, the corner reactions Rci

can be written in terms of neighbor node rotations using a finite difference scheme.
Although this is the correct way to treat corner reactions, in the present implementation
these terms were neglected. The accurate obtained results obtained neglecting these terms
showed it to be a reasonable approximation.

5  FORMULATION AND SOLUTION OF THE LINEAR EQUATION SYSTEM

The plate boundary described in equation (23) was discretized by rectilinear elements
described by linear shape functions. Considering B1 and B2 the initial and final coordintates
of the elements, the element geometry may be expressed in terms of intrinsic coordinates, ς:

2

1

2

1
)( 21

ςςς ++−= BBb (24)

This same interpolation is used for the varibles of the elements possessing no corners,
leading to an isoparametrical formulation. For elements with corners the field variables
were discretized by discontinuous elements, as shown in figure 3. The corner nodes were
displaced towards the interior by one fourth of the element length, Le/4.
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n1
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Figure 3: Discontinuous linear element.

Two integral equations were writtten for every boundary node. The collocation points
were placed outside the plate domains, at distances d1 and d2, respectively, as shown in
figure 4, leading to non-singular integral equations.

Ω

Γj

Γ

n
s

d1

d2

Figure 4: Collocation points for non-sigular BE plate implementation

The coefficients of the system matrices H and G were determined integrating the product
of fundamental solution kernels, shape functions and Jacobians over the elements. These
non-singular integrations were performed with standard Gaussian quadrature. This
procedure leads to a linear system of algebraic equations:

[ ]{ } [ ]{ }TGUH = (25)

where U and T contain generalized boundary displacement and forces vectors, respectively.
After the plate boundary conditions have been introduced in equation (25) the resulting
system may be written:
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[ ]{ } { }BXA = (26)

The solution of equation (26), the vector X, contains all unknown boundary quantities.
The system matrix [A(ω)] contain frequency dependent terms. After the vector X is
determined, the displacement at the plate domain may be readily obtained by the non
singular integrations indicated in equation (21).

6  NUMERICAL EXAMPLE

In this section the formulation described previously will be validated by means of a
simple plate example, shown in figure 5. The plate is square, two edges are clamped and
two are free. The plate is excited by an unit harmonic normal force F, applied at one of the
boundary nodes (node 20). The remaining plate data are:

Poisson’s ratio ν = 0.3
Young’s modulus E = 1000 N/m2

Thickness h = 0.05 m
Density ρ = 0.229 Kg/m3

Plate length l=1.0 m
Plate width b=1.0m

�

b

F

x1

x2

x3

Fig. 5  Square plate subjected to concentrated time-harmonic load.

Computations are carried out for the following two boundary discretizations with using
linear elements:

i) 40 boundary elements, 4 double nodes (discontinuous elements), 44 boundary nodes
ii) 80 boundary elements, 4 double nodes (discontinuous elements), 84 boundary nodes
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The first discretization of boundary and domain is shown in Fig. 6. To obtain the
operational eingenmodes, the displacement at 49 interior points were determined (see
fig.6). The distance from de colocation points to the boundary elements are assumed to be
d1=0.25Le and d2=0.50Le (see fig4). In these relations Le is the length of the boundary
element near the collocation point. Numerical studies indicated that these positions for the
collocation points lead to accurate results.

Double nodes

x1

x2

.
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.

.

.

.

.

.

.

.

1

49

7

1 11

12

22

2333
34

44
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0.125

Figure 6: Boundary and domain discretization for the square plate.

The analytical solution for the eigenfrequencies of the square plate is given by the
following expression12:

( )
2

1

2

3

2

2

1122 











−
=

νγπ
λ

ω Ehij
ij

�
(27)

where, wij are the natural frequencies, � is the length of plate, b is the plate width, h is the
plate thickness, i is the number of half-waves in mode shape along horizontal axis x1, j is
the number of half-waves in mode shape along vertical axis x2, γ is the mass per unit area of
plate (ρh for a plate of a material with density ρ), ν  is the Poisson ratio and λij is a
dimensionless frequency parameter.

The value of the dimensionless frequency parameter λij for the first six eigenfrequencies
of the square plate are reproduced in Table 1. The indices (ij) for every eigenfrequency are
also shown in table 1. If the values of the frequency parameters λij are known, the analytical
value of the plate eigenfrequencies be determined using equation (27).
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Table 1  Frequency parameter (λij
2) of the square plate.

λij
2    (i j)

Eigenvalue sequence
�/b

1 2 3 4 5 6

1.0 22.27  (11) 26.53  (12) 43.66  (13) 61.47  (21) 67.55  (22) 79.90  (14)

The plate FRFs20-20, that means, the frequency response functions obtained by exciting
the node number 20 and calculating the response at the same point (node 20) are shown in
figures 7 and 8, for the two discretizations mentioned above. In these two figures the
resonances and anti-resonances can be clearly recognized. The system operational
eigenfrequencies (natural frequencies) are determined from the frequencies at which
resonances in the FRFs occur. Table 2 reports the value of the initial six eigenfrequencies
obtained by this procedure and also the value of the analytical solution. It can be seen that
both discretization cases produce accurate results for the plate natural frequencies.

The other modal quantity necessary to characterize the stationary dynamic behavior of
the plate is given by the eigenmodes or the natural modes of vibration. In the present case
the operational modes are obtained by calculating the displacement field within the plate at
each resonance frequency present in the FRF. Figures 9 to 15 show the first six eigenmodes
as determined from calculating the plate displacement.w(x1, x2) at the 49 internal nodes.
The reported operational modes agree with the theoretical eigenmodes of the analytical
solution12,13. It should be stressed that only the internal displacements are plotted to
characterize the operational eigenmodes. Boundary data can be easily incorporated in these
figures.

0 20 40 60 80
1E-4

1E-3

0,01

0,1

1

10
 40 Elements

w
 [m

]

ω [rad./s]

Figure 7: FRF20-20 for the first plate discretization, 40 linear elements.
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w
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]
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Figure 8: FRF20-20 for the first plate discretization, 80 linear elements.

Table 2  First six analytical and numerical frequencies (wij) of the square plate.

ωij
          e         (i j)

Discretization
1 2 3 4 5 6

40 elements 22.156 26.374 43.599 61.180 66.799 79.806

80 elements 22.156 26.374 43.599 61.180 67.151 79.810

Analytical 22.2670
(11)

26.5264
(12)

43.6541
(13)

61.4616
(21)

67.5408
(22)

79.8891
(14)

Figure 9: First operational eigenmode of the square plate (ω1=22.15rad/s).
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Figure 10: Second operational eigenmode of the square plate (ω2=26.37rad/s).

Figure 12: Third operational eigenmode of the square plate (ω3=43.59rad/s).

Figure 13: Fourth operational eigenmode of the square plate (ω4=61.18rad/s).
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Figure 14: Fifth operational eigenmode of the square plate (ω5=66.79rad/s).

Figure 15: Sixth operational eigenmode of the square plate (ω6=79.80rad/s).

7  CONCLUDING REMARKS

An implementation of the direct version of the Boundary Element Method (BEM) is
presented to analyze the stationary dynamic behavior of Kirchhoff plates. The stationary
fundamental solution of thin plates is used to transform the differential equation governing
the thin plate behavior into a boundary-only integral equation. The boundary equation is
discretized using linear continuous and discontinuous linear elements. Two displacement
integral equations are written for every boundary node. The collocation points of the
integral equations are placed outside de plate domain, leading to a non-singular Boundary
Element formulation.
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The proposed scheme is used, exemplarily, to obtain modal data, that is,
eigenfrequencies and operational eigenmodes of a square plate with two clamped and two
free sides. Frequency Response Functions may be determined for every boundary or
domain point of the plate. In the reported example, the FRF of a node on a free boundary is
used to recover eigenfrequencies. The eigenfrequencies are determined from the resonances
of the FRF. At this resonance frequencies the displacement field of the plate furnish the
operational eigenmodes. The presented results agree very well with a known analytical
solution. The proposed scheme may be seen as an accurate methodology to analyze free
and forced stationary vibrations of thin plates, which only requires the discretization of the
plate boundary.
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