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Abstract.

Several finite element codes for solving the two-dimensional shallow water model are
currently available for engineering applications. While most of these codes are capable
of computing the water surface elevation and the depth-averaged velocity of free-surface
flows in any given geometry, the computing process itself is sometimes hampered with
unpleasant consequences for the inexperience modeler. Some of these unwelcome problems
may be triggered by the algorithms built into the codes (i.e., depending on the method used
to incorporate the required amount of 'upwinding’ to cope with the convective terms), or by
the uncertainty present in the values of the model parameters that may influence the flow
physics. In this communication, the performance of some codes is tested. To that aim,
we shall present the discussion of few benchmark solutions that can be used to measure
the performance of any computational code based on the shallow water equations. Some
of them correspond to rather unrealistic situations that have the purpose of illustrating
the capabilities and/or the accuracy/inaccuracy achieved by the codes being tested. Other
benchmark solution is related to a real engineering problem that is ambiguously modeled
with some of the shallow water codes.
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1 INTRODUCTION

The Shallow Water Equations (SWE) are typically used to model river and lake hydro-
dynamics, floodplain flows, estuarine and coastal circulation as well as long wave runup
among many other problems of interest within the engineering community.! Indeed, the
range of application of the shallow water approximation exceeds by far the scope of the
hydraulic engineer. Nowadays, the trend in geomorphology and hydrology is to adopt
Computational Fluid Dynamics (CFD) techniques developed by engineers and scientists
to study a variety of problems that can be approached with the long wave approximation
or the SWE.%2 Then, the development of user-friendly interfaces has been so rapid lately
that the numerical simulation of complex hydrodynamic problems is today a standard
computational task. However, when using a computational code, the engineer somehow
surrenders control of the accuracy of the computation to the model developer. In other
words, while most of these codes are capable of computing the water surface elevation and
the depth-averaged velocity of free-surface flows in any given geometry, the computing
process itself is sometimes hampered with unpleasant consequences for the inexperience
modeler. Some of these unwelcome problems may be triggered by the algorithms built
into the codes (i.e., depending on the method used to incorporate the required amount
of 'upwinding’ to cope with the convective terms), or by the uncertainty present in the
values of the model parameters that may influence the flow physics. Thus, it is still of
paramount importance to check the quality of computer codes by comparing its results
against standard benchmark cases and real situations as well. In the former case, the
code is mostly tested against analytical solutions of the governing equations to check its
numerical ability to yield approximate solutions of the proposed governing equations. In
the other case, the availability of good quality field data gives the user the possibility
to assess the capability of the codes to predict the flow behavior in cases of practical
interest.

In this communication, the performance of the RMA-2,* the FESWMS-2DH? and the
TELEMAC-2D® shallow water model codes is tested. To that aim, the discussion of several
benchmark solutions that can be used to measure the performance of any computational
code based on the SWE is presented. They correspond to rather unrealistic situations that
have the purpose of illustrating the capabilities and/or the accuracy/inaccuracy achieved
by the codes. The other benchmark solution is related to a real engineering problem that
can be ambiguously modeled with the shallow water codes.

2 GOVERNING EQUATIONS
The depth-integrated Navier-Stokes equations of motion, previously averaged over turbu-
lence, known as the SWE, are expressed in Cartesian form as”
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The vectors U, F, and G can be expressed in terms of the primary variables, u, v and h
as

h uh vh
U=|uh |, F= w?h + gh?/2 — 2hv, 3 ., G=| uvh—hu (%Z | g—;’) (2)
vh uvh — hiy (% | 2—23 Vh -+ gh%/2 — 2h1 L
The source term H is given by
0
H=| g3 —7n/p (3)
950 — To/P

In the above equations, (u,v) are the depth-averaged velocity components along the
streamwise and lateral horizontal directions (x,y) respectively, ¢ is the time, h is the total
water depth, g is the acceleration of gravity, p is the water density, (7, Tby) are the shear
stresses components acting on the stream bed, n is the channel bed elevation, and v; is
the turbulent eddy viscosity. For depth-averaged calculations, one often approximates
the turbulent viscosity as vy = au,h, where u, is the bottom friction velocity defined as
v/|17|/p - The constant ¢, that may range from 0.07 to 0.30, not only takes into account
the mixing process due to turbulence but also the vertical flow inhomogeneities. To close
the problem, the classical squared function dependency on the depth-averaged velocity is
used to model the bed resistance

Tow = Crplulu, 7oy = Crplulv (4)

Sometimes, the friction coefficient Cr is traditionally replaced by other coefficients such
as the Manning or Chezy relations

Cp=gn*h ', Cp=gC~? (5)
where n is the Manning roughness coefficient, and C is the Chézy discharge coefficient.®

3 SOME FINITE ELEMENT CODES BASED ON THE SWE
3.1 Codes description

In order to compare the analytical solutions with numerical results, the following codes
have been tested:

e RMA-2: this code was developed by Norton, King and Orlob, of Water Resources
Engineers, for the Walla Walla District, U.S. Army Corps of Engineers, and released
in 1973. Further development, was carry out by King and Roig at the University of
California, Davis. Subsequent enhancements have been made by King and Norton,
of Resource Management Associates (RMA), and by the Waterways Experiment
Station (WES) Hydraulic Laboratory.*
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o FESWMS-2DH: the code was developed for the Federal Highway Administration by
the Water Resources Division of the U.S. Geological Survey. FESWMS-2DH consists
of three programs: a data-input module, DINMOD; a hydrodynamic flow module,
FLOMOD; and an analysis-of-output module, ANOMOD. The preprocessor, DIN-
MOD, generates a two-dimensional finite-element network for use by FLOMOD.?
However, in this work both RMA-2 and FESWMS-2D are accessed through the user
friendly interface SMS.?

o TELEMAC-2D: was developed by the National Hydraulics Laboratory (Laboratoire
National d’Hydraulique - LNH) of the Research and Studies Directorate of the
French Electricity Board (EDF-DER). The software is imbedded in an integrated
and user-friendly software environment, the TELEMAC system.

3.2 Solution techniques

Both RMA-2 and FESWMS-2DH use a fully implicit implementation of the Galerkin
weighted residual technique to solve the governing system of differential equations.>1° In
these codes, the values of a dependent variables are approximated by mixed interpolation,
that is, the nodal values of water-depth are defined at three or four vertices and their dis-
tribution is approximated by linear or bilinear polynomials for triangular or rectangular
elements, respectively, while the depth-averaged velocity are approximated at six or eight
vertices, and so its distribution is interpolated with quadratic polynomials for triangular
or rectangular elements, respectively. FESWMS-2DH includes, in addition, nine-node
rectangular elements, as shown in Figure 1.

Owing to the non-linearity of the governing equations, the numerical integration of the
Galerkin procedure is performed iteratively using an implicit Newton-Raphson procedure.
Both RMA-2 and FESWMS fully assemble the matrices of the linear system at each iter-
ation within an implicit scheme for the time integration process, which has the advantage
of maintaining stability and mass conservation at Courant numbers in excess of 1. The re-
sultant matrices are both large and sparse, and can add significantly to the time required
to perform a particular calculation. Therefore, a suitable reordering scheme is necessary
to reduce the matrix frontwidth.

TELEMAC-2D employs a fractional step method or splitting technique!®*? to solve the
governing equations (egs. 1), where advection terms are initially solved with the Method
of Characteristics (MOC),!® and separated from diffusion and source terms, which are
solved together in a second step. This is achieved for a space discretization consisting of
linear triangles with three nodes (Figure 1).

The second step of TELEMAC-2D makes use of a time discretization of the predictor-
corrector type and solves the resulting linear system with a conjugate gradient type
method. In addition, the TELEMAC-2D code makes significant savings in both compu-
tational time and storage requirements through the use of an element-by-element solution
technique. Here, the matrices of the linear system are stored in their elementary form
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RMA-2 / FESWMS-2DH

A + A (T6/3C)
m + H (Q8/4C)
H + I (Q9/4C)
TELEMAC-2D

A + A (T3/3C)

v water depth node
0 depth-averaged velocity node

Figure 1: Depth-averaged velocity-water depth finite elements

without full assemblage. In summary, the numerical scheme followed by TELEMAC-2D
is

e Ist step: The advection terms are solved with the MOC, that is, if the spatial
coordinate is ’convected’ along the problem characteristics, the convective terms
disappear and the remaining problem is that of simple diffusion for which standard
discretization procedures are optimall®

h* _ h’n
At

u, —u

At

Fut- VR = 0 (6)

n

+u"-Vu* — 0 (7)
e 2nd step: The remaining terms are now advanced on the basis of the 1st step solu-
tion hy, u,. The mass conservation is, in consequence, discretized as follows

h]’rH»l _ h*
TJr(hV-u):S" (8)

where S represents source/sink terms, if any, and the non-linear terms are linearized
mathematically to remove the need for an iterative solution of the Newton-Raphson

type. For example, the non-linear term above is linearized as

(hV-u)=hV-(u™ + (1 -0u”) 0<6<1 (9)
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where 0 is an implicit weighting coefficient bounded between zero and one, and the
superscripts n and n + 1 indicate the time step level,'? and

- h" without sub-iteration loop (10)
1 A*'! with a sub-iteration loop
The momentum conservation equation is then advanced as follows:
ntl _
W oW gH L F Vi (11)
At
where
*gVHTHl — 7gv(hn|1 o hn) ngH” (12)

The resultant system of linear equations are solved with the GMRES solution algo-
rithm (Generalised Minimum RESidual). Further details about the GMRES algorithm
implementation can be consulted in Reddy and Gartling.!4
Finally, the governing equations are formulated in a weak sense using the Method of
Weighted Residual (MWR), where the water-depth and the velocity fields are approxi-
mated using the standard FEM basis functions

N

N
b Yo hy(B8(), wm Y u(t)g(x), (13)

7=1

where N is the number of discrete points, and h;(¢) and u;(¢) are the nodal unknowns (j =
I,...,N) of the water-depth and the depth-averaged velocity components, respectively,
and ¢;(x) are the approximation functions defined over the finite elements described in
Figure 1. Then, the solution is advanced in time as just explained.

4 BENCHMARKS SOLUTIONS

In this short communication, uncertainty in model parameterization and boundary con-
ditions, and complex topography are ignored.

4.1 Slowly divergent channel

Restricting the analysis to the 1D case, and zero viscosity (v; — 0), the equations (1) are
reduced to

ht+(uh)¢ = 0

h2.
(hu)e + (hu® + 97)1 — gh(So — S¢), (14)

where Sy is the bed slope and S is the friction slope. It is then possible to find a solution
to this system of equations if it is assumed that the flow takes place in a slowly divergent
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channel, such that two-dimensionality can be safely ignored, that satisfies

1+e€

b(ﬁU)/bO = \/l T Kl T 6)2 — He_chz/ho

(15)

where b(x) is the channel width, measured from by at the entrance x — 0, and € is an
arbitrary coefficient that measures the rate of geometric divergence of the channel. Thus,
if now the flow experiences a sudden jump in its inflowing momentum at =z — 0, the
solution can be expressed in terms of the base flow uy and hy as

ufu = '\/l ! K%) B 1} emicr=/to, (16)

1/2
o — (LLO SO) . (17)

where

Cr

Above, u4 when subtracted from uq represents the given excess of momentum. The values
used in this test were Cp — 0.003924, hg — 10 m, ug — 1 m/s, ua — 1.5 m, ¢ — 0.5, and
bo — 600 m.

The finite element meshes used for the calculations comprises 707 nodes and 1200 elements
for TELEMAC-2D, and 2013 nodes and 600 elements for both RMA-2 and FESWMS-
2DH. The computational mesh is shown in Figure 2. Figure 3 plots the comparison
between the analytical and numerical solution of u/ug obtained with the different codes.
The maximum relative error of A and u are shown in Table 1. As it can be seen, all codes
results are in good agreement when compared with the analytical solution, although
FESWMS-2DH exhibits the major discrepancy at the channel inflow.

i
i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 2: Finite element mesh used for the slowly divergent channel test
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——— exact solution
RMA-2
- FESWMS-2DH

TELEMAC-2D

100 200 300 400 500 600 700 800 900 1000

xihy

Figure 3: Comparison between analytical and numerical solution of u

Numerical code % error (k) % error (u)

RMA-2 0.187 3.61
FESWMS-2DH 0.120 11.27
TELEMAC-2D 0.108 2.51

Table 1: Maximum relative error in h and u, computed as max | frum — fezacl/ fezac

4.2 Flow in an annular channel

The second problem considered here is the fully developed, uniform flow in a circular
(annular) channel of rectangular cross-section. The down reach slope Sy = —dn/df is
constant, where 17 — 7)(6) represents the channel bottom elevation in terms of the angular
coordinate . Then, for simple geometrical reason, the actual slope S of the channel
satisfies the equation S = Sp/r. Under these circumstances, all derivatives with respect
to @ dropped from now on, and the equations of motions in polar coordinates (r, #) reduces
to

d(hu,.)
=0 18
dr (18)

2

ug dh
_ = =0 19
T +gdr (19)

2

g Uy ‘

28 —Op=t = 0 20
- 0 F A ’ ( )
where b — h(r) is the water depth, and u, — u.(r), ug — up(r) are the radial and

tangential velocity components, respectively.
The equations (19-20) can be interpreted physically: the first equates the free surface slope
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in the radial direction with the centripetal acceleration required to maintain the circular
motion of the fluid, the second balances gravity against bed friction. The analytical
solutions can be expressed in terms of the Froude number Fy = 1/Sy/Crrg, and the
dimensionless radii 7 — r/rq, relative to the inner radii 7o

U or /=

_g = e*Fg(lfﬁ/lr/\/; (21)
Up

}L _F2(1—-F) /7

= e (22)
ha

where u) — ug(ro), ho — h(rq) are the tangential velocity and the water depth at the inner
radii 77— 1, respectively. For this test the following values were used: ro — 50 m, hy — 1
m, and Chezy friction coefficient C' = 40 m¥/2s1| related with C by g/C?. The channel
was 20 m wide. The boundary conditions imposed were the ug velocity component and
the water depth h at the upstream end (flow was in counterclockwise direction), and the
water depth h at the downstream end. These values were prescribed with the aid of (21)
and (22). Figure 4 plots some of the meshes used in the simulations. Details about the
spatial discretization used by the computational codes are detailed in Table 2. In this
test, meshes A and B are structured and mesh C is non-structured.

Figure 5 shows the comparison of the numerical results for the depth and the ug-component,
of the velocity. The RMA-2 and TELEMAC-2D models reproduce accurately the depth
distribution while FESWMS-2DH shows the major departure. However, some discrepan-
cies are observed in the computation of the flow velocity. In this case, the FESWMS-2DH
velocity solution does not converge. The effect of the mesh refinement is shown in Figure
6, where only the TELEMAC-2D solutions are included.

mesh A mesh B mesh C
1 2 1 2 1 2
number of nodes 585 | 165 | 2193 | 585 | 3233 | 877
number of elements | 256 | 256 | 1024 | 1024 | 1480 | 1480

Table 2: Finite element mesh data, 1: RMA-2 and FESWMS-2DH; 2: TELEMAC-2D
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Right: Non-structured mesh of annular channel
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Figure 5: Left: Comparison between analytical and numerical solution of h/hQ.
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Figure 6: Effect of mesh resolution on the numerical computations
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4.3 Branching channel

This test is designed to illustrate how a real engineering problem may be ambiguously
model with some shallow water codes. It is related with the branching problem that fre-
quently occurs in the main channel of a large river, such as the Parand river in Argentina.
The main conclusions of this test will be further discussed at the time of the Conference.
In the meantime, an intensive field data collection work has been undertaken by the re-
search group at FICH using an ADCP (Accoustic Doppler Current Profiler) for accurate
measurements of the river discharge at selected locations of the Parand river nearby Santa
Fe city. One of these data set collected by the group in the middle reach of the Parand
river is discussed next.

5 COMPARISON OF NUMERICAL RESULTS WITH FIELD DATA

Nearby the Santa Fe and Parand cities, Argentina, the middle reach of the Parand river
constitutes a large alluvial stream that flows through a broad plain (Figure 7). The river
comprises a sand bed main channel, approximately 1000 m wide and 10 m deep, bounded
by a steep, stable bank on the Parana’ side, and by a 10-15 km wide floodplain on the
Santa Fe’ side, with a mean discharge of the order of 17000 m?/s.

In order to validate the numerical codes, the flow rate was measured in three cross sections
placed in a bifurcation around two islands where the river splits in three flow branches
(Figure 7). The finite element mesh spans about 10 km consisting of 4330 quadratic trian-
gular elements with 9045 nodes (Figure 8). The mesh was refined in the area surrounding
the two islands in order to capture the steep slope of the left bank. The condition of
steady state flow at bankfull discharge was assumed for the simulations. At the inflow
boundary was imposed a know discharge, and at the outflow a fixed water surface ele-
vation. In addition, the slip boundary condition was automatically satisfied on all the
rigid boundaries of the computational domain. Some preliminary results obtained with
the RMA-2 and TELEMAC-2D are summarized in Table 3. It can be seen that the major
discrepancy is obtained in Branch 2. However, this difference can be mainly attributed
to the lack of a proper representation of the bed topography in this river section (at the
time of the field work, the river was in low-water condition making it impossible to gauge
the bed with an echosounder). The same calculation was done with the TELEMAC-2D
(Table 3). Surprisingly, an error of the order of 30 % is obtained in Branch 3.
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Figure 8: Finite element mesh

RMA-2 TELEMAC-2D

Qobs | Quim  Yoerror | Qe % error

Branch 1 9900. | 9924. 0.24 | 10486. 5.92
Branch 2 213. 305. 43.19 248. 16.43
Branch 3 1729. | 1639. 5.20 | 1157. 33.08

Table 3: Comparison of the bulk discharge in a branching point of the main channel of the Parand river

6 CONCLUSIONS

Some computational codes that calculate free surface flows in water bodies have been
tested against benchmark solutions. The codes tested showed good results in the case of
the slowly divergent straight channel. Though not shown here, the RMA-2 and FESWMS-
2DH solutions for the water-depth showed the typical checkerboard pattern of the mixed
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FEM formulation.'® For the case of the annular channel, both RMA-2 and TELEMAC-
2D results showed a reasonable agreement with the exact solution of h = h(f), but with
a discrepancy of the order of 5 % for the outer value of the ug component of the flow
velocity. In this test, the FESWMS-2DH solution did not converge for the finer mesh,
while exhibited convergence for the h-space solution only for the coarse mesh. For the
field study case, the TELEMAC-2D shows the greater discrepancy in determining the
streamflow discharge at the river bifurcation. Therefore, in spite of their simplicity, the
benchmark solutions proposed in this work have the merit to highlight some deficiencies
of popular numerical engines for solving the SWE. Four more benchmark solutions are
underway for a more extensive testing of the aforementioned codes. It is the purpose
of the authors to have some of them ready at the time of the Conference. One of it is
being specially designed to explain the lack of accuracy of the streamflow distribution at
river bifurcations computed by TELEMAC-2D. This issue is of particular relevance in a
movable bed configuration, i.e., when bed erosion and sediment transport is allowed in
the modeling process.
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